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Abstract

Niching is an important technique for multimodal optimization. Most existing

niching methods require specification of certain niching parameters in order to

perform well. But these parameters are usually difficult to set because they de-

pend on the problem. The particle swarm optimization algorithm using the ring

neighborhood topology does not require any niche parameters, but the deter-

mination of the particle neighborhood in this method is based on the subscript

of the particle, and the result fails to achieve the best performance. For better

performance, in this paper, a particle swarm optimization algorithm based on

the ring neighborhood topology of Euclidean distance between particles is pro-

posed, which is called the close neighbor mobility optimization algorithm. The

algorithm mainly includes the following three strategies: elite selection mech-

anism, close neighbor mobility strategy and modified DE strategy. It mainly

uses the Euclidean distance between particles. Each particle forms its own

unique niche, evolves in a local scope, and finally locates multiple global opti-

mal solutions with high precision. The algorithm greatly improves the accuracy
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of the particle. The experimental results show that the close neighbor mobil-

ity optimization algorithm has better performance than most single-objective

multi-modal algorithms.

Keywords: Multimodal optimization, particle swarm optimization, ring

neighborhood topology, niche.

1. Introduction

There are many optimization problems that need as many global optimal

solutions as possible in the real world, such as in a power system [1], protein

structure prediction [2], and data mining [3, 4]. These problems are commonly

known as multimodal optimization problems (MMOPs). There are two aspects5

that are important in the optimization of multimodal problems. The first is

that for most multimodal optimization algorithms, if the required accuracy is

high, even if the final solution obtained by the algorithm is close to the real peak

(In multimode optimization, the peak represents the optimal value of function

optimization), it is difficult for these solutions to reach the exact position of10

the peak. In the second, many algorithms have difficulty exploring all regions,

and some of the highest peaks are easily missed. Especially for some spikes, the

decision space occupied by peaks is very small, and it is difficult for particles

to explore these peaks. Many existing algorithms try to balance the number of

global optimal solutions and the accuracy of global optimal solutions, but it is15

difficult to ensure that both are high [5].

The basic idea of the niche method comes from the fact that organisms

always live together with their own species in the process of evolution. It is

reflected in the evolution algorithm that individuals in the evolution algorithm

evolve in a specific living environment. Compared with other commonly used20

optimization methods, it has high search efficiency and can get multiple ex-

tremum points of objective function in one search, which is suitable for solving

MMOPs. In the field of evolutionary computation, there has been a growing

interest in applying evolutionary algorithms (EAs) to solve MMOPs. For exam-
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ple, classification problems in machine learning can be mapped to MMOPs and25

hence be treated by an EA employing a niching method [6]. A niching genetic

algorithm (GA) was also applied to the problem of the inversion of teleseismic

waves [7]. For multimode problems, the most critical part is to find as many

global optimal solutions as possible and improve the accuracy of the solutions

as much as possible. In evolutionary multiobjective optimization, because of30

the advantages of niche methods, niching methods are often used to maintain

solution diversity[8].

The concept of neighborhood has been widely used in EAs. In general, neigh-

borhood relationships can be divided into two broad categories, namely index-

based and distance-based. In a single global peak optimization scheme, index-35

based neighborhoods are typically used, especially in Particle Swarm Optimiza-

tion (PSO). Different topological-based PSO algorithms have been proposed and

compared. These topologies are based on population subscripts (index-based).

The advantage of this is that it can save computing resources. In 2004, Mendes

[9] proposed a fully-informed PSO that also uses topological and index-based40

neighborhoods as the basic structure. One of the earliest topological index-based

neighborhood differential evolution (DE) works was carried out by Tasoulis [10].

The algorithm divides the population into different sub-populations and uses a

ring topology to exchange information between different sub-populations. This

method was modified and further improved by Weber et al.[11] [12]. Das et45

al. used the index-based neighborhood concept of each population member to

improve the performance of DE [13][14].

Most of the same types of algorithms are index-based, but the accuracy of

the solution is not the optimal value in most cases. The PSO algorithm, which

imitates the foraging behavior of bird flocks, is a very effective method for mul-50

timodal problems. PSO is popular because it is easy to implement, and has

strong optimization ability. Its efficiency in solving complex optimization prob-

lems has attracted significant research [15]. In order to improve the accuracy

of the solution, a PSO algorithm based on the ring neighborhood topology of

Euclidean distance between particles is proposed in this paper, which is called55

3



the close neighbor mobility optimization algorithm (CNMM). The algorithm

greatly improves the accuracy of the particle. The algorithm mainly includes

the following three strategies: elite selection mechanism, close neighbor mobil-

ity strategy and modified DE strategy. It mainly uses the Euclidean distance

between particles. Each particle forms its own unique niche, evolves in a local60

scope, and finally locates multiple global optimal solutions with high precision.

The reminder of this paper is organized as follows. Section 2 reviews the

Particle Swarm Optimizer (PSO) and the basic DE. Section 3 gives a detailed

description of the proposed CNMM algorithm. Experimental setup and results

are presented and compared in Section 4.The experimental results show that65

the CNMM algorithm has better performance than most single-objective multi-

modal algorithms. Finally the paper is concluded in Section 5.

2. FUNDAMENTAL KNOWLEDGE

Since the principles of PSO and DE [16, 17, 18] are used in the CNMM

algorithm, we first introduce these two classic algorithms, which will facilitate70

the detailed description of CNMM.

A.Particle swarm optimization algorithm

PSO [19, 20, 21] searches by simulating group behaviors such as those of

flocks, fish, and herds. PSO has many advantages, so it has a wide range of75

applications in dealing with multimodal problems [22].

PSO is based on intelligent algorithms of populations. Each individual in

the population is called a particle, and each particle represents a solution. The

purpose of each particle is to constantly approach the location of the food, and

assume that the position of the food is a global optimal solution. To achieve80

this, each particle ultimately approaches the location of the food by using the

best position (pbest) that it has experienced and the best position (gbest) of all

the particles in the population.

The mathematical description of the PSO algorithm is as follows. Sup-
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pose that the dimension of each particle’s decision variable in the population85

is n; the size of the population is N(i = 1, 2, ..., N); the position vector and

velocity vector of each particle are represented as xi = (xi1, xi2, ..., xin) and

vi = (vi1, vi2, ..., vin), respectively, and the particle i is in d(d = 1, 2, ..., n) di-

mension. The speed and position updates from time t to time t + 1 are as

follows:90

vi,d = w ∗ vi,d(t) + c1 ∗ r1 ∗ (pbestid(t)− xi,d(t))

+c2 ∗ r2 ∗ (gbestid(t)− xi,d(t)).
(1)

xid(t+ 1) = vid(t) + xid(t), (2)

where w is the inertia weight, indicating how much of the original velocity

of the particle can be retained. Larger w equals strong global search ability and

weak local search ability. Small w equals strong local search ability and weak

global search ability. C1 and C2 are the individual’s own learning and social

learning factors, respectively. r1 and r2 are random numbers of [0, 1]. It is the95

d-dimensional component of the best position of the particle i, which is the d-th

dimension component of the best position of the group.

The principle of the PSO algorithm is shown in Fig.1. In Fig.1, the Xt

represents the initial position of a particle at time t; pbest represents the best

position in particle Xt history, and gbest represents the best position of all100

particles in the entire population. V1 represents the guiding effect of pbest on

the particles. V2 represents the guiding effect of gbest on the particles, and V3

represents the influence of the velocity of the particles at the last moment on

the particles. The shape of this triangle represents the location of the food. In

Fig.1, according to the law of parallelograms, under the combined influence of105

V1, V2 and V3, xt reaches a new position xt+1, and xt+1 is closer to the position

of the food. From Fig.1 we can clearly see that the core idea of the PSO algo-

rithm is that each particle is continuously close to the global optimal position

under the leading role of better particles.

110

5



0

X2

X1

V1
V2

V3

Xt+1

Xt

pbest

gbest

Position of the last moment

food

Initial position

Position after move

Figure 1: The principle of particle swarm optimization

B.Differential evolution(DE)

Storn and Price [21] introduced DE to solve unconstrained single-objective

optimization problems. Due to the unique characteristics of DE, it is also widely

used in multimodal problems [23]. The basic idea is to mutate and cross-operate

the current population to produce a new population. Then the selection opera-115

tion is used to make a one-to-one selection of the two populations to produce the

final newly generated population. Specifically, there are variations, crossovers,

and the selection of three operations. First, the mutation operation is performed

using formula (3).

vi = xr1 + F × (xr2 − xr3), (3)

where i = 1, ..., N(N is the size of the population). The parameter vi is the120

result of the i-th particle variation. The r1, r2, r3 are three particles randomly

selected from the population(r1, r2, r3 6= i). Parameter F is a positive real con-
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trol parameter called the amplification factor, which controls the amplification

of difference vectors.

By using formula (4), vi and xi to perform the exchange operation on each

dimension, a new individual ui,j is finally generated.

ui,j =

 vi,j if ≤ CR or j = jrand

xi,j otherwise,
(4)

where j = 1, ..., D(D is the dimension of the particle decision variable); randj125

is a uniformly distributed random number between 0 and 1 that is regenerated

for each j; jrand is an integer randomly chosen from [1, .., D]. CR is the crossover

control parameter, and ui,j is the jth element of the trial vector ui. The idea

of this step is to exchange some content between vi and xi to form a new ui.

Finally, the selection is performed between the target vector xi and the newly130

generated vector ui, and the better one will be saved to the next generation of

the population.

xi =

 ui if f(ui) ≥ f(xi)

xi otherwise,
(5)

where f(x) is the fitness evaluation function for a particle x.

The principle of the modified DE operator is shown in Fig.2. The green

dot Xr0 represents the current particles. The black Xr1, blue Xr3, and red135

Xr2 dots represent three particles randomly selected from the particle group

(Xr0 6= Xr1 6= Xr2 6= Xr3). As described in Equation (3) of Section 2-B, the

black point Xr1 determines the starting point of the movement. The blue point

Xr3 and the red point Xr2 determine the direction of movement, and parameter

F determines the length of the movement. By Equation (3) of Section 2-B, Xr1140

moves to V0. V0 and the original point Xr0 are cross-operated by Equation (4)

of Section 2-B, as indicated by the open arrow in Fig.2. The green dot Xr0 may

move to V0, V1, V2 or its original Xr0 position.
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Figure 2: The principle of the DE method

3. Proposed Approach145

Aiming at the problem that most single-objective multimodal algorithms

solve the multimodal problem, the solution accuracy is not high. A PSO algo-

rithm based on distance-based ring neighborhood topology is proposed, which

is called CNMM.

In this section, we describe the details of the CNMM algorithm. The CNMM150

algorithm consists of three main strategies. The details of the elite selection

strategy are described in Part A of Section 3. The details of the neighbor move-

ment are described in Section 3-B. The details of the modified DE strategy are

described in Section 3-C. The steps of the entire CNMM algorithm are described

in Section 3-D. In the final Section 3-E, we simply express the working principle155

of CNMM through several diagrams.

A.Elite Selection Strategy

The aim of the elite selection strategy is to find the particles with good

convergence and distribution in the whole population so that these particles160
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can guide the surrounding particles to explore. Algorithm 1 shows the detailed

process of the elite selection strategy.

At the beginning of algorithm 1, the whole population is sorted in descending

order according to fitness (Objective function value)(line 1). The most adapt-

able particle is found and put into the S set(line 3), which is used to store165

all elite particles. fb represents the fitness of the best particles in the current

population(line 2).

Algorithm 1 :Elite selection mechanism

Input: The whole population P

Output: The collection S representing all elite particles collection of serial

numbers

1: Arrange the whole population in descending order of fitness Psorted

2: The highest fitness as fb

3: Particles with the highest fitness are added to the S set

4: for each particle i ∈ Psorted do

5: found ← FALSE

6: if fb− fit(i) ≤ e then

7: found ← TRUE

8: for each particle s ∈ S do

9: if Distance(s, i) ≤ r then

10: found ← FALSE;

11: break;

12: end if

13: end for

14: end if

15: if found==TRUE then

16: Let S ← S
⋃
{ particle i }

17: end if

18: end for

The convergence for each particle in the Psorted population is determined.
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The difference between fitness and fb is calculated (line 6). The difference

represents the proximity to the current population peak. e is a threshold, which170

is used to represent a distance from the peak. If the proximity between them is

within the specified threshold e, the convergence of the particle is better.

Then, the distribution of the particle is judged(lines 8-13). Distance(s,i) is

the Euclidean distance between particle s and particle i. The S set stores all

the elite particles, and if the current particle is not within the radius of all the175

particles in the S set, then the distribution of this particle is better. Finally,

particle i with good current convergence and distribution is added to the S

set(line 16). By judging all the particles in the population, we can find all the

elite particles in the current population.

180

B.The Close Neighbor Mobility Strategy

The Close Neighbor Mobility Strategy was inspired by Yue [36]. The close

neighbor mobility strategy is the core part of CNMM. Before introducing the

close neighbor mobility strategy, we introduce the technology of niche. The ba-

sic idea of niche comes from the fact that in the process of evolution, organisms185

usually live together with their own species and reproduce together. To reflect

this in the algorithm, we make the individuals in the algorithm evolve in a spe-

cific living environment. Because niche technology can form the advantages of

multiple populations, the niche algorithm can avoid the large-scale propagation

of individuals with high adaptive value in the later evolution period, and fill the190

whole population.

The close neighbor mobility strategy is inspired by the concept of species

in niches. In nature, individuals in the same species exchange information in a

specific environment. The specific method of the close neighbor mobility strat-

egy is that each particle finds the best one of the three most recent particles in195

its own living environment, and the current particle continuously moves toward

the best particles in the neighbor, thereby achieving the purpose of evolution.

Algorithm 2 shows the detailed process of the close neighbor mobility strat-

egy. In Algorithm 2, for any particle i (line 2) in the population, the Euclidean
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Algorithm 2 :Close Neighbor Mobility Strategy

Input: The whole population P and the number of neighbors each particle has

is expressed as L

Output: The collectionG (The setG of leading particles gbesti of each particle

i)

1: Get the whole population P

2: for each particle i ∈ P do

3: for each particle j ∈ P (j 6= i) do

4: result[j] = Distance(i, j)

5: end for

6: Sort result set in ascending order according to Euclidean distance

7: Find the L(In the experiment, L takes 3) particles closest to the current

particle as a, b, c

8: Find the particle with the highest value of the objective function in a, b, c

as the gbesti of the particle i.

9: end for

10: The gbesti of all particles constitutes a set G

distance of this particle from other particles in the population is calculated200

(lines 3-5). Then ,the three particles a, b, c (lines 6-7) closest to particle i are

found. Finally, the particle with the largest value of the objective function in

the particles a, b, c is found (line 8), and this particle is used as the gbest of

particle i.

205

C.The modified DE strategy

The goal of multimodal problems is to find all global optimalities. Therefore,

the largest area possible must be explored. In order to make the exploration

area larger, in our own algorithm, the last step of the traditional DE strategy is

removed. Thus, the new populations have a greater chance of being distributed210

more widely.

The modified DE strategy is as shown in Algorithm 3. For any particle i
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Algorithm 3 :The modified DE strategy

Input: The whole population P ,the collection S representing all elite particles

collection of serial numbers

Output: Updated population P

1: for each particle i ∈ P do

2: if i /∈ S then

3: Randomly select three particles not equal to i from the particle swarm,

which are represented as x1,x2, x3, respectively.

4: Generate vi according to (3) of Section 2-B

5: Generate ui according to (4) of Section 2-B

6: ui instead of particle i

7: end if

8: end for

that does not belong to the collection S (line 2), three particles are randomly

selected in the particle group (line 3), and a new particle ui is generated by the

formula (3) and (4) (lines, 4-5), and then the original particle i is replaced (line215

6).

D.CNMM

There are three main strategies for the overall idea of the CNMM algorithm.

The elite retention mechanism, close neighbor mobility strategy, and modified220

DE strategy. With the combination of the three strategies, the algorithm can

find the global optimal solution.

At the beginning of algorithm 3, the initial population is randomly generated,

and each particle in the population has an initial position and velocity (line 1).

Then the initial position of each particle is taken as the initial pbesti of the225

current particle i (line 2). Because, the algorithm does not reach the maximum

number of iterations, the big loop is entered (lines 3-25). The excellent particles

in the population in the S set are kept through the elite selection strategy of

Algorithm 1 (line 4). Then the close neighbor mobility strategy of Algorithm 2

12



Algorithm 4 :CNMM

1: Randomly initialize the population P

2: Initialize pbesti of each particle i to itself, and get all particles pbesti to

form set B

3: while Generation < MaxGenerations do

4: Select elite individuals to update the S collection using Algorithm 1

5: Execute Algorithm 2 to get G

6: for i=1:ParticleNumber do

7: if i ∈ S then

8: continue

9: else

10: Calculate the fitness of the current particle i

11: if fitness(i) > pbesti then

12: pbesti = particle i

13: end if

14: Use the particle swarm algorithm to get the new position and ve-

locity of the current particle i according to (1) and (2). (pbesti =

Bi,gbesti = Gi)

15: end if

16: Check if all particle positions and velocities are within the specified

range

17: Evaluate the entire population

18: end for

19: if Generation mod MaxGeneration*K == 0 then

20: if Generation < MaxGeneration then

21: Select elite individuals to update the S collection using Algorithm 1

22: In addition to the particles in the S collection, update the population

using the modified DE strategy

23: end if

24: end if

25: Generation=Generation+1

26: end while

27: Output the entire population P 13



is performed to obtain a set G of gbesti of each particle (line 5).230

Next, the loop for each particle update is entered (lines 6-18). If particle

i is an elite particle, then no update operation is performed (lines 7-8). Oth-

erwise, after calculating the target function value of the current particle i, the

current particle’s pbesti is updated (lines 10-13). A very important step is to

get the new position and velocity of the current particle i through the formulas235

(1) and (2) of the particle swarm (line 14). Note that in the particle swarm

formula, the set B and the set G record the pbest and gbest of each particle

respectively (pbesti = Bi, gbesti = Gi). The data are checked after the iteration

of all particles in the population for correctness (line 16). Then the fitness of

all particles is recalculated (line 17). After all particle iterations are completed,240

the specified number of iterations is reached, and the modified DE strategy is

used to update the entire population (lines 19-23).
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Figure 3: The principle of the elite selection mechanism

E.Principles of CNMM Now we employ an example to illustrate the principles

of CNMM through several pictures.245
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Figure 4: The principle of the close neighbor mobility strategy

In the elite selection mechanism, as shown in Fig.3(a), we assume that there

are 10 particles in the initial population. Through the operation of Algorithm 1,

we get Fig.3(b). In Fig.3(b), the circle represents all particles and the small sun

represents the elite particles found. Particles a, b, i, and j are all particles with

higher fitness, but the distance between particle j and particle i is too close, so250

the final elite particles are a, b, j (The detailed process in Algorithm 1). Elite

particles a, b and j benefit the overall algorithm in two ways. The first benefit

is to ensure that the entire population does not degenerate. The second benefit

is to guide the surrounding particles.
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Figure 5: The effect of the modified DE operator

In the close neighbor mobility strategy, each particle starts looking for its255

own leader particle. In Fig.4(a), the little sun indicates that the elite parti-
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cles do not move, and the small red circle indicates the particles that do. We

take particle f as an example (a small blue circle), first finding the three parti-

cles e, g, j closest to the Euclidean distance of particle f in the decision space.

The particles in the square are the three closest to particle f . Then, the par-260

ticle with the largest objective function value among e, g, and j is used as the

lead particle. The black bold arrow indicates the direction of movement of the

current particle f at the next moment. Fig.4(b) indicates the population after

the move. Particles that are not around the elite particles can move toward

places where there may be peaks due to the guidance of excellent surrounding265

particles.

The reason why the close neighbor mobility strategy can continue to ap-

proach different peaks is because each particle with its three surrounding parti-

cles form a special niche. The current particle can quickly approach the nearest

mountain. Additionally because the speed of particle movement in a particle270

swarm is limited, the most efficient way to move is to move toward the nearest

mountain to avoid erroneous movement.

In Fig.4(b), no particles are present on the third peak. In order to prevent

this phenomenon, after the evolution of a certain algebra, the DE strategy is

used to update the entire population. When updating the population, the elite275

particles are not updated to prevent degradation after the entire population

is updated. We update particles with poor target function values. As shown

in Fig.5, when particle c is updated, three particles different from the current

particle are randomly selected to regenerate the individual. The particles in

the circle represent the current particles being updated. The particles in the280

square represent three randomly selected particles. Small circles represent newly

generated particles. The new particles produced are likely to be distributed on

the peaks without particles.

Fig.6 shows the results of a simple experiment of CNMM. In Fig.6(a), the

initial population is generated. After eight generations as shown in Fig.6(b),285

the other particles in the population have basically found all the global optimal

solutions. After eight generations of particles, almost all of the particles have
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Figure 6: A simple example of CNMM

converged to the vicinity of the optimal solution (Fig.6(c)). In Fig.6(d), we see

that all particles converge to the nearest peak. The process of Fig.6 simply

demonstrates the validity of the CNMM principle.290

4. Experimental Study

In this section, a series of experiments is used to verify the efficiency and

feasibility of the CNMM algorithm. First, the benchmark function and the

parameter settings in the experiment are described in Section 4-A. Then, the

experimental results of comparison with other multimodal algorithms are given295

in Section 4-B. Section 4-C analyzes the principle of CNMM from the experi-

mental results. Finally, Section 4-D gives parameter analysis.

A.Benchmark Functions and Evaluation Protocols

To demonstrate the effectiveness of CNMM, we conducted experiments on300
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Table 1: PARAMETER SETTINGS

Test Function MaxFEs N

F1-F5 5.0E+04 80

F6 2.0E+05 100

F7 2.0E+05 300

F8-F9 4.0E+05 300

F10 2.0E+05 100

F11-F13 2.0E+05 200

F14-F20 4.0E+05 200

Table 2: TEST FUNCTIONS

F1(Five-Uneven-Peak Trap) F6(Shubert with 2D) F11(Composition Function 1 with 2D) F16(Composition Function 3 with 5D)

F2(Equal maxima) F7(Vincent with 2D) F12(Composition Function 1 with 2D) F17(Composition Function 4 with 5D)

F3(Uneven Decreasing Maxima) F8(Shubert with 3D) F13(Composition Function 1 with 2D) F18(Composition Function 3 with 10D)

F4(Himmelblau) F9(Vincent with 3D) F14(Composition Function 1 with 3D) F19(Composition Function 4 with 10D)

F5(Six-Hump Camel Back) F10(Modified Rastrigin) F15(Composition Function 1 with 3D) F20(Composition Function 1 with 20D)

a widely used benchmark function set—the CEC 2013 multimodal function set

[24] containing 20 functions, which were designed for the 2013 IEEE CEC Special

Session on Niching Methods for Multimodal Optimization.

The peak ratio(PR) and success rate(SR) were used as references [24] to

evaluate the performance of the CNMM algorithm and compare it with other305

algorithms. The PR is the average number of optimal solutions found over all

the runs divided by the known number of optimal solutions. A run is successful

if all the optimal solutions have been found. The SR is the number of successful

runs divided by the number of all the runs.

There were five kinds of precision in our experiments. They are ε = 1.0E−01,310

ε = 1.0E − 02, ε = 1.0E − 03, ε = 1.0E − 04, and ε = 1.0E − 05. But for

ε = 1.0E − 01 and ε = 1.0E − 02, the algorithms achieved good results, so we

use the accuracy ε = 1.0E − 04 for comparison, which is also the accuracy used

in references [25], [26], [27],[28], and [29]. To further illustrate the superiority of

the CNMM algorithm, we also compared higher accuracy data (ε = 1.0E − 05)315

with other algorithms. In order to ensure the fairness of the experiment, for

18



Table 3: THE IMPACT OF CNMM’s MAIN STRATEGY ON RESULTS

Func
CNMM CNMM-DE CNMM-ES

PR SR PR SR PR SR

F1 1.000 1.000 1.000 (≈) 1.000 1.000 (≈) 1.000

F2 1.000 1.000 1.000 (≈) 1.000 1.000 (≈) 1.000

F3 1.000 1.000 1.000 (≈) 1.000 1.000 (≈) 1.000

F4 1.000 1.000 1.000 (≈) 1.000 1.000 (≈) 1.000

F5 1.000 1.000 1.000 (≈) 1.000 1.000 (≈) 1.000

F6 0.722 0.000 0.111 (+) 0.000 0.500 (+) 0.000

F7 0.000 0.000 0.000 (≈) 0.000 0.500 (-) 0.000

F8 0.209 0.000 0.000 (+) 0.000 0.110 (+) 0.000

F9 0.000 0.000 0.000 (≈) 0.000 0.116 (-) 0.000

F10 1.000 1.000 0.833 (+) 0.227 0.833 (+) 0.227

F11 1.000 1.000 0.667 (+) 0.000 1.000 (≈) 1.000

F12 0.750 0.078 0.625 (+) 0.000 0.725 (+) 0.000

F13 1.000 1.000 0.833 (+) 0.000 0.667 (+) 0.000

F14 0.667 0.000 0.167 (+) 0.000 0.667 (≈) 0.000

F15 0.500 0.000 0.000 (+) 0.000 0.500 (≈) 0.000

F16 0.667 0.000 0.000 (+) 0.000 0.657 (≈) 0.000

F17 0.125 0.000 0.000 (+) 0.000 0.125 (≈) 0.000

F18 0.000 0.000 0.000 (≈) 0.000 0.000 (≈) 0.000

F19 0.000 0.000 0.000 (≈) 0.000 0.000 (≈) 0.000

F20 0.000 0.000 0.000 (≈) 0.000 0.000 (≈) 0.000

Significantly better (+) 10 5

Significantly worse (-) 0 2

Similar (≈) 10 13

all the algorithms involved in the comparison, we set the common parameters

of all algorithms to be the same. Table 1 lists the maximum number of fitness

evaluations (MaxFEs) and population size (N) of each test function. The first

ten test functions denoted as F1-F10 in Table 2 are the commonly used test320

functions in the community of evolutionary multimodal optimization. The re-

maining ten test functions denoted as F11-F20 in Table 2 are the composition

functions. Note that all the test functions should be maximized. The details of

these 20 test functions can be found in [24]. Furthermore, all experiments were

carried out for 51 independent runs for statistics.325

The algorithms were implemented in MATLAB 2016a, and executed using

a computer with 4 Inter Core i5-6500 3.20 GHz CPUs and 16 GB memory. The

operating system was Microsoft Windows 7. The amplification factor F and

crossover rate CR in CNMM were 0.5 and 0.9, respectively. The parameter L

was 3 in the close neighbor mobility strategy. Parameters e and r were 0.5 and330

0.1 in the elite selection mechanism, respectively.
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Table 4: EXPERIMENTAL RESULTS IN PR AND SR ON PROBLEMS F1-F20 AT ACCU-

RACY LEVEL ε = 1.0E − 04

Func
CNMM CDE SDE R2PSO R3PSO NSDE

PR SR PR SR PR SR PR SR PR SR PR SR

F1 1.000 1.000 1.000 (≈) 1.000 0.657 (+) 0.373 1.000 (≈) 1.000 1.000 (≈) 1.000 1.000 (≈) 1.000

F2 1.000 1.000 1.000 (≈) 1.000 0.737 (+) 0.529 1.000 (≈) 1.000 1.000 (≈) 1.000 0.776 (+) 0.667

F3 1.000 1.000 1.000 (≈) 1.000 1.000 (≈) 1.000 1.000 (≈) 1.000 1.000 (≈) 1.000 1.000 (≈) 1.000

F4 1.000 1.000 1.000 (≈) 1.000 0.284 (+) 0.000 0.946 (+) 0.784 0.966 (+) 0.863 0.240 (+) 0.000

F5 1.000 1.000 1.000 (≈) 1.000 0.922 (+) 0.843 1.000 (≈) 1.000 1.000 (≈) 1.000 0.745 (+) 0.490

F6 0.722 0.000 1.000 (-) 1.000 0.056 (+) 0.000 0.537 (+) 0.000 0.688 (-) 0.000 0.056 (+) 0.000

F7 0.000 0.000 0.861 (-) 0.000 0.054 (-) 0.000 0.484 (-) 0.000 0.436 (-) 0.000 0.053 (-) 0.000

F8 0.209 0.000 0.000 (+) 0.000 0.015 (+) 0.000 0.023 (+) 0.000 0.421 (-) 0.000 0.013 (+) 0.000

F9 0.000 0.000 0.474 (-) 0.000 0.011 (≈) 0.000 0.122 (-) 0.000 0.125 (-) 0.000 0.006 (≈) 0.000

F10 1.000 1.000 1.000 (≈) 1.000 0.147 (+) 0.000 0.905 (+) 0.353 0.850 (+) 0.000 0.098 (+) 0.000

F11 1.000 1.000 0.330 (+) 0.000 0.314 (+) 0.000 0.641 (+) 0.000 0.650 (+) 0.157 0.248 (+) 0.000

F12 0.750 0.078 0.002 (+) 0.000 0.208 (+) 0.000 0.932 (-) 0.000 0.537 (+) 0.000 0.135 (+) 0.000

F13 1.000 1.000 0.141 (+) 0.000 0.297 (+) 0.000 0.627 (+) 0.000 0.647 (+) 0.000 0.225 (+) 0.000

F14 0.667 0.000 0.026 (+) 0.000 0.216 (+) 0.000 0.408 (+) 0.000 0.637 (+) 0.000 0.190 (+) 0.000

F15 0.500 0.000 0.005 (+) 0.000 0.108 (+) 0.000 0.167 (+) 0.000 0.213 (+) 0.000 0.125 (+) 0.000

F16 0.667 0.000 0.000 (+) 0.000 0.000 (+) 0.000 0.095 (+) 0.000 0.431 (+) 0.000 0.170 (+) 0.000

F17 0.125 0.000 0.000 (+) 0.000 0.000 (+) 0.000 0.015 (≈) 0.000 0.096 (+) 0.000 0.108 (≈) 0.000

F18 0.000 0.000 0.167 (-) 0.000 0.167 (-) 0.000 0.036 (-) 0.000 0.101 (-) 0.000 0.163 (-) 0.000

F19 0.000 0.000 0.000 (≈) 0.000 0.105 (-) 0.000 0.000 (≈) 0.000 0.032 (-) 0.000 0.098 (-) 0.000

F20 0.000 0.000 0.000 (≈) 0.000 0.000 (≈) 0.000 0.002 (≈) 0.000 0.078 (-) 0.000 0.123 (-) 0.000

Significantly better(+) 8 14 9 9 12

Significantly worse(-) 4 3 3 7 4

Similar(≈) 8 3 8 4 4

B.Compared With Multimodal Algorithms

The results of CNMM on F1-F20 with respect to PR and SR at all accuracy

levels (i.e,ε=1.E-01, ε=1.E-02, ε=1.E-03, ε=1.E-04, and ε=1.E-05) are given in335

Table 7.

To further evaluate the performance of CNMM, we compare the results

obtained by CNMM with those obtained by several multimodal algorithms:

CDE [30], SDE [23], R2PSO, R3PSO[22], NSDE[31], Self-CSDE [32], LOICDE,
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Table 5: EXPERIMENTAL RESULTS IN PR AND SR ON PROBLEMS F1-F20 AT ACCU-

RACY LEVEL ε = 1.0E − 05

Func
CNMM CDE SDE R2PSO R3PSO NSDE

PR SR PR SR PR SR PR SR PR SR PR SR

F1 1.000 1.000 1.000 (≈) 1.000 0.657 (+) 0.373 1.000 (≈) 1.000 1.000 (≈) 1.000 1.000 (≈) 1.000

F2 1.000 1.000 1.000 (≈) 1.000 0.584 (+) 0.275 1.000 (≈) 1.000 1.000 (≈) 1.000 0.753 (+) 0.627

F3 1.000 1.000 1.000 (≈) 1.000 1.000 (≈) 1.000 1.000 (≈) 1.000 1.000 (≈) 1.000 1.000 (≈) 1.000

F4 1.000 1.000 0.755 (+) 0.431 0.284 (+) 0.000 0.907 (+) 0.627 0.966 (+) 0.863 0.235 (+) 0.000

F5 1.000 1.000 1.000 (≈) 1.000 0.853 (+) 0.706 1.000 (≈) 1.000 1.000 (≈) 1.000 0.608 (+) 0.235

F6 0.722 0.000 0.997 (-) 0.961 0.056 (+) 0.000 0.461 (+) 0.000 0.678 (+) 0.000 0.053 (+) 0.000

F7 0.000 0.000 0.699 (-) 0.000 0.054 (-) 0.000 0.427 (-) 0.000 0.405 (-) 0.000 0.053 (-) 0.000

F8 0.185 0.000 0.000 (+) 0.000 0.015 (+) 0.000 0.011 (+) 0.000 0.418 (-) 0.000 0.013 (+) 0.000

F9 0.000 0.000 0.397 (-) 0.000 0.011 (≈) 0.000 0.085 (-) 0.000 0.117 (-) 0.000 0.006 (≈) 0.000

F10 1.000 1.000 1.000 (≈) 1.000 0.147 (+) 0.000 0.843 (+) 0.118 0.832 (+) 0.118 0.098 (+) 0.000

F11 1.000 1.000 0.085 (+) 0.000 0.314 (+) 0.000 0.627 (+) 0.000 0.650 (+) 0.000 0.248 (+) 0.000

F12 0.750 0.078 0.000 (+) 0.000 0.208 (+) 0.000 0.353 (+) 0.000 0.529 (+) 0.000 0.135 (+) 0.000

F13 1.000 1.000 0.020 (+) 0.000 0.297 (+) 0.000 0.611(+) 0.000 0.647 (+) 0.000 0.225 (+) 0.000

F14 0.667 0.000 0.007 (+) 0.000 0.216 (+) 0.000 0.369 (+) 0.000 0.637 (+) 0.000 0.190 (+) 0.000

F15 0.500 0.000 0.000 (+) 0.000 0.108 (+) 0.000 0.150 (+) 0.000 0.208 (+) 0.000 0.125 (+) 0.000

F16 0.667 0.000 0.000 (+) 0.000 0.108 (+) 0.000 0.082 (+) 0.000 0.425 (+) 0.000 0.170 (+) 0.000

F17 0.125 0.000 0.000 (+) 0.000 0.076 (+) 0.000 0.010 (+) 0.000 0.096 (+) 0.000 0.108 (≈) 0.000

F18 0.000 0.000 0.167 (-) 0.000 0.026 (-) 0.000 0.033 (-) 0.000 0.101 (-) 0.000 0.163 (-) 0.000

F19 0.000 0.000 0.000 (≈) 0.000 0.105 (-) 0.000 0.000 (≈) 0.000 0.032 (-) 0.000 0.098 (-) 0.000

F20 0.000 0.000 0.000 (≈) 0.000 0.000 (≈) 0.000 0.000 (≈) 0.000 0.074 (-) 0.000 0.123 (-) 0.000

Significantly better 9 14 11 10 12

Significantly worse 4 3 3 6 4

Similar 7 3 6 4 4
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LOISDE[33] and LIPS [15]. The results of these multimodal algorithms come340

from the supplementary materials of [34], which were obtained under the same

MaxFEs.

Tables 4, 5, and 6 show the results of CNMM and the other algorithms

with PR and SR values accuracy level of ε=1.E-04 and ε=1.E-05, respectively.

In addition, Wilcoxon’s rank sum test [35] at α = 0.05 with respect to PR345

between CNMM and other multimodal algorithms was performed to evaluate

the statistical significance of the results. The symbols ”+”, ”-”and ”≈” indicate

CNMM performed significantly better (+), significantly worse (-) or similarly

(≈). We analyze the data from the experiments as follows.

Table 6: EXPERIMENTAL RESULTS IN PR AND SR ON PROBLEMS F1-F20 AT ACCU-

RACY LEVEL ε = 1.0E − 04

Func
CNMM Self-CSDE LOICDE LOISDE LIPS

PR SR PR SR PR SR PR SR PR SR

F1 1.000 1.000 1.000 (≈) 1.000 1.000 (≈) 1.000 1.000 (≈) 1.000 0.833 (+) 0.686

F2 1.000 1.000 1.000 (≈) 1.000 1.000 (≈) 1.000 0.235 (+) 0.039 1.000 (≈) 1.000

F3 1.000 1.000 1.000 (≈) 1.000 1.000 (≈) 1.000 1.000 (≈) 1.000 0.961 (+) 0.961

F4 1.000 1.000 0.686 (+) 0.294 0.975 (+) 0.902 0.250 (+) 0.000 0.990 (≈) 0.961

F5 1.000 1.000 0.961 (+) 0.922 1.000 (≈) 1.000 0.667 (+) 0.333 1.000 (≈) 1.000

F6 0.722 0.000 0.699 (+) 0.020 1.000 (-) 1.000 0.056 (+) 0.000 0.246 (+) 0.000

F7 0.000 0.000 0.695 (-) 0.000 0.705 (-) 0.020 0.029 (-) 0.000 0.400 (-) 0.000

F8 0.209 0.000 0.695 (-) 0.000 0.000 (+) 0.000 0.012 (+) 0.000 0.084 (+) 0.000

F9 0.000 0.000 0.265 (-) 0.000 0.187 (-) 0.000 0.005 (-) 0.000 0.104 (-) 0.000

F10 1.000 1.000 0.992 (+) 0.992 1.000 (≈) 1.000 0.083 (+) 0.000 0.748 (+) 0.000

F11 1.000 1.000 0.339 (+) 0.000 0.660 (+) 0.000 0.167 (+) 0.000 0.974 (+) 0.843

F12 0.750 0.078 0.321 (+) 0.000 0.495 (+) 0.000 0.125 (+) 0.000 0.574 (+) 0.000

F13 1.000 1.000 0.317 (+) 0.000 0.510 (+) 0.000 0.167 (+) 0.000 0.794 (+) 0.176

F14 0.667 0.000 0.304 (+) 0.000 0.657 (≈) 0.000 0.167 (+) 0.000 0.644 (+) 0.000

F15 0.500 0.000 0.186 (+) 0.000 0.299 (+) 0.000 0.125 (+) 0.000 0.336 (+) 0.000

F16 0.667 0.000 0.072 (+) 0.000 0.559 (+) 0.000 0.167 (+) 0.000 0.304 (+) 0.000

F17 0.125 0.000 0.056 (+) 0.000 0.223 (-) 0.000 0.076 (+) 0.000 0.162 (-) 0.000

F18 0.000 0.000 0.003 (≈) 0.000 0.219 (-) 0.000 0.157 (-) 0.000 0.098 (-) 0.000

F19 0.000 0.000 0.000 (≈) 0.000 0.037 (-) 0.000 0.027 (-) 0.000 0.000 (≈) 0.000

F20 0.000 0.000 0.000 (≈) 0.000 0.123 (-) 0.000 0.088 (-) 0.000 0.000 (≈) 0.000

Significantly better(+) 11 8 13 12

Significantly worse (-) 4 6 5 4

Similar(≈) 5 6 2 4
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• 1) Test functions F1-F5. Due to the small number of decision variables350

and the low number of global optimal solutions, the most important thing

is that the slope of each mountain is relatively flat. CNMM is able to find

all global optimal solutions stably every time. From tables 4, 5, and 6, it

can be seen the CNMM performs significantly better on F1-F5 than most

of the algorithms, no matter at which accuracy level(See Table 7). In355

addition, CDE, NCDE, PNPCDE, and Self-CCDE all performed well in

the first five test functions. This is because the DE algorithm is extended

with a crowding scheme making it capable of tracking and maintaining

multiple optima.

• 2) Test functions F6-F9 and F17-F20. For test functions F6-F9 with360

many spikes, CNMM performed worse than most other algorithms. This

is because, for many sharp peaks, the range of decision space occupied by

the spikes is small, and it is difficult for our particles to find the position

where the peaks are located, so there is no possibility that the particles

lead the surrounding particles to the peaks. For test problems F17 to365

F20, the number of decision variables reaches 10 and 20. For PSO, when

the number of decision variables reaches a certain number, all decision

variables affect the final function value. Therefore, it is difficult to find

the true particles close to the mountain based on the merits of the function

values. In other words, it is difficult to find the real pbest and gbest, so370

it is difficult for the particles to reach the true mountain.

• 3) Test functions F10-F16. On the test functions F10-F16, which have

many relatively flat peaks, the CNMM had good results. On F10, F11

and F13, CNMM was better than most algorithms. This is because in

the CNMM algorithm, if the particles are distributed over some gentle375

peaks, these excellent particles cause the surrounding particles to reach

the highest peak, and due to the existence of the DE strategy, the hard-to-

find peaks can also be somewhat explored by particles in the population.

Therefore, CNMM showed extraordinary vitality in these test functions.
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• 4) Data comparison for different levels of accuracy. Comparing380

Table 4 with Table 5, we can clearly see that when the accuracy is im-

proved to ε=1.E-05, the difference between the CNMM algorithm and

CDE, R2PSO, and R3PSO is further increased. Therefore, the data after

the CNMM algorithm is run is very close to the true peak. This is because

the particles are on the same mountain, and the particles are constantly385

exploring the top of the mountain, constantly fine-tuning the operation,

and every generation of elite particles are preserved so that the population

does not degenerate. Therefore, the higher the accuracy of the CNMM

algorithm, the more prominent the effect.

Table 7 shows the raw data of the CNMM algorithm on all accuracy levels.390

As can be seen from Table 7, for the test functions F6, F12, F14, F15, F16

and F17, the PR values are the same on the accuracy levels ε = 1.0E − 01,

ε = 1.0E − 02, ε = 1.0E − 03,ε = 1.0E − 04, and ε = 1.0E − 05, which means

that the last solution obtained by the CNMM has very high precision. In other

words, as long as a particle has explored a mountain, the highest height of the395

mountain will be found by the particles. It also illustrates the advantages of

CNMM over the other algorithms in terms of accuracy.

Overall, we can conclude the CNMM algorithm generally outperformed most

of the multimodal algorithms in terms of PR and SR. Moreover, the CNMM

algorithm had a very obvious advantage in approaching the highest peak. In400

addition,the DE strategy is used in CNMM. This helps the algorithms to keep

population diversity in order to locate more global optima and accelerate the

convergence speed to improve the accuracy of solutions. Therefore, the CNMM

algorithm outperformed the other multimodal algorithms.

405

C.Effects of CNMM Components

The main components of the CNMM algorithm are 1) Elite Selection Mecha-

nism; 2) Close Neighbor Mobility Strategy; and 3) Modified DE Strategy. Here

we discuss the impact and principles of each strategy. In addition, the impact of
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Table 7: EXPERIMENTAL RESULTS IN PR AND SR OF CNMM ON 20 PROBLEMS

F1-F20 AT ALL FIVE ACCURACY LEVELS

CNMM

ε
F1 F2 F3 F4 F5

PR SR PR SR PR SR PR SR PR SR

1E-01 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1E-02 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1E-03 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1E-04 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1E-05 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

e
F6 F7 F8 F9 F10

PR SR PR SR PR SR PR SR PR SR

1E-01 0.722 0.000 0.750 0.000 0.246 0.000 0.050 0.000 1.000 1.000

1E-02 0.722 0.000 0.028 0.000 0.222 0.000 0.000 0.000 1.000 1.000

1E-03 0.722 0.000 0.000 0.000 0.209 0.000 0.000 0.000 1.000 1.000

1E-04 0.722 0.000 0.000 0.000 0.209 0.000 0.000 0.000 1.000 1.000

1E-05 0.722 0.000 0.000 0.000 0.185 0.000 0.000 0.000 1.000 1.000

ε
F11 F12 F13 F14 F15

PR SR PR SR PR SR PR SR PR SR

1E-01 1.000 1.000 0.750 0.078 1.000 1.000 0.667 0.000 0.500 0.000

1E-02 1.000 1.000 0.750 0.078 1.000 1.000 0.667 0.000 0.500 0.000

1E-03 1.000 1.000 0.750 0.078 1.000 1.000 0.667 0.000 0.500 0.000

1E-04 1.000 1.000 0.750 0.078 1.000 1.000 0.667 0.000 0.500 0.000

1E-05 1.000 1.000 0.750 0.078 1.000 1.000 0.667 0.000 0.500 0.000

ε
F16 F17 F18 F19 F20

PR SR PR SR PR SR PR SR PR SR

1E-01 0.667 0.000 0.125 0.000 0.000 0.000 0.000 0.000 0.000 0.000

1E-02 0.667 0.000 0.125 0.000 0.000 0.000 0.000 0.000 0.000 0.000

1E-03 0.667 0.000 0.125 0.000 0.000 0.000 0.000 0.000 0.000 0.000

1E-04 0.667 0.000 0.125 0.000 0.000 0.000 0.000 0.000 0.000 0.000

1E-05 0.667 0.000 0.125 0.000 0.000 0.000 0.000 0.000 0.000 0.000
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the number of neighbors on the experimental results is analyzed in this section.410

1)Elite Selection Mechanism: In Table 3, CNMM-DE represents the result of

the CNMM algorithm with the modified DE strategy, and CNMM-ES represents

the result of the CNMM algorithm to remove the elite selection mechanism.

The excellent PR value uses a black background, the symbols ”+”, ”-”and ”≈”

indicate the CNMM algorithm performed significantly better (+), significantly415

worse (-) or similarly (≈). We can clearly see from the table that after removing

the elite retention mechanism, there are nine test functions that are worse than

before, but there are also two test functions that performed better than the full

algorithm. This is because the test functions F7 and F9 have multiple sharp

peaks, and the elite retention mechanism does not update the elite particles,420

thus reducing the population’s exploration area. However on most of the test

functions, the elite retention mechanism has shown good results. This is because

the elite retention mechanism ensures that the population does not degenerate

and constantly directs particles around itself to approach the current peak. The

inspiration for the elite retention strategy comes from X. Li [24]. In the course425

of the experiment, r takes 0.1 and e takes 0.5 (see Algorithm 1).

2)Close Neighbor Mobility Strategy:The Close Neighbor Mobility Strategy is

the core strategy of CNMM. Influenced by the idea of ring topology, this paper

designs a unique niche method. Each particle and the nearest three particles

form a special niche. Each particle moves to the niche in its own niche with430

the highest value of the objective function. This allows each particle to have

the highest efficiency of movement. Since each particle constitutes a niche only

in the last three particles, each population will have multiple niches, which is

beneficial to find the most global optimal solutions. A particle with a high

target function value will become the leader of the surrounding particle. In this435

way, the particles move in the direction of the mountain, which is conducive to

constantly approaching the highest peak.

3)Modified DE Strategy:From Table 3, we can clearly see that the effect is

obviously worse when the CNMM algorithm removes the DE strategy. The re-

sults with 10 test functions got worse because when the program evolved into440
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Table 8: IN ALGORITM 2 OF CNMM, THE INFLUENCE OF PARAMETER L ON THE

RESULT IS IN THE TEST FUNCTION F1 − F20 AT ACCURACY LEVEL ε = 1.0E − 04

Func
L=3 L=4 L=5 L=6 L=7 L=8 L=9

PR SR PR SR PR SR PR SR PR SR PR SR PR SR

F1 1.000 1.000 1.000 (≈) 1.000 1.000 (≈) 1.000 1.000 (≈) 1.000 1.000 (≈) 1.000 1.000 (≈) 1.000 1.000 (≈) 1.000

F2 1.000 1.000 1.000 (≈) 1.000 1.000 (≈) 1.000 1.000 (≈) 1.000 1.000 (≈) 1.000 1.000 (≈) 1.000 1.000 (≈) 1.000

F3 1.000 1.000 1.000 (≈) 1.000 1.000 (≈) 1.000 1.000 (≈) 1.000 1.000 (≈) 1.000 1.000 (≈) 1.000 1.000 (≈) 1.000

F4 1.000 1.000 1.000 (≈) 1.000 1.000 (≈) 1.000 1.000 (≈) 1.000 1.000 (≈) 1.000 1.000 (≈) 1.000 1.000 (≈) 1.000

F5 1.000 1.000 1.000 (≈) 1.000 1.000 (≈) 1.000 1.000 (≈) 1.000 1.000 (≈) 1.000 1.000 (≈) 1.000 1.000 (≈) 1.000

F6 0.722 0.000 0.500 (+) 0.000 0.611 (+) 0.000 0.500 (+) 0.000 0.330 (+) 0.000 0.389 (+) 0.000 0.500 (+) 0.000

F7 0.000 0.000 0.000 (≈) 0.000 0.000 (≈) 0.000 0.000 (≈) 0.000 0.000 (≈) 0.000 0.000 (≈) 0.000 0.027 (-) 0.000

F8 0.209 0.000 0.160 (+) 0.000 0.185 (+) 0.000 0.168 (+) 0.000 0.148 (+) 0.000 0.123 (+) 0.000 0.197 (≈) 0.000

F9 0.000 0.000 0.000 (≈) 0.000 0.000 (≈) 0.000 0.000 (≈) 0.000 0.000 (≈) 0.000 0.000 (≈) 0.000 0.000 (≈) 0.000

F10 1.000 1.000 1.000 (≈) 1.000 1.000 (≈) 1.000 1.000 (≈) 1.000 0.917 (+) 0.000 0.750 (+) 0.000 1.000 (≈) 1.000

F11 1.000 1.000 1.000 (≈) 1.000 1.000 (≈) 1.000 1.000 (≈) 1.000 0.750 (+) 0.000 1.000 (≈) 1.000 1.000 (≈) 1.000

F12 0.750 0.078 0.750 (≈) 0.000 0.875 (-) 0.125 0.625 (+) 0.000 0.667 (+) 0.000 0.750 (≈) 0.000 0.750 (≈) 0.000

F13 1.000 0.000 0.833 (+) 0.000 0.833 (+) 0.000 0.833 (+) 0.000 0.667 (+) 0.000 0.667 (+) 0.000 0.667 (+) 0.000

F14 0.667 0.000 0.667 (≈) 0.000 0.667 (≈) 0.000 0.667 (≈) 0.000 0.500(+) 0.000 0.667 (≈) 0.000 0.667 (≈) 0.000

F15 0.500 0.000 0.500 (≈) 0.000 0.500 (≈) 0.000 0.375 (+) 0.000 0.667 (-) 0.000 0.500 (≈) 0.000 0.375 (+) 0.000

F16 0.667 0.000 0.667 (≈) 0.000 0.667 (≈) 0.000 0.667 (≈) 0.000 0.250 (+) 0.000 0.500 (+) 0.000 0.500 (+) 0.000

F17 0.125 0.000 0.125 (≈) 0.000 0.125 (≈) 0.000 0.250 (-) 0.000 0.000 (+) 0.000 0.125 (≈) 0.000 0.250 (-) 0.000

F18 0.000 0.000 0.000 (≈) 0.000 0.167 (-) 0.000 0.000 (≈) 0.000 0.000 (≈) 0.000 0.167 (-) 0.000 0.167 (-) 0.000

F19 0.000 0.000 0.000 (≈) 0.000 0.000 (≈) 0.000 0.000 (≈) 0.000 0.000 (≈) 0.000 0.000 (≈) 0.000 0.000 (≈) 0.000

F20 0.000 0.000 0.000 (≈) 0.000 0.000 (≈) 0.000 0.000 (≈) 0.000 0.000 (≈) 0.000 0.000 (≈) 0.000 0.000 (≈) 0.000

Significantly better(+) 3 3 5 9 5 4

Significantly worse (-) 0 2 1 1 1 3

Similar (≈) 17 15 14 10 14 13
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a certain algebra, all the particles gathered on their nearest peaks. Due to the

aggregation effect of the algorithm, there were some particles on the mountain

that did not distribute the particles, which led to the algorithm falling into

local optimum. In order to solve this problem, when the program runs to a cer-

tain algebra, we use the DE strategy to update the particles with a low function445

value in the whole population. This way the population can explore as many ar-

eas as possible. The data in Table 3 demonstrate the impact of the DE strategy.

D.Parameter analysis

1)The effect of the number of neighbors on the results: Parameter L in450

Algorithm 2 is important because it indicates the number of neighbors per

particle. Generally speaking, it is important to understand the influence of

control parameters on the performance of a novel evolutionary algorithm. Here,

we investigate how L affects the effectiveness of the CNMM algorithm.

In Table 8, the data in the shaded part show the best data in the CNMM455

algorithm results when the L parameters are different. The symbols ”+”, ”-

”and ”≈” indicate the CNMM algorithm(L = 3) performed significantly better

(+), significantly worse (-) or similarly (≈). The last line shows the number

of best results among the 20 test functions. We can clearly see that as the

value of the L parameter continues to increase, the effect of the CNMM is also460

constantly changing. But it is not difficult to see that when parameter L is

3, the CNMM algorithm had the best results. This is because for multimodal

problems, the algorithm should be able to find more global optimal solutions.

When the number of neighbors per particle is small, the particle-guided range

with excellent fitness is smaller, so different particles are better able to find465

different global optimal solutions.

Because L represents the number of neighbors in the small group formed by

each particle, when L is greater than 10, the number of people in each small

group reaches a certain scale. Once an excellent particle appears, the rest of the

other particles containing this particle will move to the position of this excellent470

particle. In this way, the influence of a single excellent particle is so large that
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the whole population can not find all the global optimal solutions. From the

experimental results, when L is greater than 10, the effect of CNMM algorithm

is very bad, so only when L is less than 10 is it listed in the figure.

475

2)Analysis of mutation frequency

In Algorithm 4, parameter K controls the frequency of population updates.

The value of K ranges from 0 to 1. During the whole process of particle swarm

evolution, the larger the K, the fewer the number of particle group updates,

and the smaller the K, the more the particle group is updated. The way to480

update the population is to use the modified DE strategy for particles that are

not in the S set. The purpose of updating the population is to jump out of the

local optimum and find more global optimal solutions. If the frequency of the

entire population update is too high, it is difficult to ensure that the particles

are close to the highest peak. In order to balance the diversity and convergence485

of the whole population, the selection of K value must be reasonable. In the

CNMM algorithm, the K value of 0.2 can obtain the best results. The K value

is an empirical value.

3)CNMM algorithm in test function F10490

Fig.7 shows the details of the operation of the CNMM algorithm on F10.

In Fig.7.A, the initial population is randomly generated in the decision space.

We can find the random distribution of particles in the decision space. After

15 generations, as shown in Fig.7.B, the particles begin to clump, and the par-

ticles move toward the relatively close and excellent particle direction. After495

30 generations, as shown in Fig.7.C, the particles have basically moved to their

nearest peaks. After 45 generations, as shown in Fig.7.D, the particles almost all

clustered on different peaks. After about 100 generations, as shown in Fig.7.H,

we can see that almost all the particles overlap at the highest point of their

respective peaks. From the continuous progression, we can easily see that the500

CNMM algorithm has high accuracy.
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Figure 7: CNMM algorithm in the F10 test function running process

5. Conclusion

This paper has developed a particle swarm optimizer using the close neigh-

bor mobility strategy for solving MMOPs, which can achieve a better balance505

between exploration and exploitation. Three novel techniques have been devel-

oped to improve the performance of the algorithm: 1)elite selection mechanism;

2)close neighbor mobility strategy; and 3)modified DE strategy.

The elite selection strategy ensures that the population does not degenerate

and leads the surrounding particles to search. Furthermore, the particles of each510

special small group of the neighboring mobility strategy rush to the highest peak,

and quickly reach the top of the mountain, effectively ensuring the accuracy

of the algorithm. Finally, the modified DE strategy constantly explores new

locations in space and tries to explore more peaks to ensure the distribution of

the population.515

Based on these three novel techniques, CNMM can achieve a promising per-

formance when dealing with MMOPs, regardless of the accuracy level. The

results also show the efficifency and feasibility of the CNMM for quickly locat-

ing more accurate global optima.

The future work includes five aspects.520
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• 1) In the elite selection strategy of the CNMM algorithm, we introduced

two parameters e and r, whose purpose is to find out all the particles which

are closest to the highest peak and have good distribution in the current

population. In this paper, e and r adopt fixed values. The future work

is to adaptively adapt the parameters according to the actual situation of525

evolution.

• 2) In the DE strategy, in order to make the combination of DE strategy

and the other two strategies achieve better results, the CNMM algorithm

makes a small modification of the DE strategy. However, this modification

did not achieve surprising results, so we can consider designing a more530

powerful search engine based on DE in the future.

• 3) In close neighbor mobility strategy, we can design some more interest-

ing methods to measure the position relationship between particles.

• 4) We are considering the application of CNMM to a few real-world

MMOPs, such as electromagnetic optimization, game optimization, pro-535

duction scheduling, and resource allocation.

• 5) Because the CNMM algorithm has very high accuracy, we can com-

bine CNMM with other algorithms, and maybe get better comprehensive

performance.
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