866 research outputs found

    Albedo and laser threshold of a diffusive Raman gain medium

    Full text link
    The diffuse reflectance (albedo) and transmittance of a Raman random gain medium are calculated via semi-analytic two-stream equations with power-dependent coefficients. The results show good agreement with the experimental data for barium nitrate powder. Both the Raman albedo AR and Raman transmittance TR diverge at a critical gain gc, interpreted as the threshold for diffusive Raman laser generation. However, the ratio TR/AR approaches a finite limiting value dependent on particle scattering albedo v and scattering asymmetry g. The dependence of the generation threshold on the scattering parameters is analysed and the feedback effect of Fresnel reflection at the gain boundaries evaluated. The addition of external mirrors, particularly at the pumped surface, significantly reduces the threshold gain.Comment: 15 pages, 8 figure

    Nonlinearly-PT-symmetric systems: spontaneous symmetry breaking and transmission resonances

    Get PDF
    We introduce a class of PT-symmetric systems which include mutually matched nonlinear loss and gain (inother words, a class of PT-invariant Hamiltonians in which both the harmonic and anharmonic parts are non-Hermitian). For a basic system in the form of a dimer, symmetric and asymmetric eigenstates, including multistable ones, are found analytically. We demonstrate that, if coupled to a linear chain, such a nonlinear PT-symmetric dimer generates new types of nonlinear resonances, with the completely suppressed or greatly amplified transmission, as well as a regime similar to the electromagnetically-induced transparency (EIT). The implementation of the systems is possible in various media admitting controllable linear and nonlinear amplification of waves.Comment: 4 pages, 4 figure

    Electrostatic theory for designing lossless negative permittivity metamaterials

    Full text link
    In this Letter, we develop an electrostatic theory for designing bulk composites with effective lossless negative permittivities. The theory and associated design procedure are validated by comparing their predictions with those of rigorous full-wave simulations. It is demonstrated that the excitation of the Frohlich mode (the first-order surface mode) of the constitutive nanoparticles plays a key role in achieving negative permittivities with compensated losses.Comment: 9 pages, 2 figure

    Active metamaterials: sign of refraction index and gain-assisted dispersion management

    Full text link
    We derive an approach to define the causal direction of the wavevector of modes in optical metamaterials, which in turn, determines signs of refractive index and impedance as a function of {\it real and imaginary} parts of dielectric permittivity and magnetic permeability. We use the developed technique to demonstrate that the interplay between resonant response of constituents of metamaterials can be used to achieve efficient dispersion management. Finally we demonstrate broadband dispersion-less index and impedance matching in active nanowire-based negative index materials. Our work opens new practical applications of negative index composites for broadband lensing, imaging, and pulse-routing

    Bulk photonic metamaterial with hyperbolic dispersion

    Full text link
    In this work, we demonstrate a self-standing bulk three-dimensional metamaterial based on the network of silver nanowires in an alumina membrane. This constitutes an anisotropic effective medium with hyperbolic dispersion, which can be used in sub-diffraction imaging or optical cloaks. Highly anisotropic dielectric constants of the material range from positive to negative, and the transmitted laser beam shifts both toward the normal to the surface, as in regular dielectrics, and off the normal, as in anisotropic dielectrics with the refraction index smaller than one. The designed photonic metamaterial is the thickest reported in the literature, both in terms of its physical size 1cm x 1cm x 51 mm, and the number of vacuum wavelengths, N=61 at l=0.84 mm.Comment: 6 pages, 4 figur

    Die Einstellungen in Deutschland vor, während und nach dem Zweiten Weltkrieg am Beispiel des Busches "Mein Jahrhundert" von Günter Grass

    Get PDF
    Käesolevas lõputöös analüüsiti, kuidas muutus inimeste maailmavaade Günter Grassi raamatu „Minu Aastasada“ („Mein Jahrhundert“) näitel. Selle raamatu publitseeris Günter Grass 1999 aastal ning see koosneb sajast jutustusest iga 20. sajandi aasta peale. Igal jutustusel on oma eraldiolev jutustaja, kas läbi Günter Grassi oma hääle omab. Lõputöö koostaja on valinud seitse jutustust, mis tema seisukohast kõige parem analüüsimiseks sobivad. Töö koosneb kolmest osast. Esimemes osas antakse sissejuhatust Günter Grassi eluloomingusse ning käsitletakse teose „Minu Aastasada“ struktuuri ja jutustuslaadi.http://www.ester.ee/record=b5144047*es

    Topological Transitions in Metamaterials

    Full text link
    The ideas of mathematical topology play an important role in many aspects of modern physics - from phase transitions to field theory to nonlinear dynamics (Nakahara M (2003) in Geometry, Topology and Physics, ed Brewer DF (IOP Publishing Ltd, Bristol and Philadelphia), Monastryskiy M (1987) in Riemann Topology and Physics, (Birkhauser Verlag AG)). An important example of this is the Lifshitz transition (Lifshitz IM (1960) Anomalies of electron characteristics of a metal in the high-pressure region, Sov Phys JETP 11: 1130-1135), where the transformation of the Fermi surface of a metal from a closed to an open geometry (due to e.g. external pressure) leads to a dramatic effect on the electron magneto-transport (Kosevich AM (2004) Topology and solid-state physics. Low Temp Phys 30: 97-118). Here, we present the optical equivalent of the Lifshitz transition in strongly anisotropic metamaterials. When one of the components of the dielectric permittivity tensor of such a composite changes sign, the corresponding iso-frequency surface transforms from an ellipsoid to a hyperboloid. Since the photonic density of states can be related to the volume enclosed by the iso-frequency surface, such a topological transition in a metamaterial leads to a dramatic change in the photonic density of states, with a resulting effect on every single physical parameter related to the metamaterial - from thermodynamic quantities such as its equilibrium electromagnetic energy to the nonlinear optical response to quantum-electrodynamic effects such as spontaneous emission. In the present paper, we demonstrate the modification of spontaneous light emission from quantum dots placed near the surface of the metamaterial undergoing the topological Lifshitz transition, and present the theoretical description of the effect
    corecore