15,415 research outputs found

    All-Inorganic Metal Halide Perovskite Nanocrystals: Opportunities and Challenges.

    Get PDF
    The past decade has witnessed the growing interest in metal halide perovskites as driven by their promising applications in diverse fields. The low intrinsic stability of the early developed organic versions has however hampered their widespread applications. Very recently, all-inorganic perovskite nanocrystals have emerged as a new class of materials that hold great promise for the practical applications in solar cells, photodetectors, light-emitting diodes, and lasers, among others. In this Outlook, we first discuss the recent developments in the preparation, properties, and applications of all-inorganic metal halide perovskite nanocrystals, with a particular focus on CsPbX3, and then provide our view of current challenges and future directions in this emerging area. Our goal is to introduce the current status of this type of new materials to researchers from different areas and motivate them to explore all the potentials

    Recent advances in solid-state organic lasers

    Full text link
    Organic solid-state lasers are reviewed, with a special emphasis on works published during the last decade. Referring originally to dyes in solid-state polymeric matrices, organic lasers also include the rich family of organic semiconductors, paced by the rapid development of organic light emitting diodes. Organic lasers are broadly tunable coherent sources are potentially compact, convenient and manufactured at low-costs. In this review, we describe the basic photophysics of the materials used as gain media in organic lasers with a specific look at the distinctive feature of dyes and semiconductors. We also outline the laser architectures used in state-of-the-art organic lasers and the performances of these devices with regard to output power, lifetime, and beam quality. A survey of the recent trends in the field is given, highlighting the latest developments in terms of wavelength coverage, wavelength agility, efficiency and compactness, or towards integrated low-cost sources, with a special focus on the great challenges remaining for achieving direct electrical pumping. Finally, we discuss the very recent demonstration of new kinds of organic lasers based on polaritons or surface plasmons, which open new and very promising routes in the field of organic nanophotonics

    Room temperature magneto-optic effect in silicon light-emitting diodes

    Get PDF
    In weakly spin-orbit coupled materials, the spin-selective nature of recombination can give rise to large magnetic-field effects, for example on electro-luminescence from molecular semiconductors. While silicon has weak spin-orbit coupling, observing spin-dependent recombination through magneto-electroluminescence is challenging due to the inefficiency of emission due to silicon's indirect band-gap, and to the difficulty in separating spin-dependent phenomena from classical magneto-resistance effects. Here we overcome these challenges to measure magneto-electroluminescence in silicon light-emitting diodes fabricated via gas immersion laser doping. These devices allow us to achieve efficient emission while retaining a well-defined geometry thus suppressing classical magnetoresistance effects to a few percent. We find that electroluminescence can be enhanced by up to 300\% near room temperature in a seven Tesla magnetic field showing that the control of the spin degree of freedom can have a strong impact on the efficiency of silicon LEDs

    Light-emitting diodes and photodiodes in the deep ultra-violet range for absorption photometry in liquid chromatography, capillary electrophoresis and gas sensing

    Get PDF
    Absorbance measurement in the deep ultra-violet range (below 300 nm) has been one of the most widely used detection methods for analytical techniques as a large number of organic compounds have strong absorption bands in the deep UV region. The use of incandescent or discharge lamps coupled to a monochromator for the wavelength selection in a conventional UV detector makes it complex and costly. Light-emitting diodes (LEDs) for the deep UV range commercially available in recent years have become potential alternatives to thermal light sources. LEDs with their relatively narrow emission bandwidths (typically 20 nm) are well suited for absorption photometry in which a monochromator is not required. This dissertation, therefore, concerns the utilization LEDs and photodiodes (PDs) in the deep UV range as radiation sources and light detectors, respectively for absorption photometry in high-performance liquid chromatography (HPLC), capillary electrophoresis (CE) and gas sensing. LEDs were known to perform as light detectors. In measuring systems based on LEDs as light sources, PDs have been normally employed for detection devices. The practical reasons for the use of LEDs as alternatives to PDs, however, have not been demonstrated. Only an advantage of cost-saving was pointed out. In the first project, the performance of LEDs in the light intensity measurement was investigated and compared to that of standard silicon PDs in three different measuring configurations: current follower mode to measure to photocurrents, photovoltaic mode to determine the voltage developed across the diode on irradiation without load and discharge time mode to measure the rate to discharge the junction capacitance of diodes. LEDs as detectors were generally found to be adequate for the analytical work but PDs offered higher sensitivity and linearity as well as provided stable readings with faster settling times. Absorbance detectors for narrow-column HPLC (250 ÎŒm inner diameter) and CE (50 ÎŒm inner diameter) based on deep UV-LEDs and PDs selective for emission wavelengths were developed and evaluated in the quantification of model compounds at 255 and 280 nm. Absorbance measurements were directly obtained by the use of a beam splitter and PDs for reference signals and a logarithmic ratio amplifier-based circuitry to emulate the Lambert-Beer’s law. Narrow-column HPLC is useful for the applications in which the reduction in eluent consumption is desired or only limited amount of samples is available when utmost sensitivity is not required. In CE, the use of a capillary as the separation channel to minimize the peak broadening downscales the detection window to micrometer range which is even much narrower than that of a narrow-bore HPLC. This makes the design and construction of these LED-based detectors for narrow detection channels more challenging than for a standard HPLC as the higher efficiency for light coupling and stray light avoidance is essentially required. Additionally, high mechanical stability is needed to minimize the noise resulted from mechanical fluctuations. The performance of these optical devices at two measured wavelengths was excellent in terms of the baseline noise (low ÎŒAU range), linearity between absorbance values and concentrations (correlation coefficients > 0.999) and reproducibility of peak areas (about 1%). Not only was the potential of a deep UV-LED as a radiation source for absorption spectroscopy investigated for separation techniques but also for the detection of benzene, toluene, ethylbenzene and the xylenes compounds in the gas phase at 260 nm. In the first part of this work, its performance in the acoustic waves excitation was preliminarily investigated with some different measuring systems for the detection of the toluene vapor. It was found that the intensity of a deep UV-LED was insufficient to produce detectable acoustic signals. This was followed by the construction of an absorbance detector for the determination of these target compounds based on the combination of a deep UV-LED and PDs. This optical device was designed to use optical fibers for the light coupling from the LED to a measuring cell and a reference PD, that allows removing a beam splitter previously required for detectors of a narrow column HPLC and CE. Its performance with regard to linearity and reproducibility was satisfactory. Detection limits of about 1 ppm were determined. It could be concluded that viable absorbance detectors for narrow-column HPLC, CE and gas sensing based on deep UV-LEDs and PDs as light sources and light detectors, respectively can be constructed. The performance of these inexpensive LED-based optical devices with regard to linearity, reproducibility and baseline noise was satisfactory and found to be comparable to that of more complex and expensive commercial detectors. These detectors with features of low power consumption and small size are useful for portable battery-powered devices

    An ambipolar BODIPY derivative for a white exciplex OLED and cholesteric liquid crystal laser toward multifunctional devices

    Get PDF
    A new interface engineering method is demonstrated for the preparation of an efficient white organic light-emitting diode (WOLED) by embedding an ultrathin layer of the novel ambipolar red emissive compound 4,4-difluoro-2,6-di(4-hexylthiopen-2-yl)-1,3,5,7,8-pentamethyl-4-bora-3a,4a-diaza-s-indacene (bThBODIPY) in the exciplex formation region. The compound shows a hole and electron mobility of 3.3 × 10–4 and 2 × 10–4 cm2 V–1 s–1, respectively, at electric fields higher than 5.3 × 105 V cm–1. The resulting WOLED exhibited a maximum luminance of 6579 cd m–2 with CIE 1931 color coordinates (0.39; 0.35). The bThBODIPY dye is also demonstrated to be an effective laser dye for a cholesteric liquid crystal (ChLC) laser. New construction of the ChLC laser, by which a flat capillary with an optically isotropic dye solution is sandwiched between two dye-free ChLC cells, provides photonic lasing at a wavelength well matched with that of a dye-doped planar ChLC cell

    Polaron Self-localization in White-light Emitting Hybrid Perovskites

    Full text link
    Two-dimensional (2D) perovskites with general formula APbX4APbX_4 are attracting increasing interest as solution processable, white-light emissive materials. Recent studies have shown that their broadband emission is related to the formation of intra-gap color centers; however, the nature and dynamics of the emissive species have remained elusive. Here we show that the broadband photoluminescence of the 2D perovskites (EDBE)PbCl4(EDBE)PbCl_4 and (EDBE)PbBr4(EDBE)PbBr_4 stems from the localization of small polarons within the lattice distortion field. Using a combination of spectroscopic techniques and first-principles calculations, we infer the formation of Pb23+{Pb_2}^{3+}, Pb3+Pb^{3+}, and X2−{X_2}^- (where X=Cl or Br) species confined within the inorganic perovskite framework. Due to strong Coulombic interactions, these species retain their original excitonic character and form self-trapped polaron-excitons acting as radiative color centers. These findings are expected to be applicable to a broad class of white-light emitting perovskites with large polaron relaxation energy.Comment: 34 pages, 15 figures, 3 table
    • 

    corecore