133 research outputs found

    Adaptive multimodal continuous ant colony optimization

    Get PDF
    Seeking multiple optima simultaneously, which multimodal optimization aims at, has attracted increasing attention but remains challenging. Taking advantage of ant colony optimization algorithms in preserving high diversity, this paper intends to extend ant colony optimization algorithms to deal with multimodal optimization. First, combined with current niching methods, an adaptive multimodal continuous ant colony optimization algorithm is introduced. In this algorithm, an adaptive parameter adjustment is developed, which takes the difference among niches into consideration. Second, to accelerate convergence, a differential evolution mutation operator is alternatively utilized to build base vectors for ants to construct new solutions. Then, to enhance the exploitation, a local search scheme based on Gaussian distribution is self-adaptively performed around the seeds of niches. Together, the proposed algorithm affords a good balance between exploration and exploitation. Extensive experiments on 20 widely used benchmark multimodal functions are conducted to investigate the influence of each algorithmic component and results are compared with several state-of-the-art multimodal algorithms and winners of competitions on multimodal optimization. These comparisons demonstrate the competitive efficiency and effectiveness of the proposed algorithm, especially in dealing with complex problems with high numbers of local optima

    Niching particle swarm optimization based euclidean distance and hierarchical clustering for multimodal optimization

    Get PDF
    Abstract : Multimodal optimization is still one of the most challenging tasks in the evolutionary computation field, when multiple global and local optima need to be effectively and efficiently located. In this paper, a niching Particle Swarm Optimization (PSO) based Euclidean Distance and Hierarchical Clustering (EDHC) for multimodal optimization is proposed. This technique first uses the Euclidean distance based PSO algorithm to perform preliminarily search. In this phase, the particles are rapidly clustered around peaks. Secondly, hierarchical clustering is applied to identify and concentrate the particles distributed around each peak to finely search as a whole. Finally, a small world network topology is adopted in each niche to improve the exploitation ability of the algorithm. At the end of this paper, the proposed EDHC-PSO algorithm is applied to the Traveling Salesman Problems (TSP) after being discretized. The experiments demonstrate that the proposed method outperforms existing niching techniques on benchmark problems, and is effective for TSP

    Seeking multiple solutions:an updated survey on niching methods and their applications

    Get PDF
    Multi-Modal Optimization (MMO) aiming to locate multiple optimal (or near-optimal) solutions in a single simulation run has practical relevance to problem solving across many fields. Population-based meta-heuristics have been shown particularly effective in solving MMO problems, if equipped with specificallydesigned diversity-preserving mechanisms, commonly known as niching methods. This paper provides an updated survey on niching methods. The paper first revisits the fundamental concepts about niching and its most representative schemes, then reviews the most recent development of niching methods, including novel and hybrid methods, performance measures, and benchmarks for their assessment. Furthermore, the paper surveys previous attempts at leveraging the capabilities of niching to facilitate various optimization tasks (e.g., multi-objective and dynamic optimization) and machine learning tasks (e.g., clustering, feature selection, and learning ensembles). A list of successful applications of niching methods to real-world problems is presented to demonstrate the capabilities of niching methods in providing solutions that are difficult for other optimization methods to offer. The significant practical value of niching methods is clearly exemplified through these applications. Finally, the paper poses challenges and research questions on niching that are yet to be appropriately addressed. Providing answers to these questions is crucial before we can bring more fruitful benefits of niching to real-world problem solving

    A multi-angle hierarchical differential evolution approach for multimodal optimization problems

    Get PDF
    Multimodal optimization problem (MMOP) is one of the most common problems in engineering practices that requires multiple optimal solutions to be located simultaneously. An efficient algorithm for solving MMOPs should balance the diversity and convergence of the population, so that the global optimal solutions can be located as many as possible. However, most of existing algorithms are easy to be trapped into local peaks and cannot provide high-quality solutions. To better deal with MMOPs, considerations on the solution quality angle and the evolution stage angle are both taken into account in this paper and a multi-angle hierarchical differential evolution (MaHDE) algorithm is proposed. Firstly, a fitness hierarchical mutation (FHM) strategy is designed to balance the exploration and exploitation ability of different individuals. In the FHM strategy, the individuals are divided into two levels (i.e., low/high-level) according to their solution quality in the current niche. Then, the low/high-level individuals are applied to different guiding strategies. Secondly, a directed global search (DGS) strategy is introduced for the low-level individuals in the late evolution stage, which can improve the population diversity and provide these low-level individuals with the opportunity to re-search the global peaks. Thirdly, an elite local search (ELS) strategy is designed for the high-level individuals in the late evolution stage to refine their solution accuracy. Extensive experiments are developed to verify the performance of MaHDE on the widely used MMOPs test functions i.e., CEC’2013. Experimental results show that MaHDE generally outperforms the compared state-of-the-art multimodal algorithms

    A close neighbor mobility method using particle swarm optimizer for solving multimodal optimization problems

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Niching is an important technique for multimodal optimization. Most existing niching methods require specification of certain niching parameters in order to perform well. But these parameters are usually difficult to set because they depend on the problem. The particle swarm optimization algorithm using the ring neighborhood topology does not require any niche parameters, but the determination of the particle neighborhood in this method is based on the subscript of the particle, and the result fails to achieve the best performance. For better performance, in this paper, a particle swarm optimization algorithm based on the ring neighborhood topology of Euclidean distance between particles is proposed, which is called the close neighbor mobility optimization algorithm. The algorithm mainly includes the following three strategies: elite selection mechanism, close neighbor mobility strategy and modified DE strategy. It mainly uses the Euclidean distance between particles. Each particle forms its own unique niche, evolves in a local scope, and finally locates multiple global optimal solutions with high precision. The algorithm greatly improves the accuracy of the particle. The experimental results show that the close neighbor mobility optimization algorithm has better performance than most single-objective multi-modal algorithms

    Metaheuristic design of feedforward neural networks: a review of two decades of research

    Get PDF
    Over the past two decades, the feedforward neural network (FNN) optimization has been a key interest among the researchers and practitioners of multiple disciplines. The FNN optimization is often viewed from the various perspectives: the optimization of weights, network architecture, activation nodes, learning parameters, learning environment, etc. Researchers adopted such different viewpoints mainly to improve the FNN's generalization ability. The gradient-descent algorithm such as backpropagation has been widely applied to optimize the FNNs. Its success is evident from the FNN's application to numerous real-world problems. However, due to the limitations of the gradient-based optimization methods, the metaheuristic algorithms including the evolutionary algorithms, swarm intelligence, etc., are still being widely explored by the researchers aiming to obtain generalized FNN for a given problem. This article attempts to summarize a broad spectrum of FNN optimization methodologies including conventional and metaheuristic approaches. This article also tries to connect various research directions emerged out of the FNN optimization practices, such as evolving neural network (NN), cooperative coevolution NN, complex-valued NN, deep learning, extreme learning machine, quantum NN, etc. Additionally, it provides interesting research challenges for future research to cope-up with the present information processing era
    • …
    corecore