51 research outputs found

    Spectroscopy of Yb:Tm doped tellurite glasses for efficient infrared fiber laser

    Get PDF
    We performed extensive spectroscopy of tellurite glasses doped with high concentration of Tm ions for laser emission at around 2 micron wavelength. The aim of the work is to develop a glass suitable for single-frequency fiber laser. In fact such a kind of laser require the use of short cavity length and therefore high gain per unit length medium. Tellurite glasses allows high-doping concentration and are therefore an excellent candidate. In these paper we review our recent results. In particular we address the optical and thermo-mechanical properties of several tellurite glasses (75mol%Te02.20mol%ZnO. 5mol%Na2O) with Tm3+ doping up to 111,564 ppm

    Spectroscopy of Yb:Tm doped tellurite glasses for efficient infrared fiber laser

    Get PDF
    We performed extensive spectroscopy of tellurite glasses doped with high concentration of Tm ions for laser emission at around 2 micron wavelength. The aim of the work is to develop a glass suitable for single-frequency fiber laser. In fact such a kind of laser require the use of short cavity length and therefore high gain per unit length medium. Tellurite glasses allows high-doping concentration and are therefore an excellent candidate. In these paper we review our recent results. In particular we address the optical and thermo-mechanical properties of several tellurite glasses (75mol%Te02.20mol%ZnO. 5mol%Na2O) with Tm3+ doping up to 111,564 pp

    Highly-efficient, diffraction-limited laser emission from a Vertical External Cavity Surface-emitting Organic Laser

    Full text link
    We report on a solid-state laser structure being the organic counterpart of the Vertical External-Cavity Surface-Emitting Laser (VECSEL) design. The gain medium is a poly (methyl methacrylate) film doped with Rhodamine 640, spin-casted onto the High-Reflectivity mirror of a plano-concave resonator. Upon pumping by 7-ns pulses at 532 nm, a diffraction-limited beam (M^2=1) was obtained, with a conversion efficiency of 43%; higher peak powers (2kW) could be attained when resorting to shorter (0.5 ns) pump pulses. The spectrum was controlled by the thickness of the active layer playing the role of an intracavity etalon; tunability is demonstrated over up to 20 nm

    Calculation and Optimization of Electromagnetic Resonances and Local Intensity Enhancements For Plasmon Metamaterials With Sub-Wavelength Double-Slots

    Get PDF
    We propose two metamaterials with sub-wavelength double-slots single-side double-slot metamaterial and double-side double-slot metamaterial. The dependence of the electromagnetic resonances and local intensity enhancements on the structural parameters is studied by the finite-difference time-domain technique and the finite element method. Results show that the central-arm of a double-slot structure strongly influences frequency and local intensities at both high- and low-frequency resonances. Very strong field localization can be achieved at the high-frequency resonance and its particular distribution can be well controlled by the width of the central-arm. A double-side double-slot structure can be utilized to separately enhance the high-frequency resonance, while suppressing the low-frequency resonance. The simulation results are discussed in terms of plasmon resonances

    Creating Bell states and decoherence effects in quantum dots system

    Full text link
    We show how to improve the efficiency for preparing Bell states in coupled two quantum dots system. A measurement to the state of driven quantum laser field leads to wave function collapse. This results in highly efficiency preparation of Bell states. The effect of decoherence on the efficiency of generating Bell states is also discussed in this paper. The results show that the decoherence does not affect the relative weight of 00>|00> and 11>|11> in the output state, but the efficiency of finding Bell states.Comment: 4 pages, 2figures, corrected some typo

    Compact Omnidirectional Multicore Fiber-Based Vector Bending Sensor

    Get PDF
    We propose and demonstrate a compact and simple vector bending sensor capable of distinguishing any direction and amplitude with high accuracy. The sensor consists of a short segment of asymmetric multicore fiber (MCF) fusion spliced to a standard single mode fiber. The reflection spectrum of such a structure shifts and shrinks in specific manners depending on the direction in which the MCF is bent. By monitoring simultaneously wavelength shift and light power variations, the amplitude and bend direction of the MCF can be unmistakably measured in any orientation, from 0 degrees to 360 degrees. The bending sensor proposed here is highly sensitive even for small bending angles (below 1 degrees).This work was funded in part by the Fondo Europeo de Desarrollo Regional (FEDER), in part by the Ministerio de Ciencia, Innovacion y Universidades-under projects RTC2019-007194-4, RTI2018-0944669-B-C31 and PGC2018-101997-B-and in part by the Gobierno Vasco/Eusko Jaurlaritza IT933-16, ELKARTEK KK-2019/00101 (mu 4Indust), and ELKARTEK KK-2019/00051 (SMARTRESNAK). The work of Josu Amorebieta is funded by a PhD fellowship from the University of the Basque Country UPV/EH

    Sensitivity-optimized strongly coupled multicore fiber-based thermometer

    Get PDF
    [EN] In this paper, we report on a multicore fiber-based (MCF) temperature sensor that operates in a wide thermal range and that is robustly packaged to withstand harsh environments. To develop the sensor, the fundamentals concerning the effect of temperature on such fibers have been analyzed in detail to predict the most temperature sensitive MCF geometry. Thanks to it, the device, which operates in reflection mode and consists of a short segment of strongly coupled MCF fusion spliced to a standard single mode fiber, shows higher sensitivity than other devices with identical configuration. Regarding its packaging, it consists of an inner ceramic and two outer metallic tubes to provide rigidity and protection against impacts or dirt. The device was calibrated for a thermal range from -25 degrees C to 900 degrees C and a K-type thermocouple was used as reference. Our results suggest that the manufactured optical thermometer is as accurate as the electronic one, reaching a sensitivity up to 29.426 pm/degrees C with the advantage of being passive, compact and easy to fabricate and interrogate. Therefore, we believe this device is appealing for industrial applications that require highly sensitive temperature sensing in very demanding environments, and that the analysis included in this work could be analogously applied to develop sensitivity-optimized devices for other parameters of interest.Ministerio de Economia y Competitividad; Ministerio de Ciencia, Innovacion y Universidades; European Regional Development Fund (PGC2018-101997-B-I00 and RTI2018-094669-B-C31) ; Gobierno Vasco/Eusko Jaurlaritza (IT933-16) ; ELKARTEK KK-2019/00101 (mu 4Indust) and ELKARTEK KK-2019/00051 (SMARTRESNAK) . The work of Josu Amorebieta is funded by a PhD fellowship from the University of the Basque Country UPV/EHU. The work of Angel Ortega-Gomez is funded by a PhD fellowship from the MINECO (Ministerio de Economia y Empresa de Espana)

    Highly Sensitive Multicore Fiber Accelerometer for Low Frequency Vibration Sensing

    Get PDF
    We report on a compact, highly sensitive all-fiber accelerometer suitable for low frequency and low amplitude vibration sensing. The sensing elements in the device are two short segments of strongly coupled asymmetric multicore fiber (MCF) fusion spliced at 180 degrees with respect to each other. Such segments of MCF are sandwiched between standard single mode fibers. The reflection spectrum of the device exhibits a narrow spectrum whose height and position in wavelength changes when it is subjected to vibrations. The interrogation of the accelerometer was carried out by a spectrometer and a photodetector to measure simultaneously wavelength shift and light power variations. The device was subjected to a wide range of vibration frequencies, from 1 mHz to 30 Hz, and accelerations from 0.76 mg to 29.64 mg, and performed linearly, with a sensitivity of 2.213 nW/mg. Therefore, we believe the accelerometer reported here may represent an alternative to existing electronic and optical accelerometers, especially for low frequency and amplitude vibrations, thanks to its compactness, simplicity, cost-effectiveness, implementation easiness and high sensitivity.Ministerio de Economia y Competitividad; Ministerio de Ciencia, Innovacion y Universidades; European Regional Development Fund (PGC2018-101997-B-I00 and RTI2018-094669-B-C31); Gobierno Vasco/Eusko Jaurlaritza (IT933-16); ELKARTEK KK-2019/00101 (mu 4Indust) and ELKARTEK KK-2019/00051 (SMARTRESNAK). The work of Angel Ortega-Gomez is funded by a PhD fellowship from the Spain Government. The work of Josu Amorebieta is funded by a PhD fellowship from the University of the Basque Country UPV/EHU

    Recent advances in solid-state organic lasers

    Full text link
    Organic solid-state lasers are reviewed, with a special emphasis on works published during the last decade. Referring originally to dyes in solid-state polymeric matrices, organic lasers also include the rich family of organic semiconductors, paced by the rapid development of organic light emitting diodes. Organic lasers are broadly tunable coherent sources are potentially compact, convenient and manufactured at low-costs. In this review, we describe the basic photophysics of the materials used as gain media in organic lasers with a specific look at the distinctive feature of dyes and semiconductors. We also outline the laser architectures used in state-of-the-art organic lasers and the performances of these devices with regard to output power, lifetime, and beam quality. A survey of the recent trends in the field is given, highlighting the latest developments in terms of wavelength coverage, wavelength agility, efficiency and compactness, or towards integrated low-cost sources, with a special focus on the great challenges remaining for achieving direct electrical pumping. Finally, we discuss the very recent demonstration of new kinds of organic lasers based on polaritons or surface plasmons, which open new and very promising routes in the field of organic nanophotonics
    corecore