14,068 research outputs found

    Discrete Algorithms for Analysis of Genotype Data

    Get PDF
    Accessibility of high-throughput genotyping technology makes possible genome-wide association studies for common complex diseases. When dealing with common diseases, it is necessary to search and analyze multiple independent causes resulted from interactions of multiple genes scattered over the entire genome. The optimization formulations for searching disease-associated risk/resistant factors and predicting disease susceptibility for given case-control study have been introduced. Several discrete methods for disease association search exploiting greedy strategy and topological properties of case-control studies have been developed. New disease susceptibility prediction methods based on the developed search methods have been validated on datasets from case-control studies for several common diseases. Our experiments compare favorably the proposed algorithms with the existing association search and susceptibility prediction methods

    A review of evidence on non-invasive prenatal diagnosis (NIPD) : tests for fetal RHD genotype

    Get PDF
    This report concentrates on three main areas. First and foremost, we set the background context for RhD NIPD in prenatal care. While the methodology chapter describes how the literature review was carried out and how additional information was collected, the second chapter provides an overview of the key issues associated with pregnancy of RhD negative women. We present background information based on publications from 1997 to 2006 which describe the genetic condition and its prevalence (RhD negativity) in populations, as well as the frequency of cases of sensitisation and HDN (haemolytic disease of the newborn). We also discuss current service provision for RhD negative women in a number of European countries and look at how the NIPD test might be set within current service contexts

    A General Framework for Formal Tests of Interaction after Exhaustive Search Methods with Applications to MDR and MDR-PDT

    Get PDF
    The initial presentation of multifactor dimensionality reduction (MDR) featured cross-validation to mitigate over-fitting, computationally efficient searches of the epistatic model space, and variable construction with constructive induction to alleviate the curse of dimensionality. However, the method was unable to differentiate association signals arising from true interactions from those due to independent main effects at individual loci. This issue leads to problems in inference and interpretability for the results from MDR and the family-based compliment the MDR-pedigree disequilibrium test (PDT). A suggestion from previous work was to fit regression models post hoc to specifically evaluate the null hypothesis of no interaction for MDR or MDR-PDT models. We demonstrate with simulation that fitting a regression model on the same data as that analyzed by MDR or MDR-PDT is not a valid test of interaction. This is likely to be true for any other procedure that searches for models, and then performs an uncorrected test for interaction. We also show with simulation that when strong main effects are present and the null hypothesis of no interaction is true, that MDR and MDR-PDT reject at far greater than the nominal rate. We also provide a valid regression-based permutation test procedure that specifically tests the null hypothesis of no interaction, and does not reject the null when only main effects are present. The regression-based permutation test implemented here conducts a valid test of interaction after a search for multilocus models, and can be applied to any method that conducts a search to find a multilocus model representing an interaction

    MB-MDR: Model-Based Multifactor Dimensionality Reduction for detecting interactions in high-dimensional genomic data

    Get PDF
    L’anàlisi de l’efecte dels gens i els factors ambientals en el desenvolupament de malalties complexes és un gran repte estadístic i computacional. Entre les diverses metodologies de mineria de dades que s’han proposat per a l’anàlisi d’interaccions una de les més populars és el mètode Multifactor Dimensionality Reduction, MDR, (Ritchie i al. 2001). L’estratègia d’aquest mètode és reduir la dimensió multifactorial a u mitjançant l’agrupació dels diferents genotips en dos grups de risc: alt i baix. Tot i la seva utilitat demostrada, el mètode MDR té alguns inconvenients entre els quals l’agrupació excessiva de genotips pot fer que algunes interaccions importants no siguin detectades i que no permet ajustar per efectes principals ni per variables confusores. En aquest article il•lustrem les limitacions de l’estratègia MDR i d’altres aproximacions no paramètriques i demostrem la conveniència d’utilitzar metodologies parametriques per analitzar interaccions en estudis cas-control on es requereix l’ajust per variables confusores i per efectes principals. Proposem una nova metodologia, una versió paramètrica del mètode MDR, que anomenem Model-Based Multifactor Dimensionality Reduction (MB-MDR). La metodologia proposada té com a objectiu la identificació de genotips específics que estiguin associats a la malaltia i permet ajustar per efectes marginals i variables confusores. La nova metodologia s’il•lustra amb dades de l’Estudi Espanyol de Cancer de Bufeta

    Searching Genome-wide Disease Association Through SNP Data

    Get PDF
    Taking the advantage of the high-throughput Single Nucleotide Polymorphism (SNP) genotyping technology, Genome-Wide Association Studies (GWASs) are regarded holding promise for unravelling complex relationships between genotype and phenotype. GWASs aim to identify genetic variants associated with disease by assaying and analyzing hundreds of thousands of SNPs. Traditional single-locus-based and two-locus-based methods have been standardized and led to many interesting findings. Recently, a substantial number of GWASs indicate that, for most disorders, joint genetic effects (epistatic interaction) across the whole genome are broadly existing in complex traits. At present, identifying high-order epistatic interactions from GWASs is computationally and methodologically challenging. My dissertation research focuses on the problem of searching genome-wide association with considering three frequently encountered scenarios, i.e. one case one control, multi-cases multi-controls, and Linkage Disequilibrium (LD) block structure. For the first scenario, we present a simple and fast method, named DCHE, using dynamic clustering. Also, we design two methods, a Bayesian inference based method and a heuristic method, to detect genome-wide multi-locus epistatic interactions on multiple diseases. For the last scenario, we propose a block-based Bayesian approach to model the LD and conditional disease association simultaneously. Experimental results on both synthetic and real GWAS datasets show that the proposed methods improve the detection accuracy of disease-specific associations and lessen the computational cost compared with current popular methods

    Metaheuristic design of feedforward neural networks: a review of two decades of research

    Get PDF
    Over the past two decades, the feedforward neural network (FNN) optimization has been a key interest among the researchers and practitioners of multiple disciplines. The FNN optimization is often viewed from the various perspectives: the optimization of weights, network architecture, activation nodes, learning parameters, learning environment, etc. Researchers adopted such different viewpoints mainly to improve the FNN's generalization ability. The gradient-descent algorithm such as backpropagation has been widely applied to optimize the FNNs. Its success is evident from the FNN's application to numerous real-world problems. However, due to the limitations of the gradient-based optimization methods, the metaheuristic algorithms including the evolutionary algorithms, swarm intelligence, etc., are still being widely explored by the researchers aiming to obtain generalized FNN for a given problem. This article attempts to summarize a broad spectrum of FNN optimization methodologies including conventional and metaheuristic approaches. This article also tries to connect various research directions emerged out of the FNN optimization practices, such as evolving neural network (NN), cooperative coevolution NN, complex-valued NN, deep learning, extreme learning machine, quantum NN, etc. Additionally, it provides interesting research challenges for future research to cope-up with the present information processing era
    • …
    corecore