652 research outputs found

    Optimized Control for Dynamical Performance of the Polishing Robot in Unstructured Environment

    Get PDF

    A Production Planning Model for Make-to-Order Foundry Flow Shop with Capacity Constraint

    Get PDF
    The mode of production in the modern manufacturing enterprise mainly prefers to MTO (Make-to-Order); how to reasonably arrange the production plan has become a very common and urgent problem for enterprises’ managers to improve inner production reformation in the competitive market environment. In this paper, a mathematical model of production planning is proposed to maximize the profit with capacity constraint. Four kinds of cost factors (material cost, process cost, delay cost, and facility occupy cost) are considered in the proposed model. Different factors not only result in different profit but also result in different satisfaction degrees of customers. Particularly, the delay cost and facility occupy cost cannot reach the minimum at the same time; the two objectives are interactional. This paper presents a mathematical model based on the actual production process of a foundry flow shop. An improved genetic algorithm (IGA) is proposed to solve the biobjective problem of the model. Also, the gene encoding and decoding, the definition of fitness function, and genetic operators have been illustrated. In addition, the proposed algorithm is used to solve the production planning problem of a foundry flow shop in a casting enterprise. And comparisons with other recently published algorithms show the efficiency and effectiveness of the proposed algorithm

    Emerging Trends in Mechatronics

    Get PDF
    Mechatronics is a multidisciplinary branch of engineering combining mechanical, electrical and electronics, control and automation, and computer engineering fields. The main research task of mechatronics is design, control, and optimization of advanced devices, products, and hybrid systems utilizing the concepts found in all these fields. The purpose of this special issue is to help better understand how mechatronics will impact on the practice and research of developing advanced techniques to model, control, and optimize complex systems. The special issue presents recent advances in mechatronics and related technologies. The selected topics give an overview of the state of the art and present new research results and prospects for the future development of the interdisciplinary field of mechatronic systems

    Optimization of Welding Input Parameters Using PSO Technique for Minimizing HAZ Width in GMAW

    Get PDF
    In order to conceive command systems for welding equipment based on intelligence techniques similar to human thinking; it is better to use artificial intelligence methods, for example: Genetic algorithms and particle swarm optimization. Freshly, this latter has received increased attention in many research fields. This paper discuss the application of particle swarm optimization algorithm to optimize the welding process parameters and obtain a better Width of Head Affected Zone (WHAZ) in the welding machine which is gas metal arc welding. The effect of four main welding variables in the gas metal arc welding process, namely welding speed, welding voltage, nozzle-to-plate distance and wire feed speed on the WHAZ are studied. A source code is developed in MATLAB 8.3 to perform the optimization

    Research on hybrid manufacturing using industrial robot

    Get PDF
    The applications of using industrial robots in hybrid manufacturing overcome many restrictions of the conventional manufacturing methods, such as small part building size, long building period, and limited material choices. However, some problems such as the uneven distribution of motion accuracy within robot working volume, the acceleration impact of robot under heavy external loads, few methods and facilities for increasing the efficiency of hybrid manufacturing process are still challenging. This dissertation aims to improve the applications of using industrial robot in hybrid manufacturing by addressing following three categories research issues. The first research issue proposed a novel concept view on robot accuracy and stiffness problem, for making the maximum usage of current manufacturing capability of robot system. Based on analyzing the robot forward/inverse kinematic, the angle error sensitivity of different joint and the stiffness matrix properties of robot, new evaluation formulations are established to help finding the best position and orientation to perform a specific trajectory within the robot\u27s working volume. The second research issue focus on the engineering improvements of robotic hybrid manufacturing. By adopting stereo vision, laser scanning technology and curved surface compensation algorithm, it enhances the automation level and adaptiveness of hybrid manufacturing process. The third research issue extends the robotic hybrid manufacturing process to the broader application area. A mini extruder with a variable pitch and progressive diameter screw is developed for large scale robotic deposition. The proposed robotic deposition system could increase the building efficiency and quality for large-size parts. Moreover, the research results of this dissertation can benefit a wide range of industries, such as automation manufacturing, robot design and 3D printing --Abstract, page iv

    Robot Manipulators

    Get PDF
    Robot manipulators are developing more in the direction of industrial robots than of human workers. Recently, the applications of robot manipulators are spreading their focus, for example Da Vinci as a medical robot, ASIMO as a humanoid robot and so on. There are many research topics within the field of robot manipulators, e.g. motion planning, cooperation with a human, and fusion with external sensors like vision, haptic and force, etc. Moreover, these include both technical problems in the industry and theoretical problems in the academic fields. This book is a collection of papers presenting the latest research issues from around the world

    Robots in machining

    Get PDF
    Robotic machining centers offer diverse advantages: large operation reach with large reorientation capability, and a low cost, to name a few. Many challenges have slowed down the adoption or sometimes inhibited the use of robots for machining tasks. This paper deals with the current usage and status of robots in machining, as well as the necessary modelling and identification for enabling optimization, process planning and process control. Recent research addressing deburring, milling, incremental forming, polishing or thin wall machining is presented. We discuss various processes in which robots need to deal with significant process forces while fulfilling their machining task

    Technology 2003: The Fourth National Technology Transfer Conference and Exposition, volume 2

    Get PDF
    Proceedings from symposia of the Technology 2003 Conference and Exposition, Dec. 7-9, 1993, Anaheim, CA, are presented. Volume 2 features papers on artificial intelligence, CAD&E, computer hardware, computer software, information management, photonics, robotics, test and measurement, video and imaging, and virtual reality/simulation

    Robotic Trajectory Tracking: Position- and Force-Control

    Get PDF
    This thesis employs a bottom-up approach to develop robust and adaptive learning algorithms for trajectory tracking: position and torque control. In a first phase, the focus is put on the following of a freeform surface in a discontinuous manner. Next to resulting switching constraints, disturbances and uncertainties, the case of unknown robot models is addressed. In a second phase, once contact has been established between surface and end effector and the freeform path is followed, a desired force is applied. In order to react to changing circumstances, the manipulator needs to show the features of an intelligent agent, i.e. it needs to learn and adapt its behaviour based on a combination of a constant interaction with its environment and preprogramed goals or preferences. The robotic manipulator mimics the human behaviour based on bio-inspired algorithms. In this way it is taken advantage of the know-how and experience of human operators as their knowledge is translated in robot skills. A selection of promising concepts is explored, developed and combined to extend the application areas of robotic manipulators from monotonous, basic tasks in stiff environments to complex constrained processes. Conventional concepts (Sliding Mode Control, PID) are combined with bio-inspired learning (BELBIC, reinforcement based learning) for robust and adaptive control. Independence of robot parameters is guaranteed through approximated robot functions using a Neural Network with online update laws and model-free algorithms. The performance of the concepts is evaluated through simulations and experiments. In complex freeform trajectory tracking applications, excellent absolute mean position errors (<0.3 rad) are achieved. Position and torque control are combined in a parallel concept with minimized absolute mean torque errors (<0.1 Nm)

    Study and Development of Mechatronic Devices and Machine Learning Schemes for Industrial Applications

    Get PDF
    Obiettivo del presente progetto di dottorato è lo studio e sviluppo di sistemi meccatronici e di modelli machine learning per macchine operatrici e celle robotizzate al fine di incrementarne le prestazioni operative e gestionali. Le pressanti esigenze del mercato hanno imposto lavorazioni con livelli di accuratezza sempre più elevati, tempi di risposta e di produzione ridotti e a costi contenuti. In questo contesto nasce il progetto di dottorato, focalizzato su applicazioni di lavorazioni meccaniche (e.g. fresatura), che includono sistemi complessi quali, ad esempio, macchine a 5 assi e, tipicamente, robot industriali, il cui utilizzo varia a seconda dell’impiego. Oltre alle specifiche problematiche delle lavorazioni, si deve anche considerare l’interazione macchina-robot per permettere un’efficiente capacità e gestione dell’intero impianto. La complessità di questo scenario può evidenziare sia specifiche problematiche inerenti alle lavorazioni (e.g. vibrazioni) sia inefficienze più generali che riguardano l’impianto produttivo (e.g. asservimento delle macchine con robot, consumo energetico). Vista la vastità della tematica, il progetto si è suddiviso in due parti, lo studio e sviluppo di due specifici dispositivi meccatronici, basati sull’impiego di attuatori piezoelettrici, che puntano principalmente alla compensazione di vibrazioni indotte dal processo di lavorazione, e l’integrazione di robot per l’asservimento di macchine utensili in celle robotizzate, impiegando modelli di machine learning per definire le traiettorie ed i punti di raggiungibilità del robot, al fine di migliorarne l’accuratezza del posizionamento del pezzo in diverse condizioni. In conclusione, la presente tesi vuole proporre soluzioni meccatroniche e di machine learning per incrementare le prestazioni di macchine e sistemi robotizzati convenzionali. I sistemi studiati possono essere integrati in celle robotizzate, focalizzandosi sia su problematiche specifiche delle lavorazioni in macchine operatrici sia su problematiche a livello di impianto robot-macchina. Le ricerche hanno riguardato un’approfondita valutazione dello stato dell’arte, la definizione dei modelli teorici, la progettazione funzionale e l’identificazione delle criticità del design dei prototipi, la realizzazione delle simulazioni e delle prove sperimentali e l’analisi dei risultati.The aim of this Ph.D. project is the study and development of mechatronic systems and machine learning models for machine tools and robotic applications to improve their performances. The industrial demands have imposed an ever-increasing accuracy and efficiency requirement whilst constraining the cost. In this context, this project focuses on machining processes (e.g. milling) that include complex systems such as 5-axes machine tool and industrial robots, employed for various applications. Beside the issues related to the machining process itself, the interaction between the machining centre and the robot must be considered for the complete industrial plant’s improvement. This scenario´s complexity depicts both specific machining problematics (e.g. vibrations) and more general issues related to the complete plant, such as machine tending with an industrial robot and energy consumption. Regarding the immensity of this area, this project is divided in two parts, the study and development of two mechatronic devices, based on piezoelectric stack actuators, for the active vibration control during the machining process, and the robot machine tending within the robotic cell, employing machine learning schemes for the trajectory definition and robot reachability to improve the corresponding positioning accuracy. In conclusion, this thesis aims to provide a set of solutions, based on mechatronic devices and machine learning schemes, to improve the conventional machining centre and the robotic systems performances. The studied systems can be integrated within a robotic cell, focusing on issues related to the specific machining process and to the interaction between robot-machining centre. This research required a thorough study of the state-of-the-art, the formulation of theoretical models, the functional design development, the identification of the critical aspects in the prototype designs, the simulation and experimental campaigns, and the analysis of the obtained results
    • …
    corecore