View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by University of Johannesburg Institutional Repository

Niching Particle Swarm Optimization Based Euclidean Distance and Hierarchical
Clustering for Multimodal Optimization

Qingxue Liu
College of Electrical Engineering and Automation, Shandong University of Science and Technology,
Qingdao, 266590, China
Department of Electrical Engineering, Tshwane University of Technology, Pretoria, 0001, South Africa
hmxue2000@163.com

Shengzhi Du*
Department of Mechanical Engineering, Mechatronics, and Industrial Design, Tshwane University of
Technology, Pretoria, 0001, South Africa
dushengzhi@gmail.com

Barend Jacobus van Wyk
Faculty of Engineering and Built Environment, Tshwane University of Technology, Pretoria, 0001, South
Africa
vanwykb@tut.ac.za

Yanxia Sun
Department of Electrical and Electronic Engineering Science, University of Johannesburg, Johannesburg,
2006, South Africa

sunyanxia@gmail.com

Abstract Multimodal optimization is still one of the most challenging tasks in the
evolutionary computation field, when multiple global and local optima need to be
effectively and efficiently located. In this paper, a niching Particle Swarm Optimization
(PSO) based Euclidean Distance and Hierarchical Clustering (EDHC) for multimodal
optimization is proposed. This technique first uses the Euclidean distance based PSO
algorithm to perform preliminarily search. In this phase, the particles are rapidly clustered
around peaks. Secondly, hierarchical clustering is applied to identify and concentrate the
particles distributed around each peak to finely search as a whole. Finally, a small world
network topology is adopted in each niche to improve the exploitation ability of the
algorithm. At the end of this paper, the proposed EDHC-PSO algorithm is applied to the
Traveling Salesman Problems (TSP) after being discretized. The experiments
demonstrate that the proposed method outperforms existing niching techniques on
benchmark problems, and is effective for TSP.

Keywords: particle swarm optimization; multimodal optimization; niching algorithm;

hierarchical clustering; small world network topology; Traveling Salesman Problem
(TSP).

* Corresponding author

https://core.ac.uk/display/286396139?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1 Introduction

Particle swarm optimization (PSO) algorithm, an important method in evolutionary
algorithms, has been proved to be an effective and robust optimization technique for
solving challenging optimization problems [1-3]. However, most of the time, the PSO
algorithm is designed for optimizing unimodal problems which have only a single peak.
For the multimodal problems, its performance is not very satisfactory. In fact, the reason
for this phenomenon is caused by the topological structure of PSO swarm [4-8]. In
traditional PSO algorithms, there are two types of topological structures which are gbest
and Ibest modes, respectively. For both modes, the way of exchanging information among
particles is essentially the same. That is to say, any particle can directly or indirectly
obtain the information from other ones in the population. In this case, all particles will fly
to the global optimum and escape the local optimum.

However, in the real world, many optimization problems do not have a single global
optimum, and it needs to find all the global optima and local optima. Moreover, it is not
always necessary to find the global optimum for all optimization problems. Because the
cost of finding the global optimum is too high, in many cases, the local optimum is able
to meet the operational needs.

In the past few decades, numerous niching optimization techniques were proposed to
solve the multimodal optimization problems. The essence of the niching optimization
technique is to find and maintain as many as possible the global optima and the local
optima by maintaining the diversity of the population in a single run. Up to now, some
representative niching optimization methods include crowding methods [9, 10], clearing
[11], fitness sharing [12], derating [13], clustering [14], speciation [15], parallelization
[16], and restricted tournament selection [17]. In recent years, niching methods combined
with PSO techniques were developed to deal with multimodal optimization problems,
such as NichePSO [18], Fitness Distance Ratio based PSO (FDRPSO) [19], Fitness
Euclidean-distance Ratio based PSO (FERPSO) [20], CDE [10], SDE [21], SPSO [22,
23], ring topology PSO [3], NCDE[24], NSDE [24], SHDE [24], NShDE [24], LIPS [25],
self=CCDE [26], self- CSDE [26], EARSDE [27], EFADE[28], and DEci [29].

However, the ability to perform a fine search by the above mentioned niching methods
is not satisfactory. In these methods, when some particles have been located near a peak,
they continue to search separately. So the particles located on the same peak cannot be
integrated into a group to finely search. In our proposed algorithm, after a preliminary
search, a hierarchical clustering algorithm is used to cluster the particles distributed
around each peak so that the members on each peak perform a small world topology based
PSO to finely search as a whole, which not only increases the speed of the search, but
also improves the stability and accuracy of the algorithm.

The remainder of this paper is organized as follows: Section 2 introduces the brief
overview of the PSO algorithm. In section 3, the EUDC algorithm is given in sufficient
detail. The problem definition and experimental results are presented and discussed in
sections 4 and 5, respectively. Section 6 gives an implementation of the improved discrete
PSO and its experiments in sufficient detail and the concluding remarks are given in
Section 7.

2 Scientific background and related works

2.1 Classic PSO algorithm

PSO is a swarm intelligence algorithm, which imitates the social behavior of the flocks
of birds and schools of fish searching for food [1, 2]. Unlike other evolutionary algorithms,
PSO algorithm finds the optimal solution by means of the flight of the particles in the
solution space. Each particle representing a potential solution to the optimization
problems searches according to individual experience and swarm experiences. PSO
algorithm has two versions, namely gbest and Ibest [18], where the iteration formulas are
respectively as follows:

t+1

Via :C‘Nitd +¢,h(Py _Xitd)+c2r2(pgd _Xitd) (1)

Vi = Vi +C 1 (Pyg —Xa) + o (P — %) (2)
The velocity of PSO is updated according to
Xig' =Xig +Vig' 3)
where, €1 and C2 are two acceleration constants, and r1, r2 are two random numbers which
are uniformly distributed within the range of [0, 1]. w is called inertia weight which is
usually used to restrict the velocity. The only difference between the gbest version and
the Ibest version is the neighborhood topology used to disseminate information. In the
gbest version, the best position (pgd) is found so far by the individual of the entire
population, while for the Ibest version, the best position (pid) is determined from its
neighbors. Actually, the gbest version show in Fig. 1(a) is a fully connected topology in
which any two particles are connected [5, 8, 30]. The typical neighborhood topology of
the Ibest version are showed in Fig. 1(b)-(f) [4, 5, 7, 8, 31].

@

(2) (b)

D

(d) ()

Fig. 1. Neighborhood topologies. (a) ghest topology. (b) ring topology. (c) wheel topology. (d) Von
Neumann topology. (¢) pyramid topology. (f) small world topology.
2.2 Variants of PSO

Owing to the effectiveness and simplicity of implementation, PSO algorithm has been
widely studied since it was proposed in 1995. In recent years, multiple variants of PSO
algorithm have been developed base on basic PSO algorithm. According to the different
functions of the algorithm, these variants can be divided into three categories, which are
summarized as follows.

1) Parameter adjustment based PSO algorithms

As we mentioned in the previous subsection, PSO has three key parameters which are
w, cl and c2, respectively. Theses parameters, especially the inertia weight play
significant roles in the performance of PSO. Numerous works of PSO demonstrated that,
the smaller inertia weight will decrease the search velocity of particles and improve the
exploitation ability of PSO and vice versa [32-35]. In 1998, Shi and Eberhart introduced
the inertia weight and analyzed the effect of this parameter on PSO algorithm in details
[32]. Next year, they also extensively studied the performance of the PSO algorithm with
linearly decreasing inertia weight [36]. And they came to a conclusion that the exploration
ability of PSO may be decreased at the end if a linearly decreasing inertia weigh was used,
which results in the failure to find the global optima. Since then different kinds of
parameter adjustment strategies were proposed. The representative example is that a time-
varying scheme for the acceleration coefficients was proposed, which was able to prevent
the premature convergence in the early phase of the optimization and increase the
exploitation ability of particles at the end of the search [35]. A new inertia weight
adjusting strategy based on the Bayesian techniques in [37] was proposed, which was
used to balance the exploration and exploitation abilities of PSO. In a word, the common
feature in these variants PSO is to achieve optimal performance by balancing the global
and local search abilities.

2) Topological neighborhood based PSO algorithms

In addition to its own parameters, the topological neighborhood structure is another
factor that affects the performance of PSO. As mentioned in the subsection 2.1, the
standard PSO algorithm has two versions which are global version and local version,
respectively. The commonly used topological neighborhood structures are respectively
ring topology, gbest topology, and wheel topology [3-7, 38]. A distance based locally
informed particle swarm (LIPS) optimizer was proposed to deal with multimodal
optimization problems [25], which increase the exploitation ability of swarm and enhance
the fine search ability of PSO. Different topological neighborhood structures can affect
the velocity of particles and diversity of swarm, and thereby affect the performance of
PSO. In recent years, some small world topology based PSO algorithms were proposed
[8, 30, 39], which can maintain the diversity of population and balance the exploration
and exploitation abilities of PSO due to the randomness of small world networks.

3) Multi-population strategy based PSO algorithms

As we know that the standard PSO algorithm is designed to solve the unimodal
optimization problems. Some researchers turned attention to the multi-population strategy
based PSO and tried to solve the multimodal optimization problems [40-44]. In PSO with
multi-population strategy, multiple subpopulations can independently search around each
optimum. Even for the unimodal optimization problems, it can also improve the diversity
of population to increase the global search ability of the algorithm. Although different

multi-population variant have different multi-population strategies, the objectives of these
algorithms are identical, which is designed to enhance the diversity of the swarm and
balance the global and local abilities. For instance, the heterogeneous comprehensive
learning PSO (HCLPSO) algorithm was introduced [41], in which the whole swarm is
divided into two subpopulations, each subpopulation is designed to focus solely on either
global or local search. In fact, the multi-population strategy based PSO algorithm is a
special kind of topological neighborhood based PSO algorithm. For example, in the
reference [3], four Ibest PSO variants were proposed using a ring topology. These four
PSO variants were regarded as ring topology based PSO algorithms. On the other hand,
they were also regarded as multi-population strategy based PSO algorithms.

Although it has been proved that these multi-population strategy based PSO variants
are effective and efficient for maintaining the diversity of the population, each
subpopulation cannot always finely search as a whole around each peak. This is because
that, if a subpopulation cannot be maintained around a peak to continuously search, then
the optimum may not be located, or even the optimal solution is found, it will be lost.
Therefore, it is a challenging task to gather the particles distributed around each peak and
to let them finely search all the way.

3 Niching PSO algorithm based on Euclidean distance and hierarchical clustering
3.1 Motivation

For a PSO algorithm, in the process of search, there must be a certain size of population
or subpopulation distributed around an optimum, and then the population or
subpopulation performs a fine search and continuously searches toward the optimum. If
these particles distributed around the optimum do not always stay around this peak, then
the algorithm cannot further finely search. This will result in reducing the accuracy level
of the algorithm and even the optimal solution cannot be found. In this case, there may
have little effect on the unimodal optimization problems. However, for the multimodal
optimization problems, the traditional PSO algorithm can hardly divide the whole
population into multiple subpopulations and make these subpopulations always cluster
around different peaks, respectively. This is because that the topology structure of the
traditional PSO algorithm is based on the particle indices in which the connections among
members are determined according to the indices of particles. As the search goes on, all
particles always move toward the global optimal solution, which will cause the loss of
the local optima.

To address this issue, we proposed the niching PSO based on Euclidean distance and
hierarchical clustering to solving the multimodal optimization problems. The proposed
method firstly enable the whole population to preliminarily search using the Euclidean
distance based PSO. This phase can allow particles to rapidly gather around each peak.
Secondly, hierarchical clustering is adopted to identify the subpopulations distributed
around each peak. Finally, each subpopulation performs fine search around each peak
using a basic PSO with a small world network topology, which can improve the search
quality and enhance the search efficiency.

3.2 Using Euclidean distance based PSO for preliminary search

In section 2, the neighborhood topology of PSO was introduced. However, in these

neighborhood topologies (Fig. 1), the connections among particles are determined not

according to spatial relationship of particles but indices of particles. So the spatial
distance between two directly connected individuals is like to be very far. In this way,
some particles in the same topological neighborhood are likely to be located in different
peaks, which may lead to particles’ oscillating between two peaks. And the constant
oscillation between peaks waste the evolutionary time of the algorithm.

In order to avoid the above problems, in the first phase of the proposed algorithm, a
niching PSO algorithm based on Euclid distance is adopted to preliminarily search. In
this phase, the only one parameter n is the size of neighborhood which controls the
number of individuals in each topological neighborhood. Note that we just use the
Euclidean distance based PSO to make particles distribute around each peak, and do not
require a high level of accuracy of the algorithm. So it is necessary to set a termination
criterion to stop the operation of the algorithm in the first phase. According to the
reference [18], we let the algorithm stop when the functional value of a particle shows
very little change over a small number of evolutionary generations. Here, we set a
threshold parameter ¢, the algorithm stops when

[T (%)= f(X.m)| < 4

where, t denotes the count of generation, m represents the iteration interval. The values
of the parameters m used in this paper are adopted from [18] which is set to 3. In fact,
the performance of the algorithm is not sensitive to the parameter m, this is because that,
as the evolution moves on, if the fitness of a particle shows very little change, at this point,
the particles have basically fallen into local optima, even if the algorithm continues
iterating, the particles will not change much. Furthermore, we only let the swarm
preliminarily search in this phase, and do not need the particles to finely search. Therefore,
the value 3 is able to meet the requirement of the algorithm. For another parameter ¢, a
not-so-small threshold > 0 (e.g. if the desired accuracy is 104, the threshold around 0.1
or 0.01) is determined according to the suggestion of the reference [45]. In order to test
the effect of varying the threshold ¢, four representative test functions (F3, F5, F8, and
F13) are examined using three different orders of magnitude thresholds. The experimental
results are presented in Fig. 2. It is noteworthy that the iteration interval m is set to 3 in
this experiment. “NEs” indicates the number of function evaluations when the algorithm
stops at the end of the first phase. It can be observed that the threshold ¢ has little effect
on the experimental results. When the algorithm stops in the phase, all particles are
clustered around each peak on four optimization problems. It also can be seen from Fig.
2 that the smaller the value of ¢, the greater the number of function evaluations at the end
of the run in the first phase. Moreover, when ¢ = 0.01, in these four cases, the number of
function evaluations in the first phase does not exceed half of the maximum number of
function evaluations. Therefore, to avoid problem dependence and save the evolutionary
time, we select the moderate value 0.01 as the threshold ¢ for all the test problems.

200

150

100

50

20 U@

1 150
1 100

50

EUU@

1 150
1 100

50

0 : : 0 : : 0 : :
0 10 20 00 10 20 30 0 10 20 30
(a) £=0.1, NEs=3300 (F3) (b) £=0.01, NEs=4900 (F3) (c) £=0.001, NEs=5800 (F3)
1 19 19
0.8 108 10.8
0.6 106 106
0.4 104 104
0.2 lo.2 10.2
0 0 0
0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1

(d) £=0.1, NEs=1050 (F5)

(e) £=0.01, NEs=1550 (F5)

(f) £=0.001, NEs=2400 (F5)

E optima + optima #* optima
3 & &) pbests 3 &] pbests 3 & o pbests
<] & =
0 10 10
) & &
3 e Pl e Pl e
-3 0 3 -3 0 3 -3 0 3
() £=0.1, NEs=2250 (F8) (h) £=0.01, NEs=3450 (F8) (i) £=0.001, NEs=3800 (F8)
* optima #* optima #* optima
2 g o pbests B {12 @:, e poests | @ {2 @ e poests | @
0 & 10 & 0 o
2| & & 2| @ & (2| & 42
-2 0 2 -2 0 2 -2 0 2

(i) £=0.1, NEs=2240 (F13) (k) e=0.01, NEs=4720 (F13) (I) =0.001, NEs=7360 (F13)

Fig. 2 Effects of varying ¢ on distributions of pbests on F3, F5, F8 and F13 after the first
phase, where, “NEs” presents indicates the number of function evaluations.

3.3 Hierarchical clustering

After the preliminary search of the previous step, particles have been located around
each peak, and then we use a hierarchical clustering algorithm to cluster them together.
In this way, particles distributed around every peak form one new niche. Hierarchical
clustering is a method of data mining and statistics which attempts to build a hierarchy of
clusters [46, 47]. The method is presented as follows:

1) Classify each particle as a cluster, and calculate the Euclidean distance between any

two individuals.

2) Classify two nearest classes as a cluster; note that the mean distance between

particles of each cluster is adopted.

3) Repeat the process 2) until the number of clusters equals to the value of cutoft (the

maximum number of clusters).
3.4 Fine search in each niche using a small world network topology

After the hierarchical clustering phase, the particles in each niche continue to finely
search as a whole until termination criterion is satisfied. In each niche, a local version
PSO based on small world network is executed in which a small world network was
adopted as the neighborhood topology of PSO, since the topology structure based on the
small world network can help the particles to finely search. In recent years, network-
structured PSO based on small world neighborhood topology was used to tackle various
optimization problems [8, 30, 48-51]. The randomness of small world network is able to
enhance and maintain the diversity of population, thereby improving the exploration
ability of the algorithm. The probability p is a key parameter in the construction of small
world network [31, 52, 53], and the value of p must be truncated to the interval of [0, 1].
As stated in our previous studies [8, 30], the probability p has a significant impact on the
performance of PSO algorithm. In general, if the probability p is smaller, the exploration
ability of the PSO algorithm will be poor, while the exploitation ability will be increased.
On the contrary, if the probability p is larger, the exploration ability will be increased
while the exploitation ability will be decreased. Therefore, how to choose a proper value
of the probability p depends on the optimization problem itself and what the user cares
about.

After the two previous phases of the running, all the particles have been distributed
around each peak. Therefore, the exploitation ability of swarm is our primary concern in
the final phase of the proposed algorithm. After comprehensive consideration, a relative
small value of the probability p is selected, which is set to 0.1.

3.5 Algorithm framework

It is necessary to emphasize that in the proposed algorithm, we intend to use the hybrid
PSO technique to improve the performance of the algorithm. The operation process of the
proposed algorithm is divided into three phases. In the initial phase, a niching PSO
algorithm based on Euclid distance is used to preliminarily search. After this phase, the
particles are preliminarily gathered around peak. In the second phase, the members
distributed around each peek are identified and clustered as a whole using the hierarchical
clustering algorithm. In this way, the particles located around each peak form a niche. In
the final phase, each niche executes the global PSO based on the small world topology to
finely search. The operation of this phase can increase the exploitation ability of the

population and enhance the local search ability of the algorithm. The pseudocode of the
niching PSO based Euclidean distance and Hierarchical clustering (EDHC) is presented
in Algorithm 1.

Algorithm 1 The proposed EDHC algorithm

Step 1 Generate an initial population with randomly generated NP particles. And then
compute the fitness(xi) and fitness(pbesti) of each particle using the fitness
function.

Step 2 Fori=1to NP

2.1 Compute the Euclidean distance between particle Xi and other members in
the whole population.

2.2 Choose n smallest Euclidean distances members to particle Xi and form the
topological neighborhood of particle Xi using these n members. And then
select the most-fit particle lbest from the neighborhood of particle Xi.

2.3 Compute the velocity Vi according to Equation (2). And then update the
position of Xi according to Equation (3).

2.4 Compute the fitness(xi) using the fitness function.

2.5 Update the pbest of the particle Xi.

End For

Step 3 Stop until Equation (4) is satisfied.

Step 4 Cluster the particles into cutoff number of niches using hierarchical clustering
algorithm (see the subsection 3.3).

Step 5 For each niche nichej (j=1, 2, ..., cutoff)

5.1 Generate the adjacency matrix of the small world topology according to the
construction mode of small world network. Note that the adjacency matrix
is a square matrix which indicates the neighborhood relationship of the
particles.

5.2 For each particle in niche;
5.2.1 Select the Ibest of the particle in nichej according to the adjacency
matrix.
5.2.2 Update the velocity and the position of the particle according to the
equations (2) and (3), respectively.
5.2.3 Evaluate the fitness of the particle.
5.2.4 Update the adjacency matrix, pbest and Ibest.
End For
End For
Step 6 Repeat the step 5 until the termination criterion is satisfied.

4 Experimental setups

All the algorithms were executed using an Intel(R) Core(TM) 15-5200(2.2GHz)
platform with 8GB memory and implemented in Microsoft Windows 10 and MATLAB
R2014a.

4.1 Experimental setting

In this paper, eleven different multimodal PSO algorithms are examined through the
experiments, which were summarized as follows:

1) EDHC: the PSO based Euclidean distance and hierarch clustering.

2) r2pso [3]: a Ibest PSO with a ring topology, each member interacts with only its

immediate member to its right.
3) r3pso [3]: a Ibest PSO with a ring topology, each member interacts with its immediate
member on its left and right.

4) r2pso-lhc [3]: the same as r2pso, but with no overlapping neighborhoods.

5) r3pso-lhc [3]: the same as r3pso, but with no overlapping neighborhoods.

6) ShDE [24]: the modified fitness sharing DE.

7) NCDE [24]: the neighborhood based crowding DE.

8) NSDE [24]: the neighborhood based speciation DE.

9) NShDE [24]: the neighborhood based sharing DE.

10) LIPS [25]: a distance-based locally informed particle swarm optimizer.

11) EARSDE [27]: ensemble and arithmetic recombination based speciation

differential evolution.

In the numerical experiments, the values of parameters with respect to PSO are as

follows [32, 54]:
w=0.729, c1 =c2 = 1.49445.
The DE parameters of DE algorithms were also used which are as below [24, 25]:
F=09,CR=0.1.

4.2 Test functions

In our experiments, to evaluate the performance of the proposed niching PSO method,
16 commonly used benchmark multimodal functions were considered, their basic
information are showed in Table 1. The size of neighborhood (n), the maximum number
of clusters (cutoff), niching radius (r), Criterion (the level of accuracy), population size,
and maximal number of evaluations are listed in Table 2. The parameters setting and
criteria of these test functions are given in Table 2. Except for the Sphere function, all
these functions have more than one global optimum. For Sphere and Ackley functions,
the objective is to locate the global optimum and the target of the rest is to address both
the global optima and the local optima. Note that all test functions are considered for
maximization, hence, when the definitions are given for minimization, the functions are
just reversed.
4.3 Performance measures

1) Success rate

Success rate [3, 24, 25, 55] is a significant parameter to evaluate the performance of
the niching method. It is the percentage of runs in which all global optima or/and local
optima are successfully found. However, the success rate must depend on the specified
parameter ¢ which is level of accuracy. Note that the level of accuracy denotes varying
degree of proximity to the know peaks.

2) Peak ratio

Peak ratio denotes the percentage of successfully located peaks [10, 25, 56]. Note that

if not all the peaks are located in a run, this run is considered to be unsuccessful. For such
a case, we record the number of the optima in one single run, and calculate the peak ratio
over 20 runs.

Table 1 Test functions

. .) . Number of
Test Function Name Dimensions | Domain Global Peaks
F1: Two-Peak Trap [57] 1 [0, 20] 1/1
F2: Central Two-Peak Trap [57] 1 [0, 20] 111
F3: Five-Uneven-Peak Trap [15] 1 [0, 30] 2/3
F4: Equal Maxima [58] 1 [0, 1] 5/0
F5: Decreasing Maxima [58] 1 [0, 1] 1/4
F6: Uneven Maxima [58] 1 [0, 1] 5/0
F7: Uneven Decreasing Maxima [58] 1 [0, 1] 1/4
F8: Himmelblau’s function [58] 2 [-6, 6] 4/0
F9: Six-Hump Camel Back [59] 2 [-1.9, 1.9]x[-1.1, 1.1] 2/2
F10: Shekel’s foxholes [60] 2 [-65.536, 65.536] 1/24
F11: Michalewicz [10] 2 [0, 7] 1/1
F12: Ursem F1 [61] 2 [-2.5, 3] x[-2, 2] 1/1
F13: Ursem F4 [61] 2 [-2,2] 1/4
F14: Sphere 10 [-100, 100] 1/0
F15: Ackley [10] 10 [-30, 30] 1/many
F16: Sphere 30 [-100, 100] 1/0

5 Experimental results

This section summarizes and discusses the numerical results with regards to eleven
niching algorithms. All the algorithms ran until all the known global optima and/or local
optima were found or the termination criterion was satisfied.
5.1 Success rate

Table 3 shows the success rates for the eleven algorithms on the test functions F1-F16,
and the best performance is marked in boldface. From this table, one can see that the
success rate of our proposed method is higher than other techniques on all the test
functions. Especially on the functions F1-F3, only the proposed niching algorithm
achieved 100 percent success rate. This is because the proposed niching algorithm is able
to concentrate particles located around each peak and let them better fine search as a
whole. In addition, only LIPS and some DE algorithms(NCDE, NSDE, NShDE, and
EARSDE) show better performance on some functions. However, it takes more

computational time. In order to get a more intuitive comparison for the success rate of
each method over all functions, Fig. 3 shows the overview of the clear visual comparison.
Table 2. Parameters and criteria for test functions conditions

Function o Population | No. of function

No. A cutoff ' Criterion size evaluations
F1 1 2 0.5 le-5 20 10000
F2 1 2 0.5 le-5 20 10000
F3 1 5 0.5 le-5 40 10000
F4 1 5 0.01 le-7 50 10000
F5 1 5 0.01 le-7 50 10000
Fo6 1 5 0.01 le-7 50 10000
F7 1 5 0.01 le-7 50 10000
F8 1 4 0.5 le-6 50 10000
F9 1 4 0.5 5e-7 40 10000
F10 1 4 0.5 le-6 40 10000
F11 1 2 0.5 le-3 50 10000
F12 1 2 0.5 le-7 40 10000
F13 2 6 0.5 le-5 80 10000
F14 25 2 1 le-4 30 10000
F15 25 2 1 le-4 30 10000
F16 40 2 1 le-5 50 10000

5.2 Peak ratio

Peak ratios for eleven algorithms on each test function are presented in Table 4. Here,
“t-test” is used to compare the difference in means between EDHC and every other
method which is given in the penultimate line of every test function. Note that the number
1 indicate that the proposed algorithm is statistically better or equal to the other algorithm,
while the number 0 denotes that it is statistically inferior to the other one. As can be seen,
it is obvious that our proposed method performed better than any other algorithm. The
time taken (i.e., seconds) by each algorithm is also considered. Although algorithms
NCDE, NShDE, ShDE, and EARSDE also achieve better performance on some functions,
it is noted that these algorithms take longer time than the proposed algorithm.

Table 3. Success rates(%) and ranks for test functions F1-F16

Functions

EDHC

r2pso

r3pso

r2pso-

r3pso-

ShDE

NCDE | NSDE

NShDE | LIPS

EARSDE

lhe lhe
F1 100 0 0 0 0 0 90 80 85 0 92
F2 100 5 0 0 0 0 95 20 75 5 90
F3 100 0 0 0 0 0 45 0 0 0 0
F4 100 80 80 100 95 95 100 0 100 95 100
F5 100 0 0 80 10 95 90 0 100 80 100
Fo6 100 95 80 100 90 100 95 0 100 100 100
F7 100 0 0 90 35 95 100 0 100 80 100
F8 100 15 50 85 95 0 100 0 15 100 85
F9 100 100 100 100 100 40 100 0 90 100 0
F10 100 100 100 65 70 100 100 40 95 95 0
F11 100 5 0 95 75 95 100 10 100 90 100
F12 100 0 0 100 95 70 100 0 80 100 95
F13 100 0 0 0 0 0 65 0 40 0 0
F14 100 100 100 0 0 100 95 100 100 0 0
F15 100 100 100 0 0 90 80 10 90 0 0
Fl16 100 100 100 0 0 100 100 85 100 0 0
1
EDHC
0.9
r2pso
ripso 0.8
r2pso-lhc 07
ripso-lhc 0.6
ShDE
NCDE
NSDE
NShDE
LIPS
EARSDE

F1

F2 F3

F4 F5

F6 F7 F8

FS F10 F11 F12 F13 F14 F15 F16

Fig. 3 Overview of peak success rates of each algorithm, where 1 refers to the best while 0 indicate

the worst.

5.3 Advantage of EDHC

The major advantage of the proposed EDHC over existing niching algorithms is that
the particles distributed on (or near) each peak are identified and clustered to finely search
as a whole. This search mechanism enhances the local searching ability of the algorithm
and increases the searching efficiency. In order to illustrate the advantage of the EDHC
algorithm, it is compared with LIPS algorithm on Ursem F4 function (F13). Fig. 4
respectively shows the distributions of the pbests of both algorithms in different steps of
iterations. It is noticeable that the EDHC algorithm converges much faster than LIPS
algorithm. In fact, all particles completely converge on each peak in iteration 100. The
reason is that individuals located on each peak can share information with each other,
which will enable them to fly to the same peak.

6 Implementation of EDHC Algorithm for TSP

The traveling salesman problem is an extensively studied NP-complete combinatorial
optimization problem in the field of computer science and operations research [62-70].
The TSP describes a salesman who must travel between all the cities. The order in which
he does so is something he does not care about, as long as he passes through each city
once (and only once) during his trip, and returns to the starting city at the end of the tour.
The practical model of TSP has a wide range of applications in optimization problems
such as path optimization, network optimization, goods distribution, circuit board making
etc. [71]. In recent years, some heuristic techniques have been proposed and applied to
TSP. For instance, genetic algorithm [72, 73], PSO algorithm [66, 67, 70, 74], ant colony
algorithm [75, 76], immune algorithm [77], neural network [78], etc.
Although some PSO techniques combined with other intelligent algorithms were applied
to TSP, these methods were relatively complicated to implement. So we proposed a
relative simple PSO algorithm using the idea of EDHC.

6.1 The improved discrete PSO for TSP

Since TSP is a discrete problem, we proposed an improved discrete PSO (IDPSO), and
redefined the related operators for the TSP (without losing generality, using 6 cities case
for the sake of easy explanation) as follows:

1) The representation strategies of TSP include binary coding, adjacency coding,
ordinal coding, path coding, matrix coding and edge coding. Since the path coding
is the most natural and direct coding strategy of TSP, therefore, it is adopted in this
paper. For the path coding strategy, it is represented directly by the relative position
of the city in the path. A vector X represents position, and each element Xj in X
represents a city j. For example, the path (including 6 cities): 1 -2 -3 -4-5-6, is
represented directly by a particle x(1, 2, 3, 4, 5, 6).

2) An improved greedy inversion mutation operator is introduced. Inspired by the GT
algorithm [64], we also introduced an improved crossover operator. The details of
IDPSO algorithm are described in Algorithm 2.

Algorithm 2 The proposed IDPSO algorithm

Step 1 For each particle X, randomly select a city C.

Step 2 Ifrand () < p (the probability of random inversion), then select the nearest city
C to the city C.

Step 3 If rand () > p, randomly select an individual from the population (excluding
particle X) and assign C; the “next” city to the city C in the selected individual.

Step 4 If the city C; is on the left of the city C, then inverse all the cities from the city
C1 to the city Cr. In the same way, if the city C; is on the right of the city C,
then inverse all the cities from the city C1 to the city Cr. Here, Cr and Cr are
respectively the left and right city adjacent to the city C. For instance, if the
individual is x (1, 2, 3, 4, 5, 6), the selected city C is 2, and the city C1 is 5.
Since the city 5 is on the right of the city 2, then the produced new individual
is X'(1,2,5, 4,3, 6) after the transformation of the inversion.

Step 5 If the next city or the previous city C is Cy, let C = Cy, repeat the steps 2-4 until
the city C; is not adjacent to city C.

Step 6 Repeat the steps 1-5 until the termination criterion is satisfied.

6.2 Experiment and results

In order to test the performance of the proposed IDPSO algorithm, seven TSP
benchmark problems were used which are respectively Brumal4, Oliver30, Chn31, Att48,
Eil51, St70, and Chn144. All the instances (except Chn31 and Chnl44) were selected
from TSPLIB [79]. In the following experiments, there are four parameters in IDPSO
algorithm: population size NP = 100, the probability of random inversion p = 0.08, and
the evolutionary generations Ngen = 3000. For each instance of TSP, all performances
are calculated and averaged over 20 independent runs to tackle the effect due to the
random initialization. Table 5 gives the instances of TSP benchmark problems, optimal
solutions, and the results of the experiments. Note that “Best”, “Mean”, “Worst”, and “Std
Dev” represent best values, mean values, worst values, and standard deviation searched
over 20 dependent runs respectively. As can be seen, the optima of seven TSP instances
were found in all 20 runs except the case Chnl144. However, the best solution is only
0.036% above the optimum, the mean value and the worst value are only 0.062% and
0.112% higher than the optimal value, respectively. Moreover, some results in our
experiments showed that the IDPSO method either outperformed or performed
comparably GT algorithm[64] and Lin-Kerninghan algorithm [80].

7 Conclusion

PSO algorithm is an outstanding swarm intelligence technique which is not only widely
used in continuous optimization fields, but also can be used to handle discrete
optimization problems through extensions and improvement. In this paper, we developed
a PSO with hierarchical clustering algorithm and small world topology for solving
multimodal optimization problems. In our proposed algorithm, using the Euclidean
distance based PSO algorithm, the entire population firstly performed a preliminary
search. In this phase, the particles are rapidly gathered around peaks. Then the
hierarchical clustering is adopted to identify and cluster the particles distributed around
each peak. At the last phase of the prosed algorithm, the particles on each peak perform

the small world topology based PSO algorithm to finely search as a whole, which not
only enhances search efficiency but also improves the exploitation ability and accuracy
of the algorithm. In addition, the proposed algorithm eliminates the need to specify the
major niching parameter “radius”. Experimental results showed that EDHC algorithm
outperforms the nine well-known niching algorithms on 16 standard benchmark functions.
Furthermore, TSP was considered to evaluate the proposed method in real engineering
problems. Towards this purpose, the proposed method was further improved and
discretized. The improved discrete PSO (IDPSO) was then proposed with extensions and
improvements, which is easy to be implemented and shows excellent performance on
seven TSP instances.

There are some future works to be considered. A first step to extend the current work is
to implement the EDHC algorithm on complex composition functions and high-
dimensional functions. Secondly, multimodal optimization problems in a dynamic
environment will be considered. Finally, the IDPSO algorithm will be used to deal with
the larger size TSP instances.

Table 5. Results of IDPSO algorithm for TSP benchmark problems

Instance Optimum Best Mean Worst Std Dev
Burmal4 30 30 30 30 0
Oliver30 420 420 420 420 1.16E-13
Chn31 15377 15377 15377 15377 1.09E-13
Att48 33522 33522 33522 33522 9.31E-12
Eil51 426 426 426 426 8.49E-12
St70 675 675 675 675 5.04E-12
Chnl44 30347 30358 30366 30381 6.32

8. Acknowledgement

This work is based on the research supported in part by the National Research
Foundation of South Africa (Grant Numbers 93539).
The authors certify that they have no conflict of interest regarding copyright and finance.

2 0 & 2 o
s | sy |5 s sty
2 of ©oWog, %o 2 g U0 og, %o
E @%@ G@@ O E @}@ Oﬂfﬁ} 2
& &
2 B @83@%}0 + 21 £ @8}@%@ *
-2 0 2 -2 0 2
Dimension 1 Dimension 1
(a) lteration 1 (EDHC) (b) Iteration 1 (LIPS)
L2 & L2 e o
= [
o k=]
2 & 2 &
k] k]
E E
[[
21 @ B 2t @ Y
-2 0 2 - -2 0 2
Dimension 1 * optima Dimension 1
(c) Iteration 60 (EDHC) © pbests | (d) lteration 60 (LIPS))
G2 ® L2 oe 0
[[
o o
e 0 & c 0 4]
[1F] [14]
E E
2 s @ %2 @ @
2 0 2 2 0 2
Dimension 1 Dimension 1
(e) lteration 100 (EDHC) (f) Iteration 100 (LIPS)
G2 e ® L2 e)
[[
o o
e 0 & c 0 &
[1F] [14]
E E
[a
2t & & 2t @ D
2 0 2 2 0 2
Dimension 1 Dimension 1

(g) lteration 150 (EDHC) (h) lteration 150 (LIPS)

Fig. 4 Distributions of pbests of EDHC and LIPS in different iterations on Ursem F4 function (F13).

Table 4. Peak ratios for test functions F1-F16

Functions EDHC r2pso | r3pso | r2pso-lhc | r3pso-lhc | ShDE NCDE NSDE NshDE LIPS E;:II:S
Best 1 0 0.5 0 0 0.5 1 1 1 0 0.96
Mean 1 0 0.05 0 0 0.08 0.95 0.9 0.88 0 0.92
Worst 1 0 0 0 0 0 0.5 0.5 0 0 0.81
o Std. 0 0 0.15 0 0 0.18 0.15 0.21 0.32 0 0
t-test 1 1 1 1 1 1 1 1 1 1 1
Time(s) 2.06 1.66 1.88 1.52 1.37 292.51 68.79 6.04 2296.72 4.24 5.13
Best 1 1 0.50 0.50 0.50 0 1 1 1 1 1
Mean 1 0.30 0.13 0.50 0.50 0 0.98 0.60 0.80 0.50 0.95
Worst 1 0 0 0.50 0.50 0 0.50 0.50 0 0 0.5
" Std. 0 0.30 0.22 0 0 0 0.11 0.21 0.38 0.16 0.15
t-test 1 1 1 1 1 1 1 1 1 1 1
Time(s) 2.71 1.72 1.71 3.19 3.20 213.32 64.46 11.25 1748.87 13.41 7.66
Best 1 0.40 0.20 0.60 0.60 0.80 1 0.40 0.80 0.60 0.6
Mean 1 0.25 0.07 0.58 0.47 0.47 0.85 0.31 0.61 0.55 0.6
Worst 1 0 0 0.40 0.20 0 0.60 0.20 0.40 0.40 0.6
" Std. 0 0.13 0.10 0.06 0.15 0.23 0.16 0.10 0.08 0.09 le-16
t-test 1 1 1 1 1 1 1 1 1 1 1
Time(s) 3.77 3.14 2.65 4.17 4.26 9472.63 530.24 16.03 11663.08 29.44 48.55
Best 1 1 1 1 1 1 1 0.40 1 1 1
Mean 1 0.96 0.96 1 0.99 0.95 1 0.27 1 0.99 1
Worst 1 0.80 0.80 1 0.80 0 1 0 1 0.80 1
F4 Std. 0 0.08 0.08 0 0.04 0.22 0 0.12 0 0.04 0
t-test 1 1 1 1 1 1 1 1 1 1 1
Time(s) 2.46 1.25 1.59 0.91 1.13 1219.25 121.08 8.12 433.01 7.71 4.92
Best 1 0.80 0.60 1 1 1 1 0.40 1 1 1
Mean 1 0.52 0.29 0.95 0.76 0.97 0.98 0.31 1 0.96 1
Worst 1 0.40 0.20 0.60 0.60 0.40 0.80 0.20 1 0.80 1
e Std. 0 0.14 0.12 0.11 0.12 0.13 0.06 0.10 0 0.08 0
t-test 1 1 1 1 1 1 1 1 1 1 1
Time(s) 2.31 2.95 2.36 1.29 2.07 1059.67 129.89 7.79 467.32 8.25 5.28
Best 1 1 1 1 1 1 1 0.40 1 1 1
Mean 1 0.99 0.96 1 0.98 1 0.99 0.30 1 1 1
Worst 1 0.80 0.80 1 0.80 1 0.80 0.20 1 1 1
e Std. 0 0.04 0.08 0 0.06 0 0.04 0.10 0 0 0
t-test 1 1 1 1 1 1 1 1 1 1 1
Time(s) 2.40 1.41 1.83 1.81 1.49 1493.68 145.83 9.07 586.45 7.07 4.69

Table 4 (continue). Peak ratios for test functions F1-F16

Functions EDHC r2pso | r3pso | r2pso-lhc | r3pso-lhc | ShDE NCDE NSDE NshDE LIPS E;:II:S
Best 1 0.80 0.40 1 1 1 1 0.60 1 1 1
Mean 1 0.47 0.37 0.98 0.81 0.98 1 0.33 1 0.96 1
Worst 1 0.40 0.20 0.80 0.60 0.60 1 0.20 1 0.80 1
" Std. 0 0.13 0.07 0.06 0.17 0.09 0 0.12 0 0.08 0
t-test 1 1 1 1 1 1 1 1 1 1 1
Time(s) 231 4.27 3.23 1 1.99 1419.18 118.64 8.95 488.21 8.52 4.57
Best 1 1 1 1 1 0 1 0.50 1 1 1
Mean 1 0.74 0.88 0.96 0.99 0 1 0.29 0.58 1 0.96
Worst 1 0.50 0.75 0.75 0.75 0 1 0.25 0 1 0.75
FS Std. 0 0.15 0.13 0.09 0.06 0 0 0.09 0.28 0 0.09
t-test 1 1 1 1 1 1 1 1 1 1 1
Time(s) 4.60 3.23 2.23 1.73 1.43 3905.41 214.48 21.61 13479.18 18.19 21.72
Best 1 1 1 1 1 1 1 0.50 1 1 0.67
Mean 1 1 1 1 1 0.60 1 0.50 0.95 1 0.56
Worst 1 1 1 1 1 0 1 0.50 0.50 1 0.33
" Std. 0 0 0 0 0 0.38 0 0 0.15 0 0.10
t-test 1 1 1 1 1 1 1 1 1 1 1
Time(s) 2.61 1.35 1.17 1 0.84 7396.54 68.21 18.73 5525.77 9.74 61.12
Best 1 1 1 1 1 1 1 1 1 1 0.68
Mean 1 1 1 0.65 0.70 1 1 0.40 0.95 0.95 0.53
Worst 1 1 1 0 0 1 1 0 0 0 0.36
F10
Std. 0 0 0 0.49 0.47 0 0 0.50 0.22 0.22 0.09
t-test 1 1 1 1 1 1 1 1 1 1 1
Time(s) 8.06 5.79 3.43 4.96 5.69 110.47 61.50 21.47 136.23 18.31 82.19
Best 1 1 0.50 1 1 1 1 1 1 1 1
Mean 1 0.53 0.50 0.98 0.88 0.98 1 0.55 1 0.95 1
Worst 1 0.50 0.50 0.50 0.50 0.50 1 0.50 1 0.50 1
i Std. 0 0.11 0 0.11 0.22 0.11 0 0.15 0 0.15 0
t-test 1 1 1 1 1 1 1 1 1 1 1
Time(s) 3.96 2.85 2.49 1.06 1.89 315.88 63.49 11.45 129.75 12.51 4.82
Best 1 0.50 0.50 1 1 1 1 0.50 1 1 1
Mean 1 0.50 0.50 1 0.98 0.68 0.82 0.50 1 1 0.98
Worst 1 0.50 0.50 1 0.50 0 0 0.50 1 1 0.5
F12
Std. 0 0 0 0 0.11 0.44 0.29 0 0 0 0.11
t-test 1 1 1 1 1 1 1 1 1 1 1
Time(s) 2.84 2.35 1.94 0.93 1.10 5922.75 49.50 12.66 7423.51 8.81 9.99

Table 4 (continue). Peak ratios for test functions F1-F16

Functions EDHC r2pso | r3pso | r2pso-lhc | r3pso-lhc | ShDE NCDE NSDE NshDE LIPS E;:II:S
Best 1 020 | 0.20 0.20 0.20 0 1 0.40 1 0.20 0.8
Mean 1 020 | 0.20 0.20 0.20 0 0.93 0.23 0.82 0.20 0.56
Worst 1 020 | 0.20 0.20 0.20 0 0.80 0.20 0.40 0.20 0.2
e Std. 0 0 0 0 0 0 0.10 0.07 0.18 0 0.17
t-test 1 1 1 1 1 1 1 1 1 1 1
Time(s) 6.49 429 | 3.70 4.02 4.34 1763.40 | 1579.00 | 21.75 1914038 | 89.89 | 46.75
Best 1 1 1 0 0 1 1 1 1 0 0
Mean 1 1 1 0 0 1 0.95 1 1 0 0
Worst 1 1 1 0 0 1 0 1 1 0 0
Fl4
Std. 0 0 0 0 0 0 0.22 0 0 0 0
t-test 1 1 1 1 1 1 1 1 1 1 1
Time(s) 460 | 5.16 | 3.81 458 53.62 334.63 184.67 64.61 323.04 | 24.56 | 67.04
Best 1 1 1 0 0 1 1 1 1 0 0
Mean 1 1 1 0 0 0.90 0.80 0.10 0.90 0 0
Worst 1 1 1 0 0 0 0 0 0 0 0
F15
Std. 0 0 0 0 0 0.31 0.41 0.31 0.31 0 0
t-test 1 1 1 1 1 1 1 1 1 1 1
Time(s) 624 | 696 | 5.07 6.11 31.73 525.03 255.89 | 129.39 43859 | 2328 | 78.30
Best 1 1 1 0 0 1 1 1 1 0 0
Mean 1 1 1 0 0 1 1 0.85 1 0 0
Worst 1 1 1 0 0 1 1 0 1 0 0
F16
Std. 0 0 0 0 0 0 0 0.37 0 0 0
t-test 1 1 1 1 1 1 1 1 1 1 1
Time(s) 1646 | 2244 | 1538 7.57 176.25 | 1590.76 723.03 | 686.38 1584.77 | 58.40 | 61.51
References
1. Eberhart, R.C. and J. Kennedy. A new optimizer using particle swarm theory. in Proceedings of the

6th International Symposium on Micro-machine and Human Science. 1995. Nagoya, Japan.

Kennedy, J. and R.C. Eberhart. Particle swarm optimization. in Proceedings of IEEE International

Conference Neural Networks. 1995. Perth, Australia.

Li, X., Niching without niching parameters: particle swarm optimization using a ring topology.

Evolutionary Computation, IEEE Transactions on, 2010. 14(1): p. 150-169.

Kennedy, J. and R. Mendes, Population structure and particle swarm performance. 2002.

Mendes, R., J. Kennedy, and J. Neves, The fully informed particle swarm: simpler, maybe better.

IEEE transactions on evolutionary computation, 2004. 8(3): p. 204-210.

Bassett, D.S. and E. Bullmore, Small-world brain networks. The neuroscientist, 2006. 12(6): p. 512-

523.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

Kennedy, J. and R. Mendes, Neighborhood topologies in fully informed and best-of-neighborhood
particle swarms. |IEEE Transactions on Systems Man and Cybernetics Part C Applications and
Reviews, 2006. 36(4): p. 515.

Liu, Q., B.J. van Wyk, and Y. Sun. Small world network based dynamic topology for particle swarm
optimization. in Natural Computation (ICNC), 2015 11th International Conference on. 2015. IEEE.
Mahfoud, S.W., Crowding and preselection revisited. Urbana, 1992. 51: p. 61801.

Thomsen, R. Multimodal optimization using crowding-based differential evolution. in
Evolutionary Computation, 2004. CEC2004. Congress on. 2004. IEEE.

Pétrowski, A. A clearing procedure as a niching method for genetic algorithms. in Evolutionary
Computation, 1996., Proceedings of IEEE International Conference on. 1996. |IEEE.

Goldberg, D.E. and J. Richardson. Genetic algorithms with sharing for multimodal function
optimization. in Genetic algorithms and their applications: Proceedings of the Second
International Conference on Genetic Algorithms. 1987. Hillsdale, NJ: Lawrence Erlbaum.

Beasley, D., D.R. Bull, and R.R. Martin, A sequential niche technique for multimodal function
optimization. Evolutionary computation, 1993. 1(2): p. 101-125.

Yin, X. and N. Germay. A fast genetic algorithm with sharing scheme using cluster analysis
methods in multimodal function optimization. in Artificial neural nets and genetic algorithms.
1993. Springer.

Li, J.-P.,, et al., A species conserving genetic algorithm for multimodal function optimization.
Evolutionary computation, 2002. 10(3): p. 207-234.

Bessaou, M., A. Pétrowski, and P. Siarry. Island model cooperating with speciation for multimodal
optimization. in International Conference on Parallel Problem Solving from Nature. 2000. Paris,
France: Springer.

Harik, G.R. Finding Multimodal Solutions Using Restricted Tournament Selection. in ICGA. 1995.
Brits, R., A.P. Engelbrecht, and F. Van den Bergh. A niching particle swarm optimizer. in
Proceedings of the 4th Asia-Pacific conference on simulated evolution and learning. 2002.
Singapore: Orchid Country Club.

Veeramachaneni, K., et al. Optimization using particle swarms with near neighbor interactions. in
Genetic and evolutionary computation conference. 2003. Springer.

Li, X. A multimodal particle swarm optimizer based on fitness Euclidean-distance ratio. in
Proceedings of the 9th annual conference on Genetic and evolutionary computation. 2007. ACM.
Li, X. Efficient differential evolution using speciation for multimodal function optimization. in
Proceedings of the 7th annual conference on Genetic and evolutionary computation. 2005. ACM.
Li, X. Adaptively choosing neighbourhood bests using species in a particle swarm optimizer for
multimodal function optimization. in Genetic and Evolutionary Computation—GECCO 2004. 2004.
Springer.

Parrott, D. and X. Li, Locating and tracking multiple dynamic optima by a particle swarm model
using speciation. Evolutionary Computation, IEEE Transactions on, 2006. 10(4): p. 440-458.

Qu, B., P.N. Suganthan, and J.-J. Liang, Differential evolution with neighborhood mutation for
multimodal optimization. |IEEE transactions on evolutionary computation, 2012. 16(5): p. 601-614.
Qu, B., P.N. Suganthan, and S. Das, A distance-based locally informed particle swarm model for
multimodal optimization. |EEE Transactions on Evolutionary Computation, 2013. 17(3): p. 387-
402.

Gao, W., G.G. Yen, and S. Liu, A cluster-based differential evolution with self-adaptive strategy for

27.

28.

29.

30.

31.

32.

33.

34,

35.

36.

37.

38.

39.

40.

41.

42.

43,

44,
45.

multimodal optimization. |EEE transactions on cybernetics, 2014. 44(8): p. 1314-1327.

Hui, S. and P.N. Suganthan, Ensemble and arithmetic recombination-based speciation differential
evolution for multimodal optimization. |EEE transactions on cybernetics, 2016. 46(1): p. 64-74.
Mohamed, AW. and P.N. Suganthan, Real-parameter unconstrained optimization based on
enhanced fitness-adaptive differential evolution algorithm with novel mutation. Soft Computing,
2017: p. 1-21.

Boskovi¢, B. and J. Brest. Clustering and differential evolution for multimodal optimization. in
Evolutionary Computation (CEC), 2017 IEEE Congress on. 2017. IEEE.

Liu, Q., et al., Dynamic Small World Network Topology for Particle Swarm Optimization.
International Journal of Pattern Recognition and Artificial Intelligence, 2016. 30(09): p. 1660009.
Kennedy, J. Small worlds and mega-minds: effects of neighborhood topology on particle swarm
performance. in Evolutionary Computation, 1999. CEC 99. Proceedings of the 1999 Congress on.
1999. IEEE.

Shi, Y. and R. Eberhart. A modified particle swarm optimizer. in Evolutionary Computation
Proceedings, 1998. IEEE World Congress on Computational Intelligence., The 1998 IEEE
International Conference on. 1998. IEEE.

Shi, Y. and R.C. Eberhart. Parameter selection in particle swarm optimization. in International
Conference on Evolutionary Programming. 1998. Springer.

Shi, Y. and R.C. Eberhart. Fuzzy adaptive particle swarm optimization. in Evolutionary
Computation, 2001. Proceedings of the 2001 Congress on. 2001. |EEE.

Ratnaweera, A., S.K. Halgamuge, and H.C. Watson, Self-organizing hierarchical particle swarm
optimizer with time-varying acceleration coefficients. |EEE Transactions on evolutionary
computation, 2004. 8(3): p. 240-255.

Shi, Y. and R.C. Eberhart. Empirical study of particle swarm optimization. in Evolutionary
Computation, 1999. CEC 99. Proceedings of the 1999 Congress on. 1999. IEEE.

Zhang, L., et al., A new particle swarm optimization algorithm with adaptive inertia weight based
on Bayesian techniques. Applied Soft Computing, 2015. 28: p. 138-149.

Suganthan, P.N. Particle swarm optimiser with neighbourhood operator. in Evolutionary
Computation, 1999. CEC 99. Proceedings of the 1999 Congress on. 1999. IEEE.

Vora, M. and T. Mirnalinee, Small World Particle Swarm Optimizer for Global Optimization
Problems, in Pattern Recognition and Machine Intelligence. 2013, Springer. p. 575-580.

Zhan, Z-H., et al., Multiple populations for multiple objectives: A coevolutionary technique for
solving multiobjective optimization problems. |EEE Transactions on Cybernetics, 2013. 43(2): p.
445-463.

Lynn, N. and P.N. Suganthan, Heterogeneous comprehensive learning particle swarm optimization
with enhanced exploration and exploitation. Swarm and Evolutionary Computation, 2015. 24: p.
11-24.

Mo, S., J. Zeng, and W. Xu, Attractive and repulsive fully informed particle swarm optimization
based on the modified fitness model. Soft Computing, 2016. 20(3): p. 863-884.

Pornsing, C., M.S. Sodhi, and B.F. Lamond, Novel self-adaptive particle swarm optimization
methods. Soft Computing, 2016. 20(9): p. 3579-3593.

Liu, J., et al., Ecosystem particle swarm optimization. Soft Computing, 2017. 21(7): p. 1667-1691.
Parsopoulos, K. and M. Vrahatis. Modification of the particle swarm optimizer for locating all the

global minima. in Artificial Neural Nets and Genetic Algorithms. 2001. Springer.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.
64.

65.

66.

Sibson, R., SLINK: an optimally efficient algorithm for the single-link cluster method. The computer
journal, 1973. 16(1): p. 30-34.

Defays, D., An efficient algorithm for a complete link method. The Computer Journal, 1977. 20(4):
p. 364-366.

Matsushita, H. and Y. Nishio. Network-structured particle swarm optimizer with small-world
topology. in Proc. of Int. Symposium on Nonlinear Theory and its Applications. 2009.

Matsushita, H. and Y. Nishio. Network-structured particle swarm optimizer considering
neighborhood relationships. in Neural Networks, 2009. IJCNN 2009. International Joint
Conference on. 2009. IEEE.

Matsushita, H., Y. Nishio, and T. Chi K, Network-structured particle swarm optimizer that considers
neighborhood distances and behaviors. Journal of Signal Processing, 2014. 18(6): p. 291-302.
Vora, M. and T. Mirnalinee, Small-World Particle Swarm Optimizer for Real-World Optimization
Problems, in Artificial Intelligence and Evolutionary Algorithms in Engineering Systems. 2015,
Springer. p. 465-472.

Watts, D.J., Small worlds: the dynamics of networks between order and randomness. 1999:
Princeton university press.

Watts, D.J. and S.H. Strogatz, Collective dynamics of ‘small-world’networks. nature, 1998.
393(6684): p. 440-442.

Clerc, M. and J. Kennedy, The particle swarm-explosion, stability, and convergence in a
multidimensional complex space. IEEE transactions on Evolutionary Computation, 2002. 6(1): p.
58-73.

Qu, B.-Y,, J.J. Liang, and P.N. Suganthan, Niching particle swarm optimization with local search for
multi-modal optimization. Information Sciences, 2012. 197: p. 131-143.

Stoean, C., et al., Multimodal optimization by means of a topological species conservation
algorithm. IEEE Transactions on Evolutionary Computation, 2010. 14(6): p. 842-864.

Ackley, D.H., An empirical study of bit vector function optimization. Genetic algorithms and
simulated annealing, 1987. 1: p. 170-204.

Deb, K., Genetic algorithms in multimodal function optimization. 1989: Clearinghouse for Genetic
Algorithms, Department of Engineering Mechanics, University of Alabama.

Michalewicz, Z., Genetic Algoriths + Data Structures = Evolution Programs. 1996, New York:
Springer-Verlag.

DelJong, K., An analysis of the behavior of a class of genetic adaptive systems. Ph. D. Thesis,
University of Michigan, 1975.

Ursem, R.K. Multinational evolutionary algorithms. in Evolutionary Computation, 1999. CEC 99.
Proceedings of the 1999 Congress on. 1999. IEEE.

Croes, G.A., A method for solving traveling-salesman problems. Operations research, 1958. 6(6):
p. 791-812.

Davis, L. Applying adaptive algorithms to epistatic domains. in [JCAI. 1985.

Tao, G. and Z. Michalewicz, Evolutionary Algorithms for the TSP. Parallel Problem Solving from
Nature, 1998. 1498: p. 803-812.

Wang, K., et al. Particle swarm optimization for traveling salesman problem. in Machine Learning
and Cybernetics, 2003 International Conference on. 2003. IEEE.

Clerc, M., Discrete particle swarm optimization, illustrated by the traveling salesman problem, in

New optimization techniques in engineering. 2004, Springer. p. 219-239.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

Zhi, X.-H., et al. A discrete PSO method for generalized TSP problem. in Machine Learning and
Cybernetics, 2004. Proceedings of 2004 International Conference on. 2004. |EEE.

Shi, X.H., et al., Particle swarm optimization-based algorithms for TSP and generalized TSP.
Information Processing Letters, 2007. 103(5): p. 169-176.

Mabhi, M., O.K. Baykan, and H. Kodaz, A new hybrid method based on particle swarm optimization,
ant colony optimization and 3-opt algorithms for traveling salesman problem. Applied Soft
Computing, 2015. 30: p. 484-490.

Zhong, Y., et al., Discrete comprehensive learning particle swarm optimization algorithm with
Metropolis acceptance criterion for traveling salesman problem. Swarm and Evolutionary
Computation, 2018.

Michalewicz, Z. and D.B. Fogel, How to solve it: modern heuristics. 2013: Springer Science &
Business Media.

Paul, PV, et al., Performance analyses over population seeding techniques of the permutation-
coded genetic algorithm: An empirical study based on traveling salesman problems. Applied soft
computing, 2015. 32: p. 383-402.

Wang, J., et al., Multi-offspring genetic algorithm and its application to the traveling salesman
problem. Applied Soft Computing, 2016. 43: p. 415-423.

Chen, W-N., et al., A novel set-based particle swarm optimization method for discrete
optimization problems. |EEE Transactions on evolutionary computation, 2010. 14(2): p. 278-300.
Escario, J.B., J.F. Jimenez, and J.M. Giron-Sierra, Ant colony extended: experiments on the
travelling salesman problem. Expert Systems with Applications, 2015. 42(1): p. 390-410.
Ismkhan, H., Effective heuristics for ant colony optimization to handle large-scale problems.
Swarm and Evolutionary Computation, 2017. 32: p. 140-149.

Xu, Z., et al., Immune algorithm combined with estimation of distribution for traveling salesman
problem. IEE) Transactions on Electrical and Electronic Engineering, 2016. 11(S1).

Wang, H., N. Zhang, and J.-C. Créput, A massively parallel neural network approach to large-scale
Euclidean traveling salesman problems. Neurocomputing, 2017. 240: p. 137-151.

Reinelt, G., TSPLIB—A traveling salesman problem library. ORSA journal on computing, 1991. 3(4):
p. 376-384.

Davis, L., Genetic algorithms and simulated annealing. 1987.

