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DISCRETE ALGORITHMS FOR ANALYSIS OF GENOTYPE DATA 

by 

DUMITRU BRINZA 

Under the Direction of Alexander Zelikovsky 

ABSTRACT 

Accessibility of high-throughput genotyping technology makes possible genome-

wide association studies for common complex diseases. When dealing with common 

diseases, it is necessary to search and analyze multiple independent causes resulted 

from interactions of multiple genes scattered over the entire genome. The optimization 

formulations for searching disease-associated risk/resistant factors and predicting 

disease susceptibility for given case-control study have been introduced. Several 

discrete methods for disease association search exploiting greedy strategy and 

topological properties of case-control studies have been developed. New disease 

susceptibility prediction methods based on the developed search methods have been 

validated on datasets from case-control studies for several common diseases. Our 

experiments compare favorably the proposed algorithms with the existing association 

search and susceptibility prediction methods.  
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CHAPTER 1  

 
INTRODUCTION  

 

Recent improvement in accessibility of high-throughput DNA sequencing brought  

a great deal of attention to disease association and susceptibility studies.  Successful genome-

wide searches for disease-associated gene variations have been recently reported [140, 144].  

However, complex diseases can be caused by combinations of several unlinked gene 

variations.  This work addresses computational challenges of genotype data analysis studies 

including haplotype inference, informative SNPs se-lection, searching for diseases associated 

SNPs, and predicting of genotype susceptibility.  

Disease association studies analyze genetic variation across cases (diseased individuals) and 

controls (healthy individuals). The difference between individual DNA sequences occurs at 

single-base sites, in which more than one allele is observed across population. Such variations 

are called single nucleotide polymorphisms (SNPs). The number of simultaneously typed SNPs 

for association and linkage studies is reaching 106 for SNP Mapping Arrays [131]. High density 

maps of SNPs as well as massive DNA data with large number of individuals and number of 

SNPs become publicly available [156].  

Diploid organisms, like human, have two near-identical copies of each chromosome. Most 

genotyping techniques (e.g., SNP Mapping Arrays [131]) do not provide separate SNP sequences 

(haplotypes) for each of the two chromosomes. Instead, they provide SNP sequences 

(genotypes) representing mixtures of two haplotypes -- each site is defined by an unordered 

pair of allele readings, one from each haplotype -- while haplotypes are computationally 

 inferred from genotypes [101]. 



 2

 

Given the likely complexity of trait determination, it is widely assumed that the genetic 

basis (if any) of important traits (e.g., diseases) can be best understood by assessing the 

association between the occurrence of particular haplotypes and particular traits.  Hence, one 

of the challenges addressed in this work is computational inferring of the haplotypes 

(Phasing).  

 

1.1 Haplotype Inference  

The input to the phasing problem consists of n genotype vectors each with m  

coordinates corresponding to SNPs.  The phasing problem asks for explaining each  

genotype with two haplotypes corresponding to chromosomes. In general as well as in  

common biological setting, there is exponential number of possible haplotype pairs for  

the same input genotype. Indeed, an individual genotype with k heterozygous sites  

can have 2k-1 haplotype pairs that can resolve this genotype.  Without additional  

biological insight, one cannot deduce which of the exponential number of solutions is  

the most biologically meaningful and, therefore, would serve as a good guess for the  

real underlying haplotypes.  

Several methods have been explored and some are intensively used for this task [6, 7, 12, 

14, 20, 18, 19].  None of these methods are presently fully satisfactory, although many 

give impressively accurate results.  

Although the main concern of phasing algorithms is the accuracy of the inferred haplotypes, 

the emerging volume of collected genotype data brought more attention to the running time of 

such methods. Indeed, the leading phasing software tool PHASE [95] is getting hard time in 

competing with generally less accurate but much faster tools such as HAPLOTYPER [41] 

and GERBIL [87].  
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In this work, we first explore phasing of genotypes with two SNPs which have 

ambiguity when the both sites are heterozygous. Then there are two possible phasings (so called 

cis- and trans-) and we assume that the true phasing tends to choose the most frequent pair 

of haplotypes observed in the population sample.  Complete haplotypes for a given 

genotype can be inferred based on the maximum spanning tree of a complete graph with 

vertices corresponding to heterozygous sites and edge weights given by inferred 2-SNP 

frequencies.  On datasets across 23 chromosomal regions from HapMap [86], proposed 

(2SNP) method is several orders of magnitude faster than GERBIL and PHASE while 

matching them in quality measured by the number of correctly phased genotypes, single-site 

and switching errors.  

Frequently, genotype data represent family trios consisting of the two parents and their 

child since that allows to recover haplotypes with higher confidence. A simple logical 

analysis allows to substantially decrease uncertainty of phasing. For example, for two SNPs 

in a trio with parent genotypes f  = 22 and m = 02, and the child genotype k = 01, there 

is a unique feasible phasing of the parents: f1 = 10, f2 = 01, m1 = 01, m2 = 00 such that the 

haplotypes f2 and m1 are inherited by the child. In fact, it is not difficult to check that 

logical ambiguity exists only if all three genotypes have 2's in the same SNP site.  

Although, there exist many phasing methods for unrelated adults or pedigrees, phasing 

and missing data recovery for trios is lagging behind. We have tried several well-known 

computational methods for phasing Daly et al. [138] family trio data, but, surprisingly, all 

of them give infeasible solutions with high inconsistency rate.  

In this work we propose an integer linear programming and greedy methods for solving 

phasing problem for family trios by finding most Parsimonious solution. We have also 

enhanced our 2SNP algorithm to phase family trio data. 2SNP trio phasing have been 

compared with four other well-known phasing methods on simulated data from [90]. 2SNP is 



 4

much faster than all of them while loosing in quality only to PHASE. 

 

 

1.2 Disease Association Search 

Several challenges in genome-wide association studies of complex diseases have  

not yet been adequately addressed [137]: interaction between non-linked genes, multiple 

independent causes, multiple testing adjustment, etc.  Since complex common  

diseases can be caused by multi-loci interactions two-locus analysis can be more powerful than 

traditional one-by-one SNP association analysis [143]. Multi-loci analysis is  

expected to find even deeper disease-associated interactions. The computational challenge (as 

pointed in [137]) is caused by the dimension catastrophe. Indeed, two-SNP  

interaction analysis (which can be more powerful than traditional one-by-one SNP  

association analysis [143]) for a genome-wide scan with 1 million SNPs (3 kb cover- 

age) will afford 1012 possible pair wise tests.  Multi-SNP interaction analysis reveals  

even deeper disease-associated interactions but is usually computationally infeasible  

and its statistical significance drastically decreases after multiple testing adjustment  

[121, 125].  

Disease association analysis searches for Risk Factors (RF) modeled as multi-SNP 

combinations (MSC) (,i.e., subsets of SNP's with specified alleles) with frequency among 

diseased individuals (cases) considerably higher than among non-diseased individuals 

(controls). Only statistically significant MSCs (whose frequency distribution has p-value less 

than 0.05) are reported. Successful as well as unsuccessful searches for SNPs with statistically 

significant association have been recently reported for different diseases and different 

suspected human genome regions (see e.g. [151]). Unfortunately, reported findings are 

frequently not reproducible on different populations. It is believed that this happens because 
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the p-values are unadjusted to multiple testing -- indeed, if the reported SNP is found among 

100 SNPs then the probability that the SNP is associated with a disease by mere chance 

becomes roughly 100 times  larger. This work focuses on optimization approach to resolve 

these issues instead of traditionally used statistical and computational intelligence methods.  

In order to handle data with huge number of SNPs, one can extract informative 

(indexing) SNPs that can be used for (almost) lossless reconstructing of all other 

SNPs[130]. To avoid information loss, index SNPs are chosen based on how well the other 

non-index SNPs can be reconstructed. The corresponding informative SNP selection 

problem (ISSP) can be formulated as follows.  

Given a sample S of a population P of individuals (either haplotypes or genotypes) on m 

SNPs, select positions of k (k < m) SNPs such that for any individual, one can predict 

non-selected SNPs from these k selected SNPs.  The Multiple Linear Regression based 

MLR-tagging algorithm [112] solves the optimization version of ISSP which asks for k 

informative SNPs minimizing the prediction error measured by the number of incorrectly 

predicted SNPs.  The number of tags (informative SNPs) k depends on the desirable data 

size. More tags will keep more genotype information while less tags allows deeper analysis 

and search. In the reduced set of SNPs one can search for deeper disease association.  

We next discuss the optimization problem of finding the most disease- 

associated risk factor (RF) for given case-control data. Since it is plausible that common 

diseases can have also genetic resistance factors, one can also search for the most disease-

resistant risk factor.  Association of risk or resistance factors with the disease can be 

measured in terms of p-value of the skew in case and control frequencies, risk rates or odds 

rates. Here we concentrate on three association measurements: p-value of the skew in case 

and control frequencies, odds ratio (OR) of corresponding risk factor, and positive predictive 

value (PPV) which is the frequency of case individuals among all individuals with a given 
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multi-SNP combination.  

 

This optimization problem is NP-hard and can be viewed as a generalization  

of the maximum independent set problem. Therefore, we have applied our exhaustive, 

combinatorial and complimentary greedy search heuristics [132, 133], alternating  

combinatorial, and randomized complimentary greedy searches to solve this problem. 

Although complimentary greedy search and randomized complimentary greedy search cannot 

guarantee finding of close to optimum RFs, in the experiments with real data, they find RFs 

with non-trivially high OR and PPV. For example, for Crohn's disease data [138], 

complimentary greedy search finds in less than second a case-free (disease-resistant) RF 

containing 24 controls, while exhaustive and combinatorial searches need more than 1 day to 

find case-free RFs with at most 17 controls.  

We next model atomic risk factors (ARF's) (i.e., SNP risk factors that cannot be split into 

simpler factors) for common diseases as a multi-SNP combination (MSC), i.e., subsets of SNP's 

with specified alleles.  Our first optimization formulations ask for a MSC the most tightly 

associated with the disease (i.e., minimizing p-value) [132] and having the highest positive 

predictive value which is the case frequency among exposed to ARF individuals [133].  In 

contrast, epidemiologists measure the quality of risk factors in case-control studies by odds 

ratio defined as the ratio of the odds of disease occurring in the exposed (to the risk factor) 

group to the odds of it occurring in unexposed group. Thus, we ask for an ARF with the 

maximum odds ratio. We show connection of this problem with the known Red-Blue Set 

Cover problem [166] and apply the complementary greedy search (CGS) algorithm [133].  

We next propose to consider more complex but also more relevant SNP risk factors, so called k-

relaxed atomic risk factors, for which exposed individuals can deviate in at most k sites from 

a given MSC.  We generalize the complimentary greedy algorithm (k-CGS) to find k-relaxed 
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atomic risk factors with fixed k. Our experiments show advantage of the new method over 

CGS in finding risk factors with significantly higher odds ratio and association with the disease.  

We then introduce even more general risk factors, so called weighted relaxed atomic 

risk factors. The individuals exposed to such factors should be within weighted Hamming 

distance k from a given MSC. We also proposed a novel heuristic (WCGS) for finding 

weighted relaxed ARF with odds ratio.  

We have applied and cross-validated CGS [133], k-CGS, and WCGS methods for finding 

atomic risk factors (ARF), k-relaxed ARF's and weighted relaxed ARF's, respectively, 

with large odds ratios on real case-control studies for several diseases (Crohn's disease [138], 

autoimmune disorder [163], tick-born encephalitis [134], lung cancer [144], and rheumatoid 

arthritis [135]). New proposed methods found SNP risk factors that are statistically significant 

even after multiple-testing adjustment on all data while CGS could not find significant 

ARF on two of these data.  The found relaxed atomic risk factors explain much higher 

number of cases, 1.5-4 times larger than atomic ARFs found by CGS.  

The next challenge commonly facing disease-association studies [136] is finding 

reproducible associations. This challenge have been traditionally addressed in statistics  [143] 

while here we apply computational approaches -- permutation tests and cross-validation.  

To measure and compare the significance of found risk factors we use traditional permutation 

tests. To measure and compare ability of search methods to find reproducible risk factors, we 

propose to apply cross-validation scheme usually used for prediction validation.  

We have applied our search methods to real case-control studies for several diseases (Crohn's 

disease [138], autoimmune disorder [163], tick-born encephalitis [134], lung cancer [144], and 

rheumatoid arthritis [135]). Proposed methods are compared favorably to the exhaustive 

search -- they are faster, find more frequently statistically significant risk factors and have 

significantly higher leave-half-out cross-validation rate.  
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1.3 Disease Susceptibility Prediction  

Some complex diseases, such as psychiatric disorders, are characterized by a non  

mendelian, multifactorial genetic contribution with a number of susceptible genes interacting 

with each other [161, 147]. In general, a single SNP or gene may be impossible to associate 

because a disease may be caused by completely different modifications of alternative pathways. 

Furthermore, there are no reliable tools applicable to large genome ranges that could rule out or 

confirm association with a disease. It is even difficult to decide if a particular disease is genetic, 

e.g., the nature of Crohn's disease has been disputed [146].  Although answers to above 

questions may not explicitly help to find specific disease-associated SNPs, they may be critical 

for disease prevention.  Indeed, knowing that an individual is (or is not) susceptible to (or belong 

to a risk group for) a certain disease will allow greatly reduce the cost of screening and 

preventive measures or even help to completely avoid disease development, e.g., by changing a 

diet.  

This study is devoted to the problem of assessing accumulated information targeting to 

predict genotype susceptibility to complex diseases with significantly high accuracy and 

statistical power. We first formulate disease susceptibility prediction problem (see 

[142, 158, 159, 162, 164]) and describe several universal classifiers and discrete optimization 

based algorithms for prediction disease susceptibility. We then compare leave-one- and leave-

many-out tests demonstrating that prediction accuracy of suggested methods is sufficiently 

resilient to discarding case-control data implying that leave-one-out test is a trustworthy 

accuracy measure.  The permutation tests have been used for computing the statistical 

significance level of proposed methods and resulted prediction weights.  

The proposed methods have been favorably compared with well known universal 
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classifiers ,e.g.,  SVM, Random Forest, etc., on two publicly available datasets of: Crohn's 

disease [153] and autoimmune disorder [163]. In the leave-one-out cross-validation tests the 

proposed linear programming (LP) based method achieves prediction rate of 69.5%(p-value 

below 2%) and 61.3%(p-value below 62%) and the risk rates of 2.23 and 0.98, respectively.  

The last problem addressed in this work is the disease susceptibility prediction  

problem exploiting the developed methods for searching associated risk and  

resistance factors. A novel optimum clustering problem formulation has been pro- 

posed [133].  Also a model-fitting method has been suggested which transforms a  

clustering algorithm into the corresponding model-fitting susceptibility prediction algorithm.  

Since common diseases can be caused by multiple independent and coexisting factors, an 

association-based clustering of case/control population has been proposed [133].  The resulted 

association-based combinatorial prediction algorithm significantly outperforms existing 

prediction methods.  For all three real data sets that were available to us (Crohn's disease 

[138], autoimmune disorder [163], and tick-borne encephalitis [100]) the accuracy of the 

prediction based on combinatorial search is respectively, 76%, 74%, and 80%, which is higher 

by 7% compared to the accuracy of all previously proposed methods implemented in [142, 

118]. The accuracy of the prediction based on complimentary greedy search almost matches 

the best accuracy but is much more scalable.  

 

1.4 Overview 

Chapter 2 introduces SNPs, haplotypes, genotypes, and formally describes the phasing 

of complete unrelated genotypes and family trios.  Several previously know methods are 

presented and motivation for designing new more accurate and faster methods is given. Here 

we introduce optimization formulation for family trios phasing problem and propose integer 

linear programming and greedy methods for solving it. We also describe our accurate and 
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scalable combinatorial method for genotype phasing (2SNP). Each of the proposed methods is 

favorably compared with existing methods.  

Chapter 3 introduces case-control study and gives motivation behind disease- 

association search (DAS). The DAS problem is formally defined and several previously  

known approaches are presented. The motivation for designing new robust methods  

for DAS which can be applied to diseases caused by multiple genes is given.  The  

DAS problem is formulated as an optimization problem for finding the maximum  

control-free cluster corresponded or maximum odds ratio atomic risk factor and the  

fast greedy heuristic to solve this problem is proposed. A complex risk factor (RF) is  

proposed to model as close (non-weighted or weighted) match to a MSC (e.g.,  

no more than k mismatches) k-relaxed atomic risk factor or weighted relaxed atomic  

risk factor and the optimization formulation asks for RF with the maximum odds  

ratio. For measuring and comparing the significance of found risk factors we describe  

traditional permutation tests.  Then we describe proposed cross-validation scheme  

for measuring and comparing ability of search methods to find reproducible risk factors. Next 

we present our extensive experimental studies which consist of searching for  

disease-associated risk factor in several real case-control study data. We also present  

comparison of searching methods by ability to find disease-associated risk factors and  

reproducibility of these factors.  

Chapter 4 introduces the problem of disease-susceptibility prediction (DSP) and motivation 

behind it.  Then two general approaches for DSP are described -- universal classifier 

approaches and disease association-based combinatorial approaches. Next we present several 

universal classifier methods and our new LP-based prediction method for DSP. Also in this 

chapter we formulate optimum disease clustering problem and describe our disease-

association based model-fitting prediction method for DSP. We finalize this chapter with 
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experimental study of existing and proposed methods on several real case-control study 

datasets.  

Chapter 5 describes our software packages:  TrioPhasing -- the code which implements 

the integer linear programming method for trio phasing; 2SNP -- the code which implements 

our fast, scalable and accurate 2SNP phasing algorithm; DACS -- software which 

implements several algorithms for solving DAS and DSP problems; GeneSuscept -- software 

which implements the LP-based algorithm for DSP problem.  

Chapter 6 describes our future work followed by related publications and bibliography.  
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CHAPTER 2  

 
POPULATION-BASED PHASING AND MISSING DATA  RECOVERY  

 

A "haplotype" is a DNA sequence that has been inherited from one parent. Each person 

possesses two haplotypes for most regions of the genome.  The most common type of 

variation among haplotypes possessed by individuals in a population is the single nucleotide 

polymorphism (SNP), in which different nucleotides (alleles) are present at a given site (locus). 

Almost always, there are only two alleles at a SNP site among the individuals in a population. 

Given the likely complexity of trait determination, it is widely assumed that the genetic 

basis (if any) of important traits (e.g., diseases) can be best understood by assessing the 

association between the occurrence of particular haplotypes and particular traits. Hence, one 

of the current priorities in human genomics is the development of a full Haplotype Map of the 

human genome [1, 46, 47, 17], to be used in large-scale screens of populations [16, 53]. In this 

endeavor, a key problem is to infer haplotype pairs and/or haplotype frequencies from 

genotype data, since collecting haplotype data is generally more difficult than collecting 

genotype data. Here, we review the haplotype inference problem (inferring pairs and inferring 

frequencies), the major combinatorial and statistical methods proposed to solve these two 

problems, and the genetic models that underlie these methods.  
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2.1 Introduction to Variation, SNPs, Genotypes, and Haplotypes  

Now that high-throughput genomic technologies are available, the dream of assessing 

DNA sequence variation at the population level is becoming a reality.  The processes of 

natural selection, mutation, recombination, gene-conversion, genome rearrangements, lateral 

gene transfer, admixture of populations, and random drift have mixed and remixed alleles at 

many loci so as to create the large variety of genotypes found in many populations. The 

challenge is to find those genotypes that have significant and biologically meaningful 

associations with important traits of interest. A key technological and computational part of 

this challenge is to infer "haplotype information" from "genotype information".  In this 

section, we explain the basic biological and computational background for this "genotype to 

haplotype" problem.  

In many diploid organisms (such as humans) there are two (not completely identical) "copies" 

of almost all chromosomes. Sequence data from a single copy is called a haplotype, while a 

description of the conflated (mixed) data on the two copies is called a genotype.  When 

assessing the genetic contribution to a trait, it may often be much more informative to 

have haplotype data than to have only genotype data. The underlying data that form a 

haplotype are either the full DNA sequence in the region, the number of repeats at 

microsatellite markers, or more commonly the single nucleotide polymorphisms (SNPs) in 

that region.  A SNP is a single nucleotide site where more than one (usually two) nucleotides 

occur with a population frequency above some threshold (often around 5-10%).  The SNP-

based approach is the dominant one, and high-density SNP maps have been constructed 

across the human genome with a density of about one SNP per thousand nucleotides [47, 17].  

 

2.1.1 The Biological Problem 

In general, it is not easy to examine the two copies of a chromosome separately, and 
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genotype data rather than haplotype data are obtained, although it is the haplotype data that may 

be of greater use. The data set typically consists of n genotype vectors, each of length m, where 

each value in the vector is either 0, 1, or 2.  The variable n denotes the number of individuals in 

the sample, and m denotes the number of SNP sites for which one has data. Each site in the 

genotype vector has a value of 0 (respectively 1) if the associated site on the chromosome has 

state 0 (respectively 1) on both copies (it is a homozygous site); it has a value of 2 otherwise (the 

chromosome site is heterozygous).  The goal is to extract haplotype information from the 

given genotype information.  

A variety of methods have been developed and used to do this (e.g., [14, 15, 28, 36, 42, 

58, 61, 63, 66, 69]).  Some of these methods give very accurate results in some 

circumstances, particularly when identifying common haplotypes in a population. However, 

research on haplotype inference continues because no single method is considered fully 

adequate in all applications, the task of identifying rare haplotypes remains difficult, and the 

overall accuracy of present methods has not been resolved.  

 

2.1.2  The Computational Problems  

The haplotype inference (HI) problem can be abstractly posed as follows. Given a set of n 

genotype vectors, a solution to the HI problem is a set of n pairs of binary vectors, one pair for 

each genotype vector. For any genotype vector g, the associated binary vectors v1; v2 must both 

have value 0 (or 1) at any position where g has value 0 (or 1); but for any position where g 

has value 2, exactly one of v1; v2 must have value 0, while the other has value 1.  

A site in g is considered "resolved" if it contains 0 or 1, and "ambiguous" if it contains 

a 2.  If a vector g has zero ambiguous positions, it is called "resolved" or "unambiguous"; 

otherwise it is called "ambiguous".  One can also say that the conflation of v1 and v2 

produces the genotype vector g, which will be ambiguous unless v1 and v2 are identical. 
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For an individual with h heterozygous sites there are 2h-1 possible haplotype pairs that could 

underlie its genotype.  For example, if the observed genotype g is 0212, then one possible 

pair of vectors is 0110, 0011, while the other is 0111, 0010.  Of course, we want to infer the 

pair that gave rise to the genotype of each of the n individuals.  

 

A related problem is to estimate the frequency of the haplotypes in the sample. We call 

this the HF problem. It is important to note that a solution to the HI problem necessarily 

solves the HF problem, but the converse is not true.  

 

2.1.3  The Need for a Genetic Model  

Non-experimental haplotype inference (the HI and HF problems) would likely be 

inaccurate without the use of some genetic model of haplotype evolution to guide an 

algorithm in constructing a solution. The choice of the underlying genetic model can 

influence the type of algorithm used to solve the associated inference problem.  

 

2.1.4  Family Trio Phasing  

Frequently, genotype data represent family trios consisting of the two parents and their 

child since that allows to recover haplotypes with higher confidence. A simple logical 

analysis allows to substantially decrease uncertainty of phasing. For example, for two SNPs 

in a trio with parent genotypes f  = 22 and m = 02, and the child genotype k = 01, there 

is a unique feasible phasing of the parents: f1 = 10, f2 = 01, m1 = 01, m2 = 00 such that the 

haplotypes f2 and m1 are inherited by the child. In fact, it is not difficult to check that 

logical ambiguity exists only if all three genotypes have 2's in the same SNP site.  

Although there exist many phasing methods for unrelated adults or pedigrees, phasing 
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and missing data recovery for trios is lagging behind. We have tried several well known 

computational methods for phasing Daly et al. [138] family trio data, but, surprisingly, all of 

them give infeasible solutions with high inconsistency rate. 

 In this section we deal with problems of phasing and missing data recovery on family 

trios data.  Formally, given a set of genotypes partitioned into family trios, the Trio Phasing 

Problem (TPP) requires to find for each trio a quartet of parent haplotypes which agree 

with all three genotypes. Trio Missing Data Recovery Problem (TMDRP) asks for the SNP 

values missed in given genotype data.  

 

2.2 Previous Work 

There are two major approaches to solving the inference problem: combinatorial methods 

and statistical methods.  Combinatorial methods often state an explicit objective function 

that one tries to optimize in order to obtain a solution to the inference problem.  

Statistical methods are usually based on an explicit model of haplotype evolution; the 

inference problem is then cast as a maximum-likelihood or a Bayesian inference problem. In the 

section 2.2.1 we discuss combinatorial approaches, and statistical approaches are discussed in 

section 2.2.2.  

 

2.2.1 Combinatorial approaches 

2.2.1.1 Maximum Parsimony 

The earliest algorithm for haplotype reconstruction (from genotype data) was 

described by Clark [1990], based on the principle of maximum parsimony. This algorithm 

resolves the haplotypes following three steps:  

1) identifying all unambiguous haplotypes (all homozygotes and single-site 
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heterozygotes) and considering them as "resolved;"  

2) determining whether each of the resolved haplotypes could be one of the alleles in the 

remaining yet-to-be-phased genotypes;  

3) each time a new haplotype is identified as one of the resolved ones, this new 

haplotype is assumed to be known, and the remaining haplotype is added to  

the resolved haplotype set.  

The rationale for this algorithm is that homozygous haplotypes are probably common, and 

that a phase-ambiguous genotype is likely to contain known common haplotypes. Clark [1990] 

stated that when all haplotypes are resolved based on maximum parsimony, the solution is 

unique and correct, and the results of Clarks algorithm based on certain empirical data are 

shown to be reliable by comparison with haplotypes obtained by direct molecular methods 

[Clark et al., 1998; Rieder et al., 1999].  

Gusfield [2001] reformulated Clarks statement into a "maximum resolution" (MR) 

problem: given a set of vectors (some ambiguous and some resolved), what is the 

maximum number of ambiguous vectors that can be resolved by successive application of Clarks 

inference rule?  Gusfield [2001] proved that the MR problem is NP-hard and Max-SNP-

complete, which can be reduced to an integer linear programming problem. The advantages 

of Clarks algorithm are that it is a relatively straightforward procedure, and it can handle a 

large number of loci when haplotype diversity is rather limited in the population. The 

disadvantages of Clarks algorithm are that:  

1) the algorithm does not start when there are no homozygotes or single-site 

heterozygotes in the population;  

2) the algorithm does not give unique solutions, because the phasing results are  
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dependent on the order of genotypes that need to be phased (therefore, when  

there is a large number of distinct haplotypes compared to the sample size due  

to the presence of recombination hotspots, Clarks algorithm sometimes cannot  

resolve a relatively large fraction of heterozygous individuals);  

3) although Clarks algorithm does not explicitly assume Hardy-Weinberg equilibrium 

(HWE), its performance is still relatively sensitive to the extent of deviation 

from HWE [Niu et al., 2002].  

 

2.2.1.2  Perfect and Near-Perfect Phylogeny  

A phylogeny-based algorithm intends to deterministically deduce haplotype phases based on 

phylogenetic reconstruction [Gusfield, 2002]. The coalescent model of haplotype evolution 

tells us that without recombination, the evolutionary history for w distinct haplotypes can 

be displayed as a "Perfect PHylogeny" (PPH) with w leaves, and each of the SNP sites labels 

exactly one edge of the tree. Rooted in the coalescent model, there are two key assumptions of 

PPH: 1) no recombination; and 2) the infinite-sites model. Under these two assumptions, a 

PPH problem is stated as:  

PPH: Given a set S of n genotype vectors, we would like to find a PPH T (S ), and a pairing 

of the 2n leaves of T (S ) that explains S .  

A PPH problem can be reduced to a classical problem of recognizing graphic matroids 

[Tutte, 1960]. Although the general PPH problem is NP-hard [Steel, 1992] and multiple 

solutions can be possible [Gusfield, 2002], for binary phylogenies, PPH is  shown to be 

linear-time solvable [Bixby and Wagner, 1988].  A program named "Perfect Phylogeny 

Haplotyper" [Chung and Gusfield, 2003] was developed.  More recently, Halperin and 

Eskin [2004] developed an "near-perfect" phylogeny method that extends the framework of 
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PPH by allowing for both recurrent mutations and recombinations.  In their approach, the 

multiple linked SNPs are partitioned into blocks, and for each block, they predict each 

individual's haplotype. Then the block-based haplotypes are assembled together to form the 

long-range haplotype utilizing the PL idea of Niu et al. [2002].  The imperfect phylogeny 

method appears to be more robust than PPH, and allows the handling of missing data and 

resolution of a large number of SNPs.  Overall, PPH appears to be an interesting 

application of the graphical model in haplotype inference, although their accuracies remain 

to be benchmarked by using extensive simulations and real datasets.  

 

2.2.2 Statistical approaches 

2.2.2.1 Expectation-Maximization (EM) 

The expectation-maximization (EM) algorithm [Dempster et al., 1977] estimates 

population haplotype probabilities based on maximum likelihood, finding the values of the 

haplotype probabilities which optimize the probability of the observed data, based on the 

assumption of HWE. Excoffier and Slatkin [1995] were the first to discuss the use of 

the EM algorithm in this context. The likelihood function in the EM algorithm can be 

written as  

 (2.1) 

 

where G denotes the observed unphased genotype data for n individuals, gi denotes the 

observed unphased genotype data for the i-th individual, Θ denotes the overall haplotype 

frequency, θa and θb denote the respective haplotype frequencies for haplotypes a and b, 

such that a ⊗ b = gi denotes that the haplotype pair (a, b) is compatible with the i-th 

observed genotype data-gi. The EM algorithm, under the assumption of HWE, is an 
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iterative procedure: nGnE ak
k

a 2/)|()(
)1(

Θ
+ =θ , where Θ(k) is the current estimate of 

haplotype frequencies, and na is the count of haplotype a that exists in G. It can be 

important that the initial values of haplotype frequencies are reasonably close to the true 

population frequencies.  The advantages of the EM algorithm are that: 1) it is based on solid 

statistical theory; and 2) although the EM algorithm makes an explicit assumption of HWE, 

simulation studies demonstrate that its performance is not strongly affected by the 

departures from HWE, particularly when the direction of departure is towards an excess of 

homozygosity [Niu et al., 2002]. The disadvantages are that: 1) the performance is sensitive 

to the initial value of Θ; 2) if there exist local maxima, the iteration may lead to locally 

optimal maximum likelihood estimates (MLEs), which becomes most serious when there are 

many distinct haplotypes (one sensible way to employ the EM algorithm is to use a good  

initial guess on Θ [e.g., the product of the allele frequencies, as suggested by Excoffier  

and Slatkin, 1995]); and 3) the standard EM algorithm cannot handle a large number of 

loci.  Recently, a variant on the EM algorithm, the stochastic-EM algorithm,  

was applied to the problem of estimation haplotypes from unphased genotypes, by  

Tregouet et al. [2004]. This algorithm can be useful for avoiding convergence to local  

maxima.  

 

2.2.2.2  Coalescent-Based Algorithm  

Stephens et al. [2001] proposed a coalescence based Markov-chain Monte Carlo (MCMC) 

approach: a pseudo-Gibbs sampler (PGS) for reconstructing haplotypes from genotype 

data. PGS uses Gibbs sampling to obtain an approximate sample from the posterior 

distribution, P (Z|G), where Z = (z1, z2,…, zn) and G = (g1, g2,…, gn) denote the phased and 

unphased (i.e., observed) genotype data for n individuals. The major piece of this iterative 
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sampling algorithm is that at the (k + 1)-th iteration, we aim to sample )1( +k
iz  from 

),|( k
ii ZGzP − , where k

iZ −  is a set of phased genotypes for all the remaining (n - 1) 

subjects excluding the haplotype pair zi for individual i, at the k-th iteration.  Then, we 

have )|(),|( k
ii

k
ii ZzPZGZP −− ⊗=∝ βα  ),|()|( αβπαπ ii ZZ −−∝ , where α and β 

denote the two respective haplotypes that form zi :  Here, )|( iZ −απ  is essentially a prior 

for a future sampled haplotype, which is not known to the investigators a priori.  Instead of 

using the Dirichlet prior [based on the "parent-independent mutation" model in Stephens et 

al., 2001], Stephens et al. [2001] suggested using an approximate coalescent prior:  equation 

17 of Stephens and Donnelly [2000], which is a stationary Markov chain with 

transition matrix 

 

 

, where r and rα are the total number of haplotypes and the total number of type α 

haplotypes in Z, respectively, θ is the scale mutation rate, and P is the transition matrix.  

The approximate coalescent prior is based on the assumption that "the genetic sequence of 

a mutant offspring will differ only slightly from the progenitor sequence (often by a single-

base change)" [Stephens and Donnelly, 2003]. Recently, Stephens and Donnelly [2003] 

modified the implementation of the PGS algorithm by incorporating a variant of the 

partitionligation (PL) idea [Niu et al.,  2002] and by allowing for recombination and decay 

of linkage disequilibrium (LD) with distance. The key advantage of the PGS is that it 

incorporates the coalescence theory into its prior, and although the induced Markov chain 

has a stationary distribution that may depend on the order of gis, it was shown to perform 

well in simulations based on a coalescent model: a constant-size population evolving for a 

long period of time without recombination or recurrent mutations [Stephens et al., 2001; 

Stephens and Donnelly, 2003]. The disadvantages are that:  
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1. PGS is not a fully Bayesian model and it lacks a measure of the overall "good ness" 

of the constructed haplotypes;  

2. because this algorithm makes only local moves in each iteration (i.e., a "piece-by-

piece" strategy) to update a new haplotype that closely resembles an existing 

haplotype, PGS is quite slow and it takes millions of iterations for the algorithm (2 

million iterations are suggested as the default value for PHASE version 1.0 in 

Stephens and Donnelly [2003]) to start to converge to the right answer [e.g., the 

ACE data from Rieder et al., 1999];  

3. it remains unclear whether the algorithm performs favorably compared to other 

algorithms (e.g., standard EM algorithm) for admixed or rapidly expanding 

populations when the coalescent model does not hold, which is often the case for 

cosmopolitan US cohorts (e.g., a random sample from downtown Los Angeles).  

For example, although Stephens et al. [2001] demonstrated that PHASE outperformed 

EM by a significant margin under certain conditions, Zhang et al. [2001] and Xu et al. [2002] 

revealed that this was not the case: PHASE and EM-based methods exhibited similar 

performances in their simulated datasets.  

 

2.2.3  Family Trio Phasing Approaches  

In this section we overview previous research and on phasing based on statistical methods 

(Phamily and PHASE, HAPLOTYPER, HAP and greedy algorithms). The ILP based 

approaches will be discussed in the next section.  

Stephens et al. [95] introduced a Bayesian statistical method PHASE for phasing genotype 

data. It exploits ideas from population genetics and coalescent theory that make phased 

haplotypes to be expected in natural populations. It also estimates the uncertainty associated 
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with each phasing.  The software can deal with SNP in any combination, any size of 

population and missing data are allowed. The drawback of this method is that it takes long 

time for large population  

Acherman et al. [27] described the tool Phamily for phasing the trio families based on well-

known phasing tool PHASE [95]. It first uses the logical method described above to infer 

the SNPs in the parental haplotypes.  Then children genotypes are discarded while the 

parental genotypes and known haplotypes are passed to PHASE. Because the children genotypes 

are discarded, PHASE no longer can maintain parent-child trio constraints resulting in 8.02% 

error rate for phasing Daly et al [138] data.  

Niu et al [41] proposed a new Monte Carlo approach HAPLOTYPER for phasing genotype 

data. It first partition the whole haplotype into smaller segments then use the Gibbs sampler 

both to construct the partial haplotypes of each segment and to assemble all the segments 

together.  This method can accurately and rapidly infer haplotypes for a large number of 

linked SNPs. The drawback of HAPLOTYPER is that it can not handle lengthy genotype 

with large population.  It limits 100 SNPs and 500 population.  

Halperin et al.  [35] used the greedy method for phasing and missing data recovery.  For 

each trio the author introduce four partially resolved haplotypes with the  

coordinates 0, 1 and ?.  The values of 0 and 1 correspond to fully resolved SNPs  

which can be found via logical resolution from the section 2.4.1, while the ?'s corresponds 

to ambiguous and missing positions.  The greedy algorithm iteratively finds the complete 

haplotype which covers the maximum possible number of partial haplotypes, removes this set 

of resolved partial haplotypes and continues in that manner. The authors replace each 

genotype in Daly et al [138] data with a pair of logically partial resolved haplotypes 

referring to each ambiguous SNP value as a ?.  The ?'s constitute 16% of all data. Then extra 

10% of data are erased (i.e., replaced with ?'s) and the resulted 26% of ambiguous SNP values 
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are inferred by the greedy algorithm minimizing haplotype variability within blocks. When 

measured on the additionally erased 10% of data, the error rate for the greedy algorithm is 

2.8% [35] which has been independently confirmed in our computational experiments. 

Unfortunately, the error rate o for the original 16% of ?'s is at least 25% which has been 

measured by the number of inconsistently phased SNPs. This may lead to a conclusion that 

the complexity of missing genotype data is considerably higher than the complexity of the 

successfully genotyped data.  

 

2.3 2SNP: Scalable Phasing Method for Unrelated Individuals 

Emerging microarray technologies allow affordable typing of very long genome sequences. 

A key challenge in analyzing of such huge amount of data is scalable and accurate 

computational inferring of haplotypes (i.e., splitting of each genotype into a pair of 

corresponding haplotypes).  In this work, we propose a phasing method which first phase 

genotypes consisting only of two SNPs using genotypes frequencies adjusted to the random 

mating model and then extend phasing of two-SNP genotypes to phasing of complete 

genotypes using maximum spanning trees.  Runtime of the proposed 2SNP algorithm is 

O(nm(n + log m), where n and m are the numbers of genotypes and SNPs, respectively, 

and it can handle genotypes spanning entire chromosomes in a matter of hours.  

On datasets across 23 chromosomal regions from HapMap [86], 2SNP is several orders of 

magnitude faster than GERBIL(combinatorial method) and PHASE(statistical  

method) while matching them in quality measured by the number of correctly phased  

genotypes, single-site and switching errors. For example, 2SNP requires 4 s on Pentium 4 3Ghz 

processor to phase 30 genotypes with 1500 SNPs (ENm010.7p15:2 data  

from HapMap) versus GERBIL and PHASE requiring more than a week of runtime  

and admitting no less errors than 2SNP. For genotypes with more than 1500 SNPs  
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PHASE and GERBIL fall into infinite loop. However, 2SNP software phases entire  

chromosome (105 SNPs from HapMap) for 30 individuals in 2 hours with average  

switching error 7.7%.  

 

2.3.1 Introduction 

The difference between individual DNA sequences mostly occurs at single-base sites, in 

which more than one nucleic acid or gap is observed across the population. Such variations 

are called single nucleotide polymorphisms (SNPs).  The number of sufficiently frequent 

SNPs in the human population is estimated to be around 10 million [88]. For complex 

diseases caused by more than a single gene, it is important to identify a set of alleles inherited 

together. Identification of haplotypes, the sequences of alleles in contiguous SNP sites along a 

chromosomal region, is a central challenge of the International HapMap project [86]. The 

number of simultaneously typed SNPs for association and linkage studies is reaching 500,000 

for SNP Mapping Arrays from Affymetrix [131].  

Diploid organisms, like human, have two near-identical copies of each chromosome. Most 

experimental techniques for determining SNPs do not provide the haplotype information 

separately for each of the two chromosomes. Instead, they generate for each site an unordered 

pair of allele readings, one from each copy of the chromosome, which is called a genotype.  

The input to the phasing problem consists of n genotype vectors each with m 

coordinates corresponding to SNPs. The phasing problem asks for explaining each genotype 

with two haplotypes corresponding to chromosomes. In general as well as in common 

biological setting, there are 2k-1 possible haplotype pairs for the same input genotype with k 

heterozygous sites.  

Computational inferring of haplotypes from the genotypes (or phasing) has been initiated 

by Clark[79] who proposed a parsimony-based approach. It has been shown later that the 
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likelihood based expectation-maximization (EM) is more accurate [92]. Markov chain 

Bayesian haplotype reconstruction methods have been used in PHASE [95], PLEM [91], and 

HAP2 [89]. A combinatorial model based on the perfect phylogeny tree assumption was 

suggested in [82].  HAP [83] exploits perfect phylogeny model and block structure showing 

good performance on real genotypes with low error rates.  Recently, GERBIL [87] has 

combined block identification and phasing steps for reliable phasing of long genotypes.  

In this work, we first explore phasing of genotypes with two SNPs which have ambiguity 

when the both sites are heterozygous. Then there are two possible phasings (so called cis- and 

trans-) and we assume that the true phasing tends to choose the most frequent pair of 

haplotypes observed in the population sample.  Complete haplotypes for a given genotype 

can be inferred based on the maximum spanning tree of a complete graph with vertices 

corresponding to heterozygous sites and edge weights given by inferred 2-SNP frequencies.  

On datasets across 23 chromosomal regions from HapMap[86], 2SNP is several orders of 

magnitude faster than GERBIL and PHASE while matching them in quality measured by 

the number of correctly phased genotypes, single-site and switching errors.  For example the 

2SNP software phases entire chromosome (105 SNPs from HapMap) for 30 individuals in 2 

hours with average switching error 7.7%. A brief description of 2SNP software can be found 

in the application note [77].  

The rest of the section is organized as follows.  The next subsection describes phasing 

of genotypes with only two SNPs.  Subsection 2.3.3 describes the phasing of complete 

unrelated genotypes.  Subsection 2.4.6 compares the proposed phasing 2SNP algorithm with 

PHASE, GERBIL, and PLEM for unrelated individuals.  
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2.3.2  Phasing of 2-SNP genotypes  

In this section we first formally introduce the phasing problem and suggest a LD-based 

formula for the expected frequencies of cis- or trans-phasing of 2-SNP genotypes.  We 

conclude with adjusting of expected haplotype frequencies to deviation from the random 

mating model.  

 

The input to the phasing problem consists of n genotype vectors each with m  

coordinates corresponding to SNPs. SNP values belong to {0, 1, 2, ?}, where 0's and  

1's denote homozygous sites with major allele and minor allele, respectively; 2's stand  

for heterozygous sites, and ?'s denote missed SNP values. Phasing replaces each genotype vector 

by two haplotype vectors with SNP values belonging to {0, 1}. Feasible  

phasing requires each 0 (resp. 1 or 2) in a genotype to be replaced with two 0's (resp.  

two 1's or 0 and 1) in the haplotypes. A 2-SNP genotype 22 can be cis-phased, i.e.,  

represented as 00 and 11 haplotypes, or trans-phased, i.e. represented as 01 and 10  

haplotypes.  

Tendency of cis- or trans- phasing. The random mating model (i.e., assumption that any 

two haplotypes are equally likely to match in a genotype) implies that two homozygous 

SNPs i and j tend to phase cis- or trans- according to odds ratio 

                                                               (2.2) 

 

where F00, F01, F10, F11 are unknown true frequencies of haplotypes with the first and the 

second binary index denoting alleles of the i-th and j-th SNP, respectively.  In other words, 

the larger odds ratio corresponds to more frequent cis-phasing. On the other hand, we have 

noticed that the additive odds ratio  
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describes true cis- or trans- phasing more accurately than the odds ratio (2.2) on real datasets.  

It is known that many SNPs are in linkage disequilibrium (LD) and the higher LD 

corresponds to the higher tendency towards cis- or trans-phasing. We can estimate how far 

LD pushes additive odds ratio 'λ  away from )'(λE , which is expected in absence of LD,  

 

 

where × in the indices denote “do not care", e.g., F0× = F01 + F00. Thus we can measure 

the effect of LD between SNPs i and j by the ratio of the additive odds ratio 'λ  over the 

expected value of )'(λE , 

 

 

Finally, it has been observed [91, 92, 87] the higher LD between pairs of closer SNPs. 

In order to discard falsely encountered LD between non-linked SNPs which are far apart, 

we divide logarithm of LD by the square of the distance between the SNPs.  The complete 

formula for the tendency tij of cis- or trans-phasing of two homozygous SNPs i and j 

expressed in observed haplotype frequencies is as follows  

                                                                            (2.3) 
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where n is number of input genotypes, and F00, F01, F10, F11 are frequencies of haplotypes with 

the first and the second binary index denoting alleles of the i-th and j-th SNP, respectively.  

Haplotype frequencies are computed based on all genotype frequencies except 22. For 22 

genotypes, the haplotype frequencies are chosen to fit best Hardy-Weinberg equilibrium 

adjusted to observed deviation in single-site genotype distribution.  

Adjusting observed frequencies to the random mating model. The formula for 

tendency (2.3) is based on unknown true haplotype frequencies Fij's.  One can calculate 

only observed haplotype frequencies F*
ij 's  which can be extracted from all 2-SNP 

genotypes except heterozygous in the both SNPs.  

The distribution of cis- and trans-phasing of 22-genotypes (i.e., 2-SNP genotypes 

heterozygous in the both sites) can be adjusted to the random mating model as follows.  

Let C22 and P22 denote unknown numbers of trans- and cis-phasings, then C22 + P22 = G22, 

where G22 is the number of 22-genotypes. Then the adjusted odds ratio 'λ  can be expressed 

as 

 

 

where F*
ij  denote observed haplotype frequencies.  The best-fit values of C22  and P22 

should minimize the sum of differences between expected and observed genotype frequencies. It 

is easy to compute the expected genotype frequencies for the random mating model, which 

unfortunately can significantly deviate from the real mating.  

According to the random mating model, the best values of C22 and P22 minimize the sum 

of differences between expected and observed genotype frequencies. Unfortunately, the true 

mating frequently has statistically significant deviation from random mating. Based on 
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observed real data set we have found that genotypes heterozygous in one or both positions 

should be assumed to be under-represented -- empirically they are assumed 3 times less 

frequent than it follows from the random mating model.  

 

2.3.3  Phasing of Complete Genotypes  

In this section we first describe phasing of complete genotypes using tendency of cis- or 

trans- phasing of pairs of 2's followed by resolving of missing data. We then show how to 

modify 2SNP algorithm to phase family trios and conclude with analysis of the runtime.  

Genotype Graph. For each genotype g, 2SNP constructs a genotype graph, which is a 

weighted complete graph with vertices corresponding to 2's (i.e., heterozygous sites) of g.  

The edge weight represents the tendency of the corresponding 2's being cis- or trans-phased 

according to formula (2.3).  

The maximum spanning tree of the genotype graph uniquely determines the phasing of the 

corresponding genotype since it gives cis-/trans- phasing for any two 2's. Obviously, if for 

any pair of 2's we know if they are cis- or trans-phased, then the entire phasing is known. 

Note that [87] have applied the same construction for preliminary estimation of haplotype 

frequencies rather than phasing per se. Therefore, for the edge weight, they have chosen LD-

based formula over probabilities of full (i - j)-haplotypes given by maximum-likelihood 

solution. Instead, edge weights in 2SNP do not account for SNPs between i and j.  

Our computational experience with multiple data sets shows that the edges connecting a 

pair of 2's that have at least c = 20 2's between them in the genotype g never have large 

enough weight to be included in the maximum spanning tree. This may be result of fast 

decreasing of LD and tendency with the distance between 2's. Therefore, the edges between 

2's that are c 2's apart are safely disregarded while drastically improving runtime for 

computing of G.  
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Figure 2.1  2SNP Phasing Algorithm 

 

Missing data recovery. Missing data (?'s) are inferred after phasing of 2's. Each 

haplotype is partitioned into segments of length 40. For each segment h we find the closest 

(with respect to Hamming distance) segment h’ and infer ?'s in h using the corresponding 

values from h’.  

 

2.3.4 Runtime 

The runtime of Step 3 (see Figure 2.1) is O(n); therefore, the total runtime of Step 2 is 

O(cnm), since Step 3 is repeated at most cm times. The runtime of Step 8 is O(cm log m) 

since the graph G(gk) has maximum degree c. Therefore, the total runtime of Step 1 is O(cn2m 

+cnm log m). Missing data recovery (Step 10) computes all pairwise Hamming distances 
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between 2n haplotypes each with m SNPs requiring O(n2m) time. As a result, the total 

runtime of the algorithm is O(cnm(n + log m)), where n and m are the number of genotypes 

and SNPs, respectively. Figure 2.2 shows average runtime of 2SNP on datasets from HapMap.  

 

 

 

 

 

 

 

 

Figure 2.2  Average runtime of 2SNP algorithm on datasets from HapMap build 35, July 
2006 over all chromosomes and 3 races (European, African, and Japanese).  
 

 

2.3.5  Experimental Results  

In this section we first describe the datasets and quality measures.  Then, we compare 

our 2SNP method with PHASE-2.1.1[96], PLEM[91] and GERBIL[87] on unrelated data.  

Real data sets.  The comparison of phasing methods was performed on 46 real datasets 

from 79 different genomic regions and on 4 simulated datasets.  All real datasets represent 

family trios -- the computationally inferred offspring haplotypes for offspring have been 

compared with haplotypes inferred from parental genotypes.  

- Chromosome 5q31: 129 genotypes with 103 SNPs derived from the 616 KB region of human 

Chromosome 5q31 [138].  
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- Yoruba population (D): 30 genotypes with SNPs from 51 various genomic regions, with 

number of SNPs per region ranging from 13 to 114 [81].  

- HapMap datasets I: 30 genotypes of Utah residents and Yoruba residents available  

on HapMap by December 2005. The number of SNPs varies from 52 to 1381 across 40  

regions including ENm010, ENm013, ENr112, ENr113 and ENr123 spanning 500 KB  

regions of chromosome bands 7p15:2, 7q21:13, 2p16:3, 4q26 and 12q12 respectively,  

and two regions spanning the gene STEAP and TRPM8 plus 10 KB upstream and  

downstream.  

- HapMap datasets II: entire 23 chromosomes of 30 individuals of Utah residents, Yoruba 

residents, and Japanese residents available on HapMap by July 2006, build 35.  

 

Simulated data sets.  

-  Random matching 5q31: 128 genotypes each with 89 SNPs from 5q31 cytokine gene 

cluster generated by random matching from 64 haplotypes of 32 West African reported by 

[85].  

- MS-simulated data: 258 populations have been generated by MS[84] haplotype generator 

(using recombination rates 0,4 and 16).  From each population of 100 haplotypes with 103 

SNPs we have randomly chosen one haplotype and generated 129 genotypes by random 

matching.  

Cis-/trans- odds ratio on real and simulated datasets. Here we point out to an 

important difference between real data and data simulated using coalescent model. The odds ratio 

(2.2) is one of the measures of LD between two SNPs. The odds ratio much larger than 1 or 

much smaller than 1 indicates high LD. When computed for all pairs of SNPs i and j, the 

averaged odds ratio 

 



 34

 

(2.4) 

 

averaged over real data is 1.9 while for all simulated data is very close to 1. This can be 

partially explained by the fact that each SNP can be flipped over, i.e., 0 and 1 notations 

for major and minor alleles. Each such flipping swaps the products F00F11 and F01F10 and 

may increase λ (2.4). Therefore, we greedily flip SNPs increasing λ . For real data sets the 

averaged greedily increased λ  equals 2.5 while for MS-simulated data λ  heavily depends on 

the recombination rate.  The haplotype sets generated with recombination rate r between 40 

and 100 are the closest to the real datasets with respect to λ . On the other hand, the average 

λ  for ST 1, ST 2, and ST 3 are 1.95, 1.37, and 1.65 showing a significant deviation from the 

real datasets.  

Error measures. A single-site error [96] is the percent of erroneous SNPs among all SNPs 

in phased haplotypes. An individual error [91] is the percent of genotypes phased with at least 

one error among all genotypes.  A switching error [87] is the percent of switches (among 

all possible switches) between inferred haplotypes necessary to obtain a true haplotype. For 

each dataset we bootstraped phasing result 100 times, and for each bootstrap sample we 

computed an error. The 95% confidence interval for the error mean was computed based on 

the 100 error values.  

Comparison of phasing methods. Table 2.1 shows performance of four phasing 

methods on real and simulated datasets.  Average runtimes for HapMap datasets I are 

separately reported for three ranges of genotype length in SNPs.  All runs were performed on 

computer with Intel Pentium 4, 3.0Ghz processor and 2 Gigabytes of Random Access 

Memory. PLEM was run with 20 rounds and the 2.1.1 version of PHASE was run with the 
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default parameters. The *-marked switching error is 2.9% for the earlier version PHASE-

2.0.2. The dashes in PLEM columns correspond to the cases when it does not output valid 

phasing.  The 95% confidence intervals for the error means are computed using 

bootstrapping.  

From Table 2.1, one can see that 2SNP is several orders of magnitude faster  

than two other phasing methods handling large datasets in a matter of seconds. The 

reported mean errors with the respective 95% confidence intervals show that GERBIL, 

PHASE, and 2SNP have the same accuracy for real data (Chromosome 5q31, Yoruba(D), 

HapMap datasets).  On the other hand, 2SNP and GERBIL are considerably outperformed 

by PHASE and PLEM on some simulated data.  Poor performance of 2SNP can be caused 

by wrong recombination rate distribution on simulated data.  For the mixed populations one 

can see deterioration of all phasing methods.  

 

 

2.4  Phasing and Missing data recovery in Family Trios  

Although there exist many phasing methods for unrelated adults or pedigrees,  

phasing and missing data recovery for data representing family trios is lagging behind.  

This work is an attempt to fill this gap by considering the following problem. Given  

a set of genotypes partitioned into family trios, find for each trio a quartet of parent  

haplotypes which agree with all three genotypes and recover the SNP values missed in  

given genotype data. Our contributions include (i) formulating the pure-parsimony  

trio phasing and the trio missing data recovery problems, (ii) proposing two new  

greedy and integer linear programming based solution methods, and (iii) extensive  

experimental validation of proposed methods showing advantage over the previously  
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known methods.  

 

Table 2.1 Mean single-site, individual, and switching errors with 95% confidence intervals 
and runtimes of PHASE, GERBIL, PLEM, and 2SNP on real and simulated datasets. 

 

 

2.4.1  Pure-Parsimony Trio Phasing  

Note that it is easy to find a feasible solution to TPP but the number of feasible solutions is 

exponential and it is necessary to choose criteria for comparing such solutions. In [39] for 

haplotyping pedigree data, the objective is to minimize recombinations. That objective is 
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not suitable for TPP since the trios are not full-fledged pedigree data and contain no clues to 

evidence recombination reconstruction. Thus, following [29, 82], we have decided to pursue 

parsimonious objective, i.e., minimization of the total number of haplotypes.  

The drawback of pure parsimony is that when the number of SNPs becomes large  

(as well as the number of recombinations), then the quality of pure parsimony phasing  

is diminishing [82]. Therefore, following the approach in [33], we suggest to partition  

the genotypes into blocks, i.e., substrings of bounded length, and find solution for the  

pure parsimony problem for each block separately. Note that in case of family trios  

we have great advantage over the method of [33] since we do not need to solve the  

problem of joining blocks. Indeed, for each family trio we can make four haplotype  

templates (partially resolved by logic means of haplotypes) that imply unique way  

of gluing together blocks to arrange complete haplotypes for the entire sequence of  

SNPs.  

Formally, let genotype be a vector with m coordinates each corresponding to an SNP and 

having one of the following values: 0 (homozygote with major allele), 1 (homozygote with 

minor allele), 2 (heterozygote), or ? (missing SNP value).  Let haplotype be a vector with m 

coordinates where each coordinate is either 0 or 1. We say that two haplotypes explain a 

genotype if  

• for any 0 (resp. 1) in the genotype vector, the corresponding coordinates in the both 

haplotype vectors are 0's (resp. 1's), 

• for any 2 in the genotype vector, the corresponding coordinates in the two haplotype 

vectors are 0 and 1,  

• for any ? in the genotype vector, the corresponding coordinates in the haplotypes are 

unconstrained (can be arbitrary).  



 38

  

We say that four haplotypes h1, h2, h3, h4 explain a family trio of genotypes (f, m, k), if h1 

and h2 explain the genotype f , h3 and h4 explain the genotype m, and h1 and h3 explain the 

genotype k.  

Pure-Parsimony Trio Phasing (PPTP). Given 3n genotypes corresponding to n family 

trios find minimum number of distinct haplotypes explaining all trios.  

 

2.4.2  Greedy Method for Trio Phasing  

We apply the greedy algorithm from Halperin [35] for trio phasing. For each trio we 

introduce four partial haplotypes with the coordinates 0, 1 and ?. The values of 0 and 1 

correspond to fully resolved SNPs which can be found via logical resolution from the section 

4.1, while the ?'s corresponds to ambiguous and missing positions. The greedy algorithm 

iteratively finds the complete haplotype which covers the maximum possible number of partial 

haplotypes, removes this set of resolved partial haplotypes and continues in that manner. The 

drawback of this greed method is to introduce error to trio constraint, even for phasing with 

error O(m) to the maximum concentration. In the future, we will try to modify the greedy 

algorithm to overcome its shortcoming.  

 

2.4.3  Integer Linear Program for Trio Phasing  

We have implemented the following integer linear program (ILP) formulation (2.5)-

(2.8) for pure-parsimony trio phasing.  It uses 0-1 variable xi for each possible haplotype 

with the minimization objective: 

Minimize Σ xi                                                          (2.5) 
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For each trio we introduce four template haplotypes, i.e., haplotypes with the coordinates 

0,1,2 and ?:  0's and 1's correspond to fully resolved SNPs, 2's come in pairs corresponding to 

the genotype 2's and ?'s correspond to unconstrained SNPs. For each 2 in each template we 

introduce a 0-1-variable y and a constraint binding it with the variable y’ corresponding to the 

complimentary 2:  

y + y’ = 1

Instead of completely resolving templates, we can resolve only 2's. Then several 

haplotypes can fit partially resolved templates and at least one of the corresponding x-

variables should be set to 1.  This results in the following constraint:  For any y-

assignment of 2's in each template T,  

 

  (2.7) 

 

We should guarantee that each template is resolved. This is done by the following  

constraint: For each template T ,  

 

(2.8) 

 

 

2.4.4  Experimental Study of ILP and Greedy Methods  

In this section we compare our greedy and ILP based methods suggested in Section 2.4.1 with 

previously known phasing methods such as Phamily [27], PHASE[95] and 

HAPLOTYPER[41] applied to phasing and missing recovery on family trio data. We first 
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describe the test data sets then give experimental results of five methods for phasing and 

then for missing data recovery of family trio data.  

Our algorithms are evaluated on real and simulated data. The data set collected by Daly et 

al.  [138] is derived from the 616 kilobase region of human Chromosome 5q31 that may 

contain a genetic variant responsible for Crohn disease by genotyping 103 SNPs for 129 

trios. The missing data in this genotype data is about 16%. The data set was partitioned [138] 

into eleven blocks with only a few common haplotypes inside.  

The another real data set is collect by Gabriel et al.  [81].  This data consists of genotypes 

of SNPs from 62 region. We use population D which contains of 30 trois from Yoruba. This 

data set contains about 10% missing data.  

The simulated data is generated using ms [84], a well-known haplotype generator based on 

the coalescent model of SNP sequence evolution. The ms generator emits a haplotype 

population for the given number of haplotypes, number of SNPs, and the recombination 

rate.  We have simulated Daly et al. [138] data by generating 258 populations, each 

population with 100 individuals and each haplotype with 103 SNPs, then randomly choosing 

one haplotype from each population. We only simulate parents' haplotypes, then we obtain 

family trio haplotypes and genotypes by random matching the parental haplotypes.  

It is clear how to validate a phasing method on simulated data since the underlying 

haplotypes are known. The validation on real data is usually performed on the trio data.  

E.g., a phasing method is applied to parents (respectively, to children) genotypes and the 

resulted haplotypes are validated on children's (respectively, on parents') genotypes.  

Unfortunately, in our case, one can not apply such validation since a trio phasing method 

may rely on both children and parents' genotypes. Therefore, we suggest to validate trio phasing 

by erasing randomly chosen SNP values and recording the errors in the erased SNP sites. In 

Tables 2.2, 2.3, 2.4, each row corresponds to an instance of real data (Daly et al. or Gabriel 
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et al.) or simulated data (ms) and the column (E) shows the percent of erased data (0% - 

no data erased, 1%-10% - percent of SNP values erased) .  

The value of phasing errors is measured by the Hamming distance from the method's 

solution to the closest feasible phasing.  In Tables 2.2 and 2.3, for parents (P) we report 

the percent of SNP values that should be inverted out of the total number of SNP values 

that should be inferred (i.e., number of 2 plus number of unknown values). For children (C), 

we report the percent of SNP which should be inverted with respect to the total number of 

SNPs. The total number of errors (T) is the percent of SNP's that should be inverted in 

order to obtain a feasible phasing solution.  

 

Table 2.2  The results for five phasing methods on the real data sets of Daly et al.[138] 
and Gabrile et al. [81] and on simulated data. The second column corresponds to the ratio of 
erased data. The C corresponds to the error of child. The P corresponds to the error of parents. 
The T corresponds to the total error.  

 

In Table 2.3, we also report true error for phasing simulated genotype data which is the 

Hamming distance between inferred and actual simulated underlying haplotypes for children 

(C), for parents (P) and the total error (T).  

Table 2.4 compares five methods (ILP, Greedy, Phamily, PHASE and HAPLOTYPER) on 
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trio missing data recovery on the real data sets (Daly [138] and Gabriel [81])  and simulated 

data.  We erase random data in trio genotypes with certain amount (1%; 2%; 5% and 10%) 

of the entire data.  Instead, We report the error as the number of incorrectly recovered 

erased positions of the genotypes on child (C*), parents (P*) and trios (T*) divided the total 

number of erased positions in parent genotypes in percentage. We count only half error if 

the compared paired SNP is 2 and 0 (or 1). 

 

Table 2.3  The results for five phasing methods on the simulated data sets.  The column E 
represents the percent of erased data. The C corresponds to the true error of child.  The P 
corresponds to the true error of parents. The T corresponds to the true total error.  

 

 

Table 2.4 The results for missing data recovery on the real and simulated data sets with five 
methods. The second column corresponds to the ratio of erased data. The C* corresponds to 
the error of child. The P* corresponds to the error of parents. The T* corresponds to the total 
error.  
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2.4.5  2SNP Phasing Method for Family Trios  

We have enhanced 2SNP algorithm to phase family trio data. 2SNP trio phasing  

have been compared with four other well-known phasing methods on simulated data  

from [90]. 2SNP is much faster than all of them while loosing in quality only to  

PHASE.  

We have enhanced 2SNP algorithm as follows (see Figure 2.3).  First we modify observed 

haplotype frequencies F00, F01, F10, F11 with haplotype frequencies in 22's which can be 

imputed from trio constraints. For example if we have three genotypes 22,01,22 (first parent, 

second parent, and child) then we can impute first parent and child genotypes (10+01 and 

01+10). Only positions with 2's in all three genotypes can be left unresolved.  For these 

genotypes we perform our standard estimation of P22 and C22.  

The genotype graph g is constructed only for the children's genotypes. The edges  

connecting resolved 2's are forced into MST by setting their weight to a large number.  

Obtained maximum spanning tree uniquely determines the phasing of the corresponding 

children's genotype.  The parental haplotypes are inferred assuming no recombinations, i.e., 

one of the parental haplotypes is the haplotype transmitted to the child and another (non-

transmitted) haplotype is complimentary.  

 If the parental genotype has a ?  which can not be resolved from child's haplotypes, then 

we keep ?'s in the complimentary haplotype. Finally, the left missing data are recovered the  

same way as in Fig. 2.1.  

For the family trios, the 2SNP is considerably faster than the 2SNP for the same trios if 

they are assumed to be unrelated. Indeed, the size of each genotype graph is reduced and, 

essentially, only children genotypes are phased.  
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Figure 2.3  2SNP Trio Phasing Algorithm. The steps added to 2SNP phasing algorithm 
are marked with +'s -- 3+, 4+, and 9+. 
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2.4.6  Experimental Study of 2SNP for Family Trios  

In this section we first describe the datasets and quality measures.  Then, we compare 

our 2SNP method with PHASE[96], HAP[83], HAP2[89], and PLEM[91] on simulated trio 

data.  

Error measures. A single-site error [96] is the percent of erroneous SNPs among all SNPs 

in phased haplotypes. An individual error [91] is the percent of genotypes phased with at least 

one error among all genotypes.  A switching error [87] is the percent of switches (among 

all possible switches) between inferred haplotypes necessary to obtain a true haplotype. For 

each dataset we bootstraped phasing result 100 times, and for each bootstrap sample we 

computed an error. The 95% confidence interval for the error mean was computed based on 

the 100 error values.  

 

Simulated data sets.  

- ST1, ST2, ST3 - family trio data [93]: Trio datasets generated using a coalescent model 

that incorporates variation in recombination rates and demographic events. Specific 

simulation parameters used can be found in [94]. ST1 - 20 data sets of 30 trios  

simulated with constant recombination rate across the region, constant population  

size, and random mating.  Each of the 20 data sets consisted of 1 Mb of sequence.  

ST2 - same as ST1, but with the addition of a variable recombination rate across  

the region. ST3 - same as ST2, except a model of demography consistent with white  

Americans was used.  

Table 2.5 compares the 2SNP algorithm for family trios with PHASE[96], HAP[83], 

HAP2[89], and PLEM[91]( The results for PHASE, HAP, HAP2, and PLEM are taken from 

[90]) on simulated family trio datasets ST1, ST2, ST3. As for unrelated individuals, 2SNP is 

much faster than other phasing methods.  For ST1 is losing in switching error only to PHASE, 
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for ST2 it loses to 3 methods, and for ST3 it loses to PHASE and HAP. This can be explained 

by the fact that ST3 and especially ST2 strongly deviate from real datasets in the averaged odds 

ratioλ .  

 

 

Table 2.5 Comparison of 5 phasing methods on simulated trio data. 

 

 

 

 

 

 

 

2.5 Conclusions 

In conclusion, we have developed a new extremely fast and simultaneously highly  

accurate phasing algorithm 2SNP based on 2-SNP haplotypes. We hope that it will be  

very useful for high-throughput genotype data processing, e.g., SNP Mapping Arrays  

(Affymetrix).  
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CHAPTER 3  
 

DISEASE ASSOCIATION SEARCH  
 

Accessibility of high-throughput genotyping technology allows genome/chromosome-

wide association studies for common complex diseases.  This chapter addresses two 

challenges commonly facing such studies [136]: (i) searching an enormous amount of possible 

gene interactions and (ii) finding reproducible associations. These challenges have been 

traditionally addressed in statistics [143] while here we apply computational approaches -- 

optimization and permutation tests.  A complex risk factor is modeled as a subset of SNP's 

with specified alleles (MSC) and the optimization formulation asks for the one with the 

minimum p-value or the maximum odds ratio.  We have applied our search methods to real 

case-control studies for several diseases (Crohn's disease [138], autoimmune disorder [163], 

tick-born encephalitis [134], lung cancer [144], and rheumatoid arthritis [135]). Proposed 

methods are compared favorably to the exhaustive search -- they are faster, find more 

frequently statistically significant risk factors.  

 

3.1 Introduction 

Recent improvement in accessibility of high-throughput DNA sequencing brought a great 

deal of attention to disease association and susceptibility studies.  Successful genome-wide 

searches for disease-associated gene variations have been recently reported [140, 144].  

However, complex diseases can be caused by combinations of several unlinked gene 

variations. 
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This chapter addresses computational challenges of genotype data analysis in epidemiological 

studies including selecting of informative SNPs, searching for diseases associated SNPs, and 

predicting of genotype susceptibility.  

Disease association studies analyze genetic variation across exposed to a disease  

(diseased) and healthy (non-diseased) individuals. The difference between individual  

DNA sequences occurs at a single-base sites, in which more than one allele is ob- 

served across population. Such variations are called single nucleotide polymorphisms  

(SNPs). The number of simultaneously typed SNPs for association and linkage stud- 

ies is reaching 106 for SNP Mapping Arrays [131]. High density maps of SNPs as well  

as massive DNA data with large number of individuals and number of SNPs become  

publicly available [156]. Diploid organisms, like human, have two near-identical copies  

of each chromosome. Most genotyping techniques (e.g., SNP Mapping Arrays [131])  

do not provide separate SNP sequences (haplotypes) for each of the two chromosomes.  

Instead, they provide SNP sequences (genotypes) representing mixtures of two hap- 

lotypes -- each site is defined by an unordered pair of allele readings, one from each  

haplotype -- while haplotypes are computationally inferred from genotypes [101]. To  

genotype data we refer as unphased data and to haplotype data we refer as phased  

data.  The disease association study analyze data given as genotypes or haplotypes  

with disease status.  

Several challenges in genome-wide association studies of complex diseases have not yet been 

adequately addressed [137]: interaction between non-linked genes, multiple independent 

causes, multiple testing adjustment, etc.  Since complex common diseases can be caused by 

multi-loci interactions two-loci analysis can be more powerful than traditional one-by-one SNP 

association analysis [143]. Multi-loci analysis is expected to find even deeper disease-

associated interactions. The computational challenge (as pointed in [137]) is caused by the 
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dimension catastrophe. Indeed, two-SNP interaction analysis (which can be more powerful 

than traditional one-by-one SNP association analysis [143]) for a genome-wide scan with 1 

million SNPs (3 kb cover age) will afford 1012 possible pair wise tests. Multi-SNP interaction 

analysis reveals even deeper disease-associated interactions but is usually computationally 

infeasible and its statistical significance drastically decreases after multiple testing adjustment 

[121, 125]  

Disease association analysis searches for Risk Factors (RF) modeled as Multi-SNP  

combinations with frequency among diseased individuals (cases) considerably higher  

than among non-diseased individuals (controls).  Only statistically significant SNPs  

(whose frequency distribution has p-value less than 0.05) are reported. Successful as  

well as unsuccessful searches for SNPs with statistically significant association have  

been recently reported for different diseases and different suspected human genome  

regions (see e.g. [151]).  Unfortunately, reported findings are frequently not repro- 

ducible on different populations. It is believed that this happens because the p-values  

are unadjusted to multiple testing -- indeed, if the reported SNP is found among 100  

SNPs then the probability that the SNP is associated with a disease by mere chance  

becomes roughly 100 times larger.  

 

3.1.1  Optimization Approach  

This chapter discusses optimization approach to resolve these issues instead of traditionally 

used statistical and computational intelligence methods.  In order to handle data with huge 

number of SNPs, one can extract informative (indexing) SNPs that can be used for (almost) 

lossless reconstructing of all other SNPs[130]. To avoid information loss, index SNPs are 

chosen based on how well the other non-index SNPs can be reconstructed.  The 

corresponding informative SNP selection problem (ISSP) can be formulated as follows 
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(See Figure 3.1). Given a sample S of a population P of individuals (either haplotypes or 

genotypes) on m SNPs, select positions of k (k < m) SNPs such that for any individual, one 

can predict non-selected SNPs from these k selected SNPs. The Multiple Linear Regression 

based MLR-tagging algorithm  

 

Figure 3.1 Informative SNP Selection Problem. The shaded columns correspond to k tag 
SNPs and the clear columns correspond to non-tag SNPs.  The unknown (m – k) non-tag 
SNP values in tag-restricted individual (top) are predicted based on the known k tag values 
and complete sample population.  
 

 

[112] solves the optimization version of ISSP which asks for k informative SNPs minimizing 

the prediction error measured by the number of incorrectly predicted SNPs. The number of 

tags (informative SNPs) k depends on the desirable data size. More tags will keep more 

genotype information while less tags allows deeper analysis and search.  

In the reduced set of SNPs one can search for deeper disease association.  In this 

chapter we discuss the optimization problem of finding the most disease-associated multi-

SNP combination for given case-control data. Since it is plausible that common diseases can 

have also genetic resistance factors, one can also search for the most disease-resistant multi-SNP 
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combination.  Association of risk or resistance factors with the disease can be measured in terms 

of p-value of the skew in case and control frequencies, risk rates or odds rates.  Here we first 

concentrate on two association measurements: p-value of the skew in case and control 

frequencies and positive predictive value (PPV) which is the frequency of case individuals 

among all individuals with a given multi-SNP combination. This optimization problem is 

NP-hard and can be viewed as a generalization of the maximum independent set problem. A fast 

complimentary greedy search proposed in [133] is compared with the exhaustive search and 

combinatorial search that has been discussed in [132]. Although complimentary greedy 

search cannot guarantee finding of close to optimum MSCs, in the experiments with real 

data, it finds MSCs with non-trivially high PPV. For example, for Crohn's disease data [138], 

complimentary greedy search finds in less than second a case-free MSC containing 24 controls, 

while exhaustive and combinatorial searches need more than 1 day to find case-free MSCs with 

at most 17 controls.  

We have applied our search methods (exhaustive, combinatorial and complimentary 

greedy searches [132, 133], alternating combinatorial search and a randomized of 

complimentary greedy search) for finding MSC with largest odds ratio on real case-control 

studies for several diseases (Crohn's disease [138], autoimmune disorder [163], tick-born 

encephalitis [134], lung cancer [144], and rheumatoid arthritis [135]). Proposed methods are 

compared favorably to the exhaustive search -- they are faster, find more frequently 

statistically significant risk factors.  

We next model atomic risk factors (ARF's) (i.e., SNP risk factors that cannot be split into 

simpler factors) for common diseases as diplotypes, i.e., subsets of SNP's with specified 

alleles.  Our first optimization formulations ask for a diplotype the most tightly associated with 

the disease (i.e., minimizing p-value) [132] and having the highest positive predictive [133].  

In contrast, epidemiologists measure the quality of risk factors in case-control studies by odds 
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ratio defined as the ratio of the odds of disease occurring in the exposed (to the risk factor) 

group to the odds of it occurring in unexposed group. Thus, we ask for an ARF with the 

maximum odds ratio. We show connection of this problem with the known Red-Blue Set 

Cover problem [166] whose special case is equivalent to the weighted set cover problem. The 

best known heuristics for the weighted set cover problem is a well-known greedy algorithm. 

Thus, in order to find ARF with the maximum odds ratio, we propose to apply the 

complementary greedy search (CGS) algorithm [133] originally designed for finding ARF’s 

with highest positive predictive value.  

We next propose to consider more complex but also more relevant SNP risk factors, so called 

k-relaxed atomic risk factors, for which exposed individuals can deviate in at most k sites 

from a given diplotype.  We generalize the complimentary greedy algorithm (k-CGS) to find 

k-relaxed atomic risk factors with fixed k. Our experiments show advantage of the new 

method over CGS in finding risk factors with significantly higher odds ratio and association 

with the disease.  

We then introduce even more general risk factors, so called weighted relaxed atomic 

risk factors. The individuals exposed to such factors should be within weighted Hamming 

distance k from a given diplotype. We also proposed a novel heuristic (WCGS) for finding 

weighted relaxed ARF with odds ratio.  

We have applied and cross-validated CGS [133], k-CGS, and WCGS methods for finding 

atomic risk factors (ARF), k-relaxed ARF's and weighted relaxed ARF's, respectively, 

with large odds ratios on real case-control studies for several diseases (Crohn's disease [138], 

autoimmune disorder [163], tick-born encephalitis [134], lung cancer [144], and rheumatoid 

arthritis [135]). The CGS algorithm finds non-trivially ARF’s with significantly high odds 

ratios. For the smallest dataset (tick-born encephalitis) CGS found an optimal solution which 

has been confirmed using an exact integer linear program. The k-CGS and WCGS methods 
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found SNP risk factors that are statistically significant even after multiple-testing adjustment 

on all data while CGS could not find significant ARF on two of these data. The found relaxed 

atomic risk factors explain much higher number of cases, 1.5-4 times larger than atomic ARFs 

found by CGS. The new methods also have significantly higher leave-half-out cross-

validation rate. 

  

3.1.2 Overview 

In the next section the disease association search problem is formulated, the searching 

algorithms and their quality measures are described, the optimization version of disease 

association search for most disease associated MSC is reformulated as an independent set 

problem and the fast complimentary greedy search and randomized complimentary greedy 

search algorithms are given. Then we formally introduce the problem of finding a risk factor 

with maximum odds ratio and apply our searching methods to solve this problem. We further 

model genetic RFs as atomic RFs (ARFs), then we generalize it to k-relaxed ARFs (k-

RARF) and weighted RARF (WRARF). For the introduced models we formulate 

optimization problems and give heuristics for finding maximum odds ratio atomic, k-relaxed 

atomic and weighted relaxed atomic risk factors, respectively. We next describe available real 

datasets and conclude with comparison and cross-validation of described heuristics.  

 

3.2  Methods for Disease Association Search  

In this section the search of statistically significant disease-associated multi-SNP 

combinations is formally described. Then the corresponding optimization problem is 

formulated and its complexity is discussed. The combinatorial search introduced in [132] 

and the fast complementary greedy search introduced in [133] are described.  
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The typical case-control or cohort study results in a sample population S consisting of n 

individuals represented by values of m SNPs and the disease status. Since it is expensive to 

obtain individual chromosomes, each SNP value attains one of three values 0, 1 or 2, where 

0's and 1's denote homozygous sites with major allele and minor allele, respectively, and 2's 

stand for heterozygous sites. SNPs with more than 2 alleles are rare and can be conventionally 

represented as biallelic. Thus the sample S is an (0, 1, 2)-valued n × (m + 1)-matrix, where 

each row corresponds to an individual, each column corresponds to a SNP except last 

column corresponding to the disease status (0 stands for case and 1 stands for control). Let H 

and D be the subsets of rows with controls (healthy) and cases (disease), respectively.  

The standard measure of disease association in case-control studies is the odds ratio (OR) – 

the odds of a risk factor occurring in cases to the odds of it occurring in controls. Formally, let 

C be the subset of genotypes of S exposed to a risk factor (further referred as a cluster) and let 

h(C) = C ∩H be the set of controls and d(C) = C ∩ D be the set of cases in cluster C. Then the 

odds ratio of a risk factor which forms cluster C is computed as 

 

 

The odds ratio is ill-defined when |h(C)| = 0, i.e., when the corresponding cluster is control 

free. In order to define and compare OR for such cases, we follow standard practice of adding 

0.5 to all 4 values |d(C)|, |d(D - C)|, |h(C)|, |h(H - C)|. 

The association of a risk factor with the disease status can be also measured with the 

following parameters: 

• relative risk  |)|*|)((||)|*|)((| CCdDCSCdRR −−=  (for cohort studies) 

positive predictive value ||/|)(| CCdPPV =   (for susceptibility prediction) 

• p-value of the partition of the cluster into cases and controls: 

|)(|/|)(|
|)(|/|)(|

CHhCh
CDdCdOR

−
−
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A complex risk factor in SNP case-control study is modeled as a subset of SNP’s with 

specified alleles (diplotype, multi-SNP combination (MSC)), and general disease association 

searches for all risk factors with OR above (or below) a certain threshold. The common 

formulation is to find all risk factors with p-value below 0.05. An optimization version can be 

formulated as follows.  

Most Associated Risk Factor Problem. Given a genotype case/control study on a sample 

population S, find an risk factor most associated with the disease.  

Since associated risk factors are searched among exponentially many risk factors (SNP 

combinations), the computed p-value (significance) requires adjustment for multiple testing 

(MT) which can be done with simple but overly pessimistic Bonferroni correction or 

computationally extensive but more accurate randomization method. In our study we use 

randomization method which computes the p-value of a risk factor by comparing its OR with 

OR’s of 104 risk factors found by searching method on 104 randomized datasets. A randomized 

dataset is obtained from original dataset by random swapping of the disease statuses. If OR of a 

risk factor is larger than 9500 (95%) of OR’s from randomized datasets then the MT-adjusted 

p-value of this risk factor is <5%. 

 

 

3.2.1 Full Searches for Associated MSCs 

Risk and resistance factors representing gene variation interaction can be defined in terms 

of SNPs as a multi-SNP combination (MSC) which is a subset of SNP with fixed alleles 

values. General disease association searches for all MSCs with one of the parameters above (or 

below) a certain threshold.  The common formulation is to find all MSCs with adjusted p-value 
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below 0.05.  

 

3.2.1.1  Exhaustive Search (ES)  

The search for disease-associated MSCs among all possible combinations can be done by 

the following exhaustive search.  In order to find a MSC with the p-value of the frequency 

distribution below 0.05, one should check all one-SNP, two-SNP, ..., m-SNP combinations.  

The checking procedure takes runtime for unphased combinations 

since there are 3 possible SNP values {0, 1, 2}. Similarly, for phased combination, the 

runtime is since there only 2 possible SNP values. The exhaustive 

search is infeasible even for small number of SNPs, therefore the search is limited to the 

small number of SNPs, i.e., instead of searching all MSCs, one can search only containing 

at most k = 1, 2, 3 SNPs.  We refer to k as search level of exhaustive search. Also one can 

reduce the depth (number of simultaneously interacting SNPs) or reduce m by extracting 

informative SNPs from which one can reconstruct all other SNPs.  The MLR-tagging is 

used to choose maximum number of index SNPs that can be handled by ES in a reasonable 

computational time.  

 

3.2.1.2  Combinatorial Search (CS)  

Here we discuss suggested in [132] search method for disease-associated MSCs which avoids 

insignificant MSCs or clusters without loosing significant ones. CS searches only for closed 

MSCs, where closure is defined as follows. The closure C  of MSC with cluster C is an MSC 

whose cluster has minimum control elements h(C ) and the same case elements d(C ) = d(C). 

C  can be easily found by incorporating into its set of SNPs all SNPs with common values 

among all case individuals in C .  
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The combinatorial search proposed [132] finds the best p-value of frequency distribution of 

the closure of each single-SNP, after that it searches for the best frequency distribution p-

value among closure of all 2-SNP combinations and so on.  The procedure stops after all 

closure of all k-SNP combinations (k < m) are checked.  The corresponding search level is 

the number of SNPs selected for closuring, e.g., on the level 2 of searching combinatorial 

search will test closure of all 2-SNP combinations for association with a disease. Because of 

the closure, for the same level of searching combinatorial search finds better association than 

exhaustive search.  However, the above combinatorial search is as slow as exhaustive search.  

A faster implementation of this method avoids checking MSCs which are not (and 

cannot lead to) statistically significant ones.  Formally, a MSC I is called an intersection 

of MSCs with clusters C1 and C2 if d(I) = d(C1) ∩ d(C2) and |h(I )| is minimized. An MSC 

is called trivial if its unadjusted p-value is larger than 0.05 even if the set h(C) would be 

empty. Note that intersection of a trivial MSC with another is trivial.  

A faster implementation of the combinatorial search is as follows:  

 

1.  Compute a set G1 of all 1-SNP closed MSCs, exclude trivial combinations.  

2.  Compute sets Gk of all pair wise intersections of the MSCs from Gk-1, exclude trivial 

combinations and already existing in Υ Υ Υ NkGGG k ..2,... 121 =− .  

3.  For each Gk output MSCs whose unadjusted  p< 0.05.  

Still, in order to find all MSCs associated with a disease one has to check all possible SNP 

combinations with all possible SNP values.  This searching approach is  also  

computationally intensive and step  2  from the algorithm can generate an exponential 

number of MSCs.  However, closure avoids generation and checking of non-significant 

MSCs.  Additionally, removing of trivial MSCs at each iteration of step 2 considerably 
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reduces the number of newly generated MSCs.  CS has been shown much faster than ES 

and capable of finding more significant MSCs than ES for equivalent search level.  

 

3.2.1.3  Alternating Combinatorial Search (ACS)  

This is a modification of CS which tries to further decrease the number of controls in a 

cluster C obtained by CS repeatedly using the following alternating closing and 

complimenting:  

))(( DCCC ∩−←  

 

These iterations stop as soon as C stops changing.  

 

3.2.2  Maximum Control-Free Cluster  

Following [133], we next consider another optimization formulation corresponding to the 

general association search problem, e.g., find MSC with the minimum adjusted p-value. In 

particular, we focus on maximization of PPV. Obviously, the MSC with maximum PPV 

should not contain control individuals in its cluster and the problem can be formulated as 

follows:  

Maximum Control-Free Cluster Problem (MCFCP). Find a cluster C which 

does not contain control individuals and has the maximum number of case individuals.  

It is not difficult to see that this problem includes the maximum independent set problem. 

Indeed, given a graph G = (V , E ), for each vertex v we put into correspondence a case 

individual v’ and for each edge e = (u, v) we put into correspondence a control individual e’ 

such that any cluster containing u’ and v’ should also contain e’ (e.g., u’ , v’ , and e’ are 
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identical except one SNP where they have 3 different values 0,1, and 2). Obviously, the 

maximum independent set of G corresponds to the maximum control-free cluster and vice 

versa. Thus, one cannot reasonably approximate MCFCP in polynomial time for an arbitrary 

sample S.  On the other hand, the sample S is not “arbitrary” -- it comes from a certain  

disease association study. Therefore, one may have hope that simple heuristics (particularly 

greedy algorithms) can perform much better than in the worst arbitrary case.  

 

3.2.3  Maximum Odds Ratio Atomic Risk Factor  

Since there are exponentially many genetic risk factors, in this section we concentrate only 

on basic atomic risk factors. We then give the corresponding optimization formulations and 

describe their relationship with the red-blue set cover problem. Finally, the complementary 

greedy algorithm inspired by the greedy algorithm is described. 

In general, an arbitrary SNP risk factor can be expressed as a boolean formula over 

SNPs as follows.  A genotype SNP value is a function over x and y which are SNP values 

in haplotypes (0 and 1 in haplotypes stand for major and minor alleles, respectively). These 

function are boolean -- a genotype equals 0 iff yxg ∨=0  is true, equals 1 iff yxg ∧=1  is 

true, and equals 2 iff yxg ⊕=2  is true. Then a risk factor is a disjunctive normal form 

(DNF) over g0's, g1's and g2's for all SNPs. Substituting each negation with 

2,1,0,11 =∨= +− iggg iii , we can make sure that DNF does not contain negations.  An 

atomic risk factor (ARF) corresponds to a single clause of DNF and cannot be further split 

into simpler risk factors. An atomic risk factor may be also viewed as a diplotype which is a 

subset of SNP-columns of S with fixed values.  

An ARF can model multiple gene interactions resulting in a single cause of a disease (see 

Figure 3.2 (a)) -- several pathways may result in generating a certain substance (e.g., protein) P 
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necessary for a normal cell functions. Several mutations should cut all such pathways to 

create a lack of P -- any pathway that is not destroyed by mutations can produce sufficient 

amount of P preventing disease development.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2  Pathway motivation of Atomic Risk Factors, k-Relaxed ARFs, and 
Weighted Relaxed ARFs. (a) ARF models the case when all n pathways producing the 
substance P should be broken by mutations to cause the disease.  (b) k-RARF models the 
case when it is necessary to have arbitrary k + 1 unaffected pathways out of total n pathways to 
produce sufficient amount of P and, therefore, breaking of any (n - k) pathways causes the 
disease. (c) WRARF models the same case as k-RARF but when different pathways can 
produce different integer number w of units of P.  
 

 

wild type mutation 

(a) Atomic Risk 

(b) 1-Relaxed Atomic Risk 

(c) Weighted k-Relaxed Atomic Risk Factor 
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Here we suggest to consider optimization formulation :  

Maximum Odds Ratio Atomic Risk Factor (MORARF): Given a genotype 

case-control study on a sample population S, find atomic risk  factor with the maximum odds 

ratio.  

Our experiments with real and simulated genotype case-control studies showed  

that the solution for the MORARF problem is usually control-free, i.e., for the 

corresponding cluster C , h(C) = 0. The corresponding problem has been formulated in [133].  

Maximum Control-Free Cluster (MCFC) Problem. Given a genotype case-control 

study on a sample population S, find a maximum size control-free cluster C .  

It has been shown in [133] that this problem contains the independent set problem and 

therefore is NP-hard and is hard to approximate. Alternatively, instead of maximizing the 

number of cases in the cluster we can pursue the complimentary objective -- minimize number 

of cases outside of the cluster.  The corresponding problem has been previously studied under 

the name red-blue set cover problem [166].  

 

Red-Blue Set Cover (RBSC) Problem. Given a set of “red” elements R, a set of 

"blue" elements B and a family of subsets BR∪⊆Φ 2 , find a subfamily Φ⊆X covering all 

blue elements and minimizes the minimum number of covered red elements.  

When searching MCFC, the red elements are cases and blue elements are controls. The 

RBSC problem minimizes the number of red elements covered by a family of X while the 

MCFC problem maximizes non-covered red elements.  The difference between RBSC and 

MCFC is the same as between the minimum vertex cover and maximum independent set 

problems.  

The complexity of the RBSC problem has been studied in [166]. They show that even the 
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case where every set contains only one blue and two red elements cannot be approximated 

to within )2(
1log nO

δ−

, where ncloglog/1=δ , for any constant c < 1/2 (where n = Φ ). 

Unfortunately, the approximation algorithms proposed in [166] for RBSC do not have a 

non-trivial bounds in the MCFC context.  

If restrictions on R of all sets from Φ  coincide or do not intersect then the RBSC 

problem is equivalent to the weighted set cover problem where the cost of each set is equal to 

the number of red elements in it. The best known approximation algorithm for the weighted 

set cover problem is a well-known greedy algorithm.  

 

 

3.2.3.1  Complimentary Greedy Search (CGS)  

In graphs, instead of the maximum independent set one can search for its complement, the 

minimum vertex cover -- repeat picking and removing vertices of maximum degree until no 

edges left. In this case one can minimize the relative cost of covering (or removal) of control 

individuals, which is the number of removed case individuals. The corresponding heuristic 

for MCFCP and MORARF is the following  

It can be inductively applied to the general RBSC problem -- iteratively choose the 

next set minimizing the ratio of newly covered red elements over newly covered blue 

element.  This algorithm applied to the MCFC problem has been proposed in [133] as the 

Complimentary Greedy Search (CGS) (see Figure 3.3).  CGS iteratively adds SNP value 

that minimizes the relative cost of removal of controls, where the cost is the number of 

removed cases by the same SNP value.  

CGS can be directly applied to the MORARF problem rather than to MCFCP -- at each 

iteration update and output the diplotype with currently best OR. Our experiments show that 

each iteration of CGS always improved OR for all real dataset although sometimes first 



 63

iterations can slightly violate monotonicity for randomized (bootstrapped) data (see Figure 

3.4). 

 

 

 

 

 

 

 

Figure 3.3 Complimentary Greedy Search 

 

 

 
Figure 3.4  The value of the odds ratio of atomic risk factors (with vertical bars 
representing 95% confidence interval (CI)) on i-th iteration of complimentary greedy search 
on lung-cancer dataset (see Section 2.4.4).  
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Our experiments with several available real data sets (see Section 3.3) show that the 

complimentary greedy search can find atomic risk factors with no-trivially high OR. For the 

tick-borne encephalitis dataset (see Section 3.3.1) CGS found an optimal solution which has 

been confirmed using an exact integer linear program. Similarly to the maximum control-free 

cluster corresponding to the most expressed risk factor, one can also search for the maximum 

diseased-free cluster corresponding to the most expressed resistance factor. The experiments 

with three real data sets (see Section 3.3) show that the complimentary greedy search can find 

nontrivially large control-free and case-free clusters.  

It is known that randomization improves quality of greedy algorithms.  In this paper, 

we propose the following randomization enhancement of CGS 

 

 

3.2.3.2  Randomized CGS (RCGS).  

We expect randomization to change strictly greedy behavior of the CGS allowing to avoid 

the local maximum.  

Let Hi be a subset of controls S0 with indices 1,…i.  RCGS (see Figure 3.5) repeatedly 

permutes controls and gradually covers them with SNPs -- first it covers two  

thirds of ⎡ ⎤2e
H  and then it covers two thirds of ⎡ ⎤3e

H  and so on, finally on the iteration  

covers the entire H. RCGS outputs the maximum OR atomic risk factor out of 100  

runs. It also outputs several atomic risk factors in case if adjusted p-value of their ORs are 

below 0.05. RCGS always finds risk factor with OR larger than OR of the risk factor found 

by CGS. However, it is not always more significant after multiple testing adjustment. 
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Experimental results (see Sections 3.3, 3.4) show that greedy heuristics are faster, find more 

frequently statistically significant risk factors and have significantly higher cross-validation 

rate. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5  Randomized Complimentary Greedy Search 

 

Let Hi be a subset of controls S0 with indices 1,…i.  RCGS (see Figure 3.5) repeatedly 

permutes controls and gradually covers them with SNPs -- first it covers two  

thirds of ⎡ ⎤2e
H  and then it covers two thirds of ⎡ ⎤3e

H  and so on, finally on the iteration  

covers the entire H. RCGS outputs the maximum OR atomic risk factor out of 100  

runs. It also outputs several atomic risk factors in case if adjusted p-value of their ORs are 

below 0.05. RCGS always finds risk factor with OR larger than OR of the risk factor found 

by CGS. However, it is not always more significant after multiple testing adjustment. 
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Experimental results (see Sections 3.3, 3.4) show that greedy heuristics are faster, find more 

frequently statistically significant risk factors and have significantly higher cross-validation 

rate.  

 

3.2.4 Maximum Odds Ratio k-Relaxed and Weighted Relaxed Atomic 

Risk Factors 

In this section we give intuition and formally introduce a generalization of atomic risk 

factors with potentially larger OR, so called k-relaxed atomic risk factors.  We then 

describe generalization of CGS to the problem of finding the k-relaxed atomic risk factor 

with the largest odds ratio.  

Below we give two different intuitions leading to the notion of k-relaxed atomic risk 

factor.  Recall that ARF models a single complex cause of a disease -- several simultaneous 

mutations should cut all pathways producing a protein P (see Figure 3.2 (a)). Assume now 

that several individual causes are closely related. This may happen if the disease is caused by 

insufficient amount of a protein P rather than complete absence of P. Then breaking of 

sufficiently many pathways (but not necessarily all of them) can cause a disease. For 

example, Figure 3.2 (b) illustrates the case when out of 3 different pathways it is sufficient to 

break any 2 to cause a disease.  

On the other hand, in the Hamming metric space of all diplotypes, one can expect that 

there exists a “representative" diplotype x associated with the disease that is completely 

surrounded by other diplotypes having significantly high OR or being control-free.  The 

maximum radius ball around x consisting of diplotypes that are underrepresented in 

controls corresponds to such a risk factor. We say that a genotype g is exposed to a k-

relaxed atomic risk factor (k-RARF) defined by an atomic risk factor with the diplotype x, if 
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there are at most k SNPs in g mismatching corresponding SNPs in x. A cluster C of 

individuals exposed to a k-RARF with the diplotype x is a set of all genotypes in S whose 

restriction on all but k SNPs of x coincide with SNP-values in x.  

Maximum Odds Ratio k-Relaxed Atomic Risk Factor (MORRARF) 

Problem: Given a genotype case-control study on a sample population S and a positive 

integer k, find a k-relaxed atomic risk factor with the maximum odds ratio.  

 

 

3.2.4.1  k-Complimentary Greedy Search (k-CGS)  

For the MORRAF problem, we have adjusted the complimentary greedy search applied 

to the MORARF problem.  The adjusted algorithm is called k-CGS (see Figure 3.6).  

 

 

 

 

 

 

 

 

 

 

Figure 3.6  k-Complimentary Greedy Search (k-CGS) 
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3.2.4.2  Weighted Complimentary Greedy Search (WCGS)  

In this section we further relax k-relaxed ARF's to weighted relaxed ARF's, formulate 

the corresponding optimization problem and give the corresponding complimentary greedy 

algorithm.  

Similarly to k-RARF, we give two intuitions leading to the notion of weighted  

relaxed atomic risk factor.  Recall that k-RARF models the case when breaking of  

sufficiently many pathways can cause a disease (see Figure 3.2 (b)).  The weighted  

relaxed ARF models the case when different pathways produce different amount of  

the resulted protein P , and, therefore, different SNPs cancel different amount of P.  

For example, Figure 3.2 (c) illustrates the case when the first pathway produces 3 units  

of P while the second and the third pathways produce 1 and 2 units of P, respectively.  

Therefore, a SNP breaking the first pathway already cancel 3 units of P and causes  

a disease while breaking only the second or only the third pathway is not sufficient  

to disease development.  

On the other hand, in the Hamming metric space of all diplotypes, a ball around a 

“representative” diplotype x consisting of diplotypes underrepresented may be stretched or 

shrunk along different axes (SNPs). Formally, given a diplotype x with positive integer weight 

ws for each SNP s in x, the w-weighted Hamming distance from a genotype g to x equals the 

weighted number of mismatches between them, ∑ ∈
=

xs sswxgwh δ),( , where 1=sδ  if 

there is a mismatch in s and 0, otherwise. A cluster C of individuals exposed to a weighted 

k-relaxed risk factor (WRARF) with the diplotype x and weights w on SNPs of s is a set of 

all genotypes within w-weighted Hamming distance k from x.  
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Figure 3.7  Weighted Complimentary Greedy Search 

 

 

Weighted Complimentary Greedy Search (WCGS) on Figure 3.7 is a fast greedy 

heuristic for  finding maximum odds ratio WRARF. It consists of forward and backward 

steps (see Figure 3.8). The forward step is similar to the iterations in CGS and k-CGS -- 

it finds the best thresholds ks=v in Ss=v and ks≠v in Ss≠v , i.e., thresholds that reduce controls 

paying the least amount of removed cases per control and equalizing these thresholds by 

setting the weight to difference ks=v - ks≠v (see Figure 3.8 (a)). The backward step does not 



 70
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have analogy -- it increases the number of cases so that the number of added controls per case is 

smaller than in the last forward step (see Figure 3.8 (b)). Whenever possible, WCGS makes 

step backward and if it is impossible it makes the step forward.  

 

 

 

 

 

 

 

 

 

 

Figure 3.8 One greedy iteration of the CGS, k-CGS, and WCGS algorithms. 

 

 

3.3  Experimental Results  

In this section we discuss the results of methods for searching disease-associated multi-

SNP combinations and report the number of found statistically significant atomic risk 

factors on real datasets. We first describe several datasets, then overview search methods and 

conclude with description and discussion of their performance. All experiments were ran on 

Processor Pentium 4 3.2Ghz, RAM 2Gb, OS Linux.  
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3.3.1 Data Sets 

- Crohn's disease (5q31): The data set Daly et al [138] is derived from the 616 kilobase region of 

human Chromosome 5q31 that may contain a genetic variant responsible for Crohn's disease 

by genotyping 103 SNPs for 129 trios. All offspring belong to the case population, while 

almost all parents belong to the control population. In entire data, there are 144 case and 243 

control individuals.  

- Autoimmune disorder: The data set of Ueda et al [163] are sequenced from 330kb of human 

DNA containing gene CD28, CTLA4 and ICONS which are proved related to 

autoimmune disorder. A total of 108 SNPs were genotyped in 384 cases of autoimmune 

disorder and 652 controls.  

- Tick-borne encephalitis: The tick-borne encephalitis virus-induced dataset of Barkash et 

al [100] consists of 41 SNPs genotyped from DNA of 21 patients with severe tickborne 

encephalitis virus-induced disease and 54 patients with mild disease.  

- Rheumatoid arthritis: dataset [135] represents a dense panel of 2300 SNPs genotyped by 

Illumina for an approximately 10 kb region of chromosome 18q that showed evidence for 

linkage in the U.S. and French linkage scans.  These markers were individually genotyped on 

460 cases and 460 controls. Controls were recruited from a New York City population.  

- Lung cancer: dataset [144] was obtained using genome-wide DNA pooling strategy in a 

group of German smokers clinically diagnosed with lung cancer and agematched healthy 

smokers. 83.715 SNPs had beed screened. 141 SNPs showed putative allelic imbalance 

between case and control DNA pools and were eventually genotyped in individual 

samples.  Finally, dataset includes 322 male smokers with lung cancer and 273 healthy 

smokers genotyped in 141 SNPs.  

- HapMap datasets: Regions ENr123 and ENm010 from 2 population: 45 Han Chinese from 

Beijing (HCB) and 44 Japanese from Tokyo (JPT) for three regions (ENm013, ENr112, 
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ENr113) from 30 CEPH family trios obtained from HapMap ENCODE Project [156].  

Two gene regions STEAP and TRPM8 from 30 CEPH family trios were obtained from 

HapMap.  

The datasets have been phased using inhouse 2SNP software [101].  The missing data 

(16% in [138] and 10% in [163]) have been imputed in genotypes from the resulted 

haplotypes.  We have also created corresponding haplotype datasets in which each individual 

is represented by a haplotype with the disease status inherited from the corresponding 

individual genotype.  

 

 

3.3.2 Search Methods 

Here we discuss the results of four methods for searching disease-associated MSCs  

on real phased and unphased datasets. The p-values of the frequency distribution of  

the found MSCs are used as a quality measurement. Then we report the number of  

found statistically significant atomic risk factors by six proposed searching methods.  

Search Methods. We have compared the following 5 methods for search disease- 

associated MSCs.  

• Exhaustive Search (ES) 

• Indexed Exhaustive Search (IES30): exhaustive search on the indexed datasets 

obtained by extracting 30 indexed SNPs with MLR based tagging method [113] 

• Combinatorial Search (CS)  

• Indexed Combinatorial Search (ICS30):  combinatorial search on the indexed 

datasets obtained by extracting 30 indexed SNPs with MLR based tagging 

method [113] 

• Complimentary Greedy Search (CGS): approximate search for the maximum 
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control-free or maximum odds ration cluster and corresponding Atomic Risk Factor. 

• k-Relaxed Complimentary Greedy Search (k-CGS): approximate search for the 

maximum odds ration k-Relaxed Atomic Risk Factor. 

• Weighted Complimentary Greedy Search (WCGS): approximate search for the 

maximum odds ration Weighted k-Relaxed Atomic Risk Factor.  

Significant MSCs have been found only on levels 1 and 2 because adjusted p-value grows 

with the level.  The size of the datasets is enough large to make exhaustive search 

impossible even for a combination of 6 SNPs.  

 

 

3.3.3 Comparison of Full Searches 

The quality of searching methods is compared by the number of found statistically significant 

MSCs (see the 7th column) in genotypes (see Table 3.1) and haplotypes (see Table 3.2). Since 

statistical significance should be adjusted to multiple testing, we report for each method and 

data set the 0.05 threshold adjusted for multiple testing (this threshold is computed by 

randomization and given in the third column of Tables 3.1 and 3.2). In the 3d, 4th and 5th 

columns, we give the frequencies of the best MSC among case and control population and the 

unadjusted p-value, respectively 

 

3.3.4  Comparison of Approximate and Full Searches  

We have compared IES30 and ICS30 with CGS (see Section 3.2) for search disease associated 

multi-SNP combinations with the largest PPV.  

The quality of searching methods is compared by the PPV of found clusters as well as 

their statistical significance Table 3.3.  
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Table 3.1  Comparison of 4 methods for searching disease-associated multi-SNPs  
combinations for unphased genotype. Index value denote number of indexed SNPs.  
datasets.  

 

 

3.3.5 Significance of Found Atomic Risk Factors 

The Table 3.4 compares search heuristics ES(1), CS(1), ACS(1) (1-level exhaustive, 

combinatorial and alternating combinatorial searches), their 2-level counterparts, and CGS with 

RCGS applied to all 5 real datasets. For (almost) all datasets the OR of methods are ordered 

as follows:  ES(1), CS(1), ES(2), ACS(1), CS(2), ACS(2), RCGS. The place of CGS is 
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mostly between CS(2) and RCGS. The same order for heuristics holds for the lower limit of 

95% CI of OR and unadjusted p-value. All methods except CGS also can report all found 

atomic risk factors with multiple-testing adjusted p-value less than 5%. On the most of data 

our new methods can find more statistically significant atomic risk factors. Note that ES, 

CS, and ACS are much slow than greedy heuristics.  

 

Table 3.2  Comparison of 4 methods for searching disease-associated multi-SNPs 
combinations for phased genotype.  Index value denote number of indexed SNPs. datasets.  

 

 

 



 76

 

Table 3.3  Comparison of three methods for searching the disease-associated and disease-
resistant multi-SNPs combinations with the largest PPV. The starred values refer to results of 
the runtime-constrained exhaustive search  

 

 

Figure 3.9 shows the results of CGS, k-CGS, and WCGS algorithms after each iteration. 

The results are shown for all available datasets except autoimmune disorder datset. For this 

dataset results are similar to the results for rheumatoid arthritis (see Figure 3.9 (b)). The plots 

in the Figure 3.9 should be read from right to left. The top-right corner corresponds to the 

starting point of each algorithm.  The bottom axis corresponds to the stopping point.  The 

algorithm for best method stops with the largest number of cases in the cluster. For all 

compared datasets the OR of RFs found by the methods are ordered as follows: CGS, k-CGS, 

WCGS. The WCGS finds clusters by 1.5 to 4 times larger than CGS.  

Table 3.5 compares 3 search heuristics applied to all 5 real datasets. For k-CGS method 

we consider k = 5, that is the best found value of k which fits all 5 datasets. The third column 

in the table shows that for all datasets CGS is outperformed by k-CGS which is inferior to 

WCGS when compared to the number of cases in the cluster formed by found RF 

(equivalent to maximum OR). The forth column shows the multiple testing adjusted p-value 

of the found RFs. The k-CGS finds statistically more significant RFs than CGS and WCGS 

finds even more significant RFs. 
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Table 3.4  Comparison of 5 methods searching atomic risk factors represented by multi-SNP 
combinations on five real datasets. For accurate search methods the number in parenthesizes 
denote searching level. 
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Figure 3.9  Number of cases and controls in the cluster after each iteration of CGS, k-CGS, 
and WCGS algorithms run on 4 datasets: (a)  - lung cancer,  (b) rheumatoid arthritis, (c) - tick-
borne encephalitis, (d) - Crohn's disease.  Starting point corresponds to the top-right corner 
where clusters contains entire S . Algorithms stop when number of controls in the cluster is 
zero (bottom axis).  

 

 
Table 3.5 Comparison of CGS, k-CGS, and WCGS methods for searching ARF, k-ARF, and 
WRARF with maximum OR cluster on five real datasets.  
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For datasets of Crohn's disease [138] and autoimmune disorder [163] WCGS finds significant 

WRARFs while no other methods were able to find anything significant. The number of 

SNPs in the diplotypes corresponding to RFs are presented in the fifth column. The last 

column in the Table 3.5 shows the runtime of each method.  

 

 

3.4  Cross-Validation of Searching Methods 

This section addresses problems of validation of methods searching for disease associated 

risk factors in genotype data analysis.  

This challenge is of statistical nature.  Only statistically significant risk factors (whose 

frequency distribution has p-value less than 0.05) are believed to be reproducible.  

Successful as well as unsuccessful searches for SNPs with statistically significant association 

have been reported for different diseases and different suspected human genome regions (see, 

e.g., [136]).  Unfortunately, reported findings are frequently not reproducible in independent 

case-control studies.  It can be caused by confounding factors or the lack of significance -- 

the reported p-values are frequently unadjusted to multiple testing.  Nevertheless, validation 

of findings on independent data is usually very expensive and additional evidence may 

help.  Still it would be preferable to estimate how frequently a search method finds 

reproducible MSC. Here we propose to directly validate searching methods using cross-

validation scheme, i.e., in the same way as predictions are validated.  

We have cross-validated our search methods on real case-control studies for several diseases  

(Crohn's disease  [138], autoimmune disorder [163], tick-born encephalitis [134],  and lung 

cancer  [144]).  Proposed methods are compared favorably to the exhaustive search -- they 
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have significantly higher leave-half-out cross-validation rate.  

 

 

3.4.1 Permutation Test for Multiple-Testing Adjustment 

Since statistically significant MSCs are searched among many such combinations, the 

computed p-value requires adjustment for multiple testing. The standard Bonferroni correction 

adjusts p-value by multiplying it by the number of the number of tests, i.e., number of tested 

MSCs. However, the Bonferroni correction is overly pessimistic, e.g., for finding one 

significant SNP among 100 we should multiply its p-value by 100; as a result, SNP should have 

p < 0.0005 in order to be statistically significant. Similarly, this factor grows to 104 for 2-

SNP combinations. Instead, we compute multiple testing adjustment using more accurate but 

computationally extensive randomization method. 104 times, we repeat the following:  

1.  randomize the status of individuals (by random swapping);  

2.   find the 500th smallest p-value of MSCs.  

 

This p-value corresponds to the multiple testing adjusted p = 0.05.  

 

3.4.2 Experimental Results 

3.4.2.1 Data Sets 

- Crohn's disease (5q31): The data set Daly et al [138] is derived from the 616 kilobase region of 

human Chromosome 5q31 that may contain a genetic variant responsible for Crohn's disease 

by genotyping 103 SNPs for 129 trios. All offspring belong to the case population, while 

almost all parents belong to the control population. In entire data, there are 144 case and 243 

control individuals.  
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- Autoimmune disorder: The data set of Ueda et al [163] are sequenced from 330kb of 

human DNA containing gene CD28, CTLA4 and ICONS which are proved related to 

autoimmune disorder. A total of 108 SNPs were genotyped in 384 cases of autoimmune 

disorder and 652 controls. 

 

Table 3.6 Leave-half-out cross-validation of 4 disease-association search methods on 4 real 
datasets. The validation rate for a method is the portion of MCS found on the training half 
that have been validated (i.e., have p-value < 5%) on the testing half.   The significance 
rate is the portion of MSC on the training half that stay significant after multiple testing 
adjustment. For accurate search methods the number in parenthesizes denote searching level.  
 

 

 

 

 

 

 

 

 

 

 

 

 

- Tick-borne encephalitis: The tick-borne encephalitis virus-induced dataset of Barkash et al 

[100] consists of 41 SNPs genotyped from DNA of 21 patients with severe tick-borne 

encephalitis virus-induced disease and 54 patients with mild disease.  

- Lung cancer : dataset [144] was obtained using genome-wide DNA pooling strategy in a 
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group of German smokers clinically diagnosed with lung cancer and age matched healthy 

smokers. 83.715 SNPs had beed screened. 141 SNPs showed putative allelic imbalance 

between case and control DNA pools and were eventually genotyped in individual 

samples.  Finally, dataset includes 322 male smokers with lung cancer and 273 healthy 

smokers genotyped in 141 SNPs.  

 

3.4.2.2  Leave-Half-Out Cross-Validation of Searching Methods  

The Table 3.6 describes the results of leave-half-out cross-validation which has been 

organized as follows:  100 times we randomly choose one half of cases and one half of controls 

for the training set keeping the rest for the testing set.  The table reports two rates:  

- the validation rate for a method is the portion of MCS found on the training half that 

have been validated (i.e., have p-value < 5%) on the testing half;  

- the significance rate is the portion of MSC on the training half that stay significant after 

multiple testing adjustment.  

All methods have low validation rate but greedy heuristics on all sets are more 

frequently validated. Also the greedy heuristics frequently find significant risk factors while 

ES also finds a lot of significant factors that are rarely validated on testing data.  

Only statistically significant risk factors (whose frequency distribution has p-value less than 

0.05) are believed to be reproducible.  Nevertheless, validation of findings on independent 

data is usually very expensive and additional evidence may help. However, it would be 

preferable to estimate how frequently a search method finds reproducible RFs. He we 

directly validate searching methods using cross-validation scheme, i.e., in the same way as 

predictions are validated.  
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In Table 3.7 WCGS is compared favorably to the CGS -- it finds statistically signif- 

icant risk factors more frequently and has significantly higher 2-fold cross-validation  

rate.  

 

 

Table 3.7  Validation of CGS and WCGS on 3 real datasets.  The 2-fold cross- 
validation column corresponds to % best RFs on the training half validated on testing  
half (p-value < 5%). The random-validation columns is the same but testing is allowed  
to overlap with training. The significance corresponds to % best RFs on the training  
half significant after MT-adjustment. The double significance column shows % of best  
RFs on the training half significant after MT-adjustment that are also significant on  
the testing half.  

 

 

 

3.5 Conclusions 

Comparing indexed counterparts with exhaustive and combinatorial searches shows that 

indexing is quite successful. Indeed, indexed search finds the same MSCs as nonindexed search 

but it is much faster and its multiple-testing adjusted 0.05-threshold is higher and easier to 

meet.  

Comparing combinatorial searches with the exhaustive counterparts is advantageous to 

the former. Indeed, for unphased data [138] the exhaustive search on the first and second search 

levels is unsuccessful while the combinatorial search finds several statistically significant 

MSCs for the same searching level.  Similarly, for unphased and phased data of [163] the 
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combinatorial search found much more statistically significant MSCs than the exhaustive 

search for the same searching level.  

Results show (see Tables 3.6 and 3.2) that the indexing approach and the combinatorial 

search method are very promising techniques for searching statistically significant diseases-

associated MSCs which can lead to discovery disease causes. The next step is biological 

validation of statistically significant MSCs discovered by proposed searching methods.  

The comparison of three association searches (see Table 3.3) shows that combi- 

natorial search always finds the same or larger cluster than exhaustive search and is 

significantly faster.  The search method runtime is a critical in deciding whether it can be 

used in in clustering and susceptibility prediction. Note that the both exhaus- 

tive and combinatorial searches are prohibitively slow on the first two datasets and, therefore, 

we reduce these datasets to 30 index SNPs while complementary greedy search is fast enough 

to handle the complete datasets. This resulted in improvement of the complementary greedy 

over combinatorial search for the first dataset when search for the largest case-free cluster - 

after compression to 30 tags the best cluster simply disappears.  

On the most of data our new methods can find more statistically significant atomic risk 

factors.  Note that ES, CS, and ACS are much slow than greedy heuristics. All methods 

have low validation rate but greedy heuristics on all sets are more frequently validated. Also 

the greedy heuristics frequently find significant risk factors while ES also finds a lot of 

significant factors that are rarely validated on testing data.  

The k-CGS and WCGS are significant improvement over CGS since they found risk 

factors that are statistically significant even after multiple-testing adjustment on all data 

while CGS could not find significant ARF on two of these data (see Table 3.5). The found 

relaxed atomic risk factors explain much higher number of cases, 1.5-4 times larger than 

atomic ARFs found by CGS. The k-CGS and WCGS methods also have significantly 
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higher leave-half-out crossvalidation rate (see Table 3.7). 

We conclude that the indexing approach, the combinatorial and complementary greedy 

search methods as well as k-Relaxed and Weighted k-Relaxed CGS are very promising 

techniques that can possibly help (i) to discover gene interactions causing common diseases 

and (ii) to create diagnostic tools for genetic epidemiology of common diseases. 
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CHAPTER 4 

DISEASE SUSCEPTIBILITY PREDICTION 

 

This chapter explores possibility of applying discrete optimization methods to predict the 

genotype susceptibility for complex disease. We propose two approaches for  

predicting genotype susceptibility: (i) universal classifier combinatorial approach and  

(ii) association based combinatorial approach.  The proposed combinatorial method have 

been favorably compared with existing methods on several publicly available  

genotype data.  

 

 

4.1 Introduction 

Recent improvement in accessibility of high-throughput genotyping brought a great 

deal of attention to disease association and susceptibility studies [165].  High density maps 

of single nucleotide polymorphism (SNPs) [156] as well as massive genotype data with large 

number of individuals and number of SNPs become publicly available[153, 154, 157].  A 

catalogue of all human SNPs is hoped to allow genome-wide search of SNPs associated with 

genetic diseases.  

Success stories when dealing with diseases caused by a single SNP or gene were reported. 

But some complex diseases, such as psychiatric disorders, are characterized by a non mendelian, 

multifactorial genetic contribution with a number of susceptible genes interacting with each 

other [161, 147]. In general, a single SNP or gene may be impossible to associate because a 

disease may be caused by completely different modifications of alternative pathways.
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 Furthermore, there are no reliable tools applicable to large genome ranges that could rule out 

or confirm association with a disease. It is even difficult to decide if a particular disease is 

genetic, e.g., the nature of Crohn's disease has been disputed [146].  Although answers to 

above questions may not explicitly help to find specific disease-associated SNPs, they may be 

critical for disease prevention. Indeed, knowing that an individual is (or is not) susceptible to 

(or belong to a risk group for) a certain disease will allow greatly reduce the cost of 

screening and preventive measures or even help to completely avoid disease development, e.g., 

by changing a diet.  

 

4.1.1  Universal Classifier Approaches  

This study is devoted to the problem of assessing accumulated information targeting to 

predict genotype susceptibility to complex diseases with significantly high  

accuracy and statistical power.  We first give several discrete optimization based  

algorithms for prediction disease susceptibility.  We then compare leave-one- and  

leave-many-out tests demonstrating that prediction accuracy of suggested methods  

is sufficiently resilient to discarding case-control data implying that leave-one-out  

test is a trustworthy accuracy measure.  The randomization techniques have been  

used for computing the statistical significance level of proposed methods and resulted  

prediction weights. We show that prediction rate and statistical significance are well  

correlated.  

The proposed methods are applied to two publicly available data: Crohn's disease [153] and 

autoimmune disorder [163]. In the leave-one-out cross-validation tests the proposed linear 

programming (LP) based method achieves prediction rate of 69.5%(p-value below 2%) and 

61.3%(p-value below 62%) and the risk rates of 2.23 and 0.98, respectively. We also show that 

SVM methods used in [159, 164] are not much worse than our proposed LP-based method.  
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4.1.2 Association Based Combinatorial Approaches 

The second part of the chapter shows how to apply association search methods to 

disease susceptibility prediction following [133]. First the problem and cross-validation 

schemes are discussed.  Then the relevant formulation of the optimum clustering problem is 

given and the general method how any clustering algorithm can be transformed into a 

prediction algorithm is described. We conclude with description of two association search-

based prediction algorithms.  

Below is the formal description of the problem from [133].  

Disease Susceptibility Prediction Problem (DSP).  Given a sample population S 

(a training set) and one more individual t ∉ S with the known SNPs but unknown 

disease status (testing individual), find (predict) the unknown disease status.  

The main drawback of such problem formulation that it cannot be considered as a 

standard optimization formulation. One cannot directly measure the quality of a prediction 

algorithm from the given input since it does not contain the predicted status.  

A standard way to measure the quality of prediction algorithms is to apply a cross-

validation scheme.  In the leave-one-out cross-validation, the disease status of each genotype 

in the population sample is predicted while the rest of the data is regarded as the training set. 

There are many types of leave-many-out cross-validations where the testing set contains much 

larger subset of the original sample. Any cross-validation scheme produces a confusion table 

(see Table 4.1). The main objective is to maximize prediction accuracy while all other 

parameters also reflect the quality of the algorithm.  

The next section formally defines the problem and describes several universal and ad hoc 
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methods for predicting genotype susceptibility to complex diseases.  Section 4.3 introduces 

our LP-based prediction algorithm.  Then we introduce an optimum disease clustering 

problem and describe association based combinatorial methods for disease susceptibility 

prediction.  

Section 4.6 describes real case-control study data sets,  discusses prediction and risk rate 

measures and compares results for several susceptibility prediction methods. We draw the 

conclusion in the last section.  

 

 

4.2 Previous Work 

In this section we first describe the input and the output of prediction algorithms and 

how to predict genotype susceptibility.  We the describe several universal and adhoc 

prediction methods.  

Specifications of prediction algorithms. Data sets have n genotypes and each has m 

SNPs. The input for a prediction algorithm includes:  

 

(G1) Training genotype set gi = (gi,j ); i = 0,.., n – 1, j = 1,.., m, gi,j ∈ {0, 1, 2}  

(G2) Disease status s(gi) ∈ {-1, 1}, indicating if gi, i = 0,.., n - 1, is in case (1) or in control 

(-1) , and  

 

(G3) Testing genotype gn without any disease status.  

The input data can also be phased, then each genotype is represented by a pair of 

haplotypes. We will refer to the parts (G1-G2) of the input as training set and to the part 

(G3) as the test case. The output of prediction algorithms is the disease status of the genotype 
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gn, i.e., s(gn ).  

Below we describe several universal prediction methods. These methods are adaptations of 

general computer-intelligence classifying techniques.  

Closest Genotype Neighbor (CN). For the test genotype gt, find the closest (with respect 

to Hamming distance) genotype gi in the training set, and set the status s(gt) equal to s(gi).  

Support Vector Machine Algorithm (SVM). Support Vector Machine (SVM) is a 

generation learning system based on recent advances in statistical learning theory. It maps input 

vectors to a higher dimensional space where a maximal separating hyperplane is 

constructed. Then 2 parallel hyperplanes are constructed on each side of the 

hyperplane that separates the data. The separating hyperplane is the hyperplane that 

maximises the distance between the two parallel hyperplanes. An assumption is 

made that the larger the margin or distance between these parallel hyperplanes the 

smaller the classification error is. SVMs deliver state-of-the-art performance in real-

world applications and have been used in case/control studies [159, 164]. We use SVM-light 

[150] with the radial basis function with γ= 0.5.  

Random Forest (RF). A random forest is a collection of CART-like trees following 

specific rules for tree growing, tree combination, self-testing, and post-processing. We use 

Leo Breiman and Adele Cutler's original implementation of RF version 5.1 [148]. This 

version of RF handles unbalanced data to predict accurately. RF tries to perform regression on 

the specified variables to produce the suitable model. RF uses bootstrapping to produce 

random trees and it has its own cross-validation technique to validate the model for 

prediction/classification.  

CDPG: Tomita [162] introduced the Criterion of Detecting Personal Group (CDPG) for 

extracting risk factor candidates (RFCs). RFCs are extracted using binomial test and random 

permutation tests.  CDPG performs exhaustive combination analysis using case/control 
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data and assumes the appearance of case and control subjects belonging to a certain rule as a 

series of Bernoulli trials, where two possible outcomes are case and control subjects with some 

probabilities.  

We now describe two ad hoc prediction methods (i.e., classifying techniques taking in 

account the nature of the classification problem).  The first method is 2-SNP method 

[158] and the second method is a variation of the LP-based method [160].   

Most Reliable 2 SNP Prediction [158] (MR). This method chooses a pair of 

adjacent SNPs (site of si and si+1) to predict the disease status of the test genotype gt by 

voting among genotypes from training set which have the same SNP values as gt at the 

chosen sites si and si+1. They chose the 2 adjacent SNPs with the highest prediction rate in 

the training set.  

 

 

4.3  LP-based Prediction Algorithm (LP).  

This method are based on the following genotype graph X = {H, G}, where the vertices 

H are distinct haplotypes and the edges G are genotypes each connecting its two haplotypes 

(vertices) (see Figure 4.1(a)).  

When applying graph heuristics to X, we found that it is necessary to increase the 

density of X. This can be achieved by dropping certain SNPs (or, equivalently, keeping only 

certain tag SNPs). Indeed, dropping a SNP may result in collapsing of certain vertices in X, 

i.e., different vertices become identical. Collapsing vertices may also result in collapsing certain 

edges (genotypes). Discarding a SNP is not allowed if it results in collapsing edges from case 

and control populations, but collapsing of edges from the same population is allowed (see 

Figure 4.1(b)).  
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Figure 4.1  LP-based Prediction Method. (a) The set of case, control and test genotypes 
are phased resulting in the sparse graph with vertices-haplotypes and edges genotypes. (b) The last 
two SNPs are dropped without collapsing case and control edges resulting in a denser graph. 
(c) The LP finds optimal weights for vertices haplotypes. (d) The status of test genotypes is 
predicted from the sign of the sum of weights of their endpoints.  
 

 

 

A simple greedy strategy consists of traversing all the SNPs and dropping a SNP  

if it is allowed.  The resulted set of SNPs is a minimal subset of SNPs which do not  

collapse genotypes from opposite disease status. Unfortunately, in the original graph  

X we may already have collapsed edges from opposite populations - in fact, Daly  

et al data contain such pair of genotypes.  Only such original collapsing is allowed  

-- the status of such edges is assumed to be the one of majority of genotypes.  Our  

experiments show that on average, we are left with 21 tag SNP's out of 103 for Daly  

et al [153] data and 29 tag SNP's out of 108 for Ueda et al [163] data (see description  

of the next section). The selected set tag SNPs are better candidates for being disease  

associated, in fact only such tag SNPs were used in the prediction methods with the  
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highest accuracy.  

After collapsing the graph X we add the edge corresponding to the test-case  

genotype gn. If the edge gn collapses with another edge gi, then we set the predicted  

disease status s(gn) = s(gi). Otherwise, we apply one of the following two methods  

for computing the disease status s(gn). The LP-based method assumes that certain  

haplotypes are susceptible to the disease while others are resistant to the disease.  

The genotype susceptibility is then assumed to be a sum of susceptibilities of its two  

haplotypes.  

We want to assign a positive weight to susceptible haplotypes and a negative weight to 

resistant haplotypes such that for any control genotype the sum of weights of its haploptypes 

is negative and for any case genotype it is positive (see Figure 4.1 (c)).  We would also like 

to maximize the confidence of our weight assignment which can be measured by the 

absolute values of the genotype weights.  In other words, we would like to maximize the 

sum of absolute values of weights over all genotypes.  

Formally, for each vertex hi (corresponding to haplotype) of the graph X we wish to 

assign the weight pi, -1 < pi <1 such that for any genotype-edge eij = (hi, hj ),  s(eij )(pi 

+pj) ¸ 0 where s(eij) ∈ {-1, 1} is the disease status of genotype represented by edge eij .  

The total sum of absolute values of genotype weights is maximized  

 

(4.1) 

 

The above formulation with the objective (4.1) is the linear program which can be 

efficiently solved by a standard linear program solver such as GNU Linear Programming 

Kit (GLPK) [155].  
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For the left-out testing genotype gn, we compute the sum of weights of its haplotypes. If 

the sum is strictly positive, the genotype is attributed to the case, if the sum is strictly 

negative, it is attributed to the control (see Figure 4.1(d)), otherwise s(gn) is assigned 

according to 2-SNP prediction algorithm [158].  

 

 

4.4  Optimum Disease Clustering Problem  

Here we proposes to avoid cross-validation and instead suggests a different objec- 

tive by restricting the ways how prediction can be made. It is reasonable to require  

that every prediction algorithm should be able to predict the status inside the sample.  

Therefore, such algorithms is supposed to be able to partition the sample into subsets  

based only on the values of SNPs, i.e., partition of S into clusters defined by MSCs.  

Of course, a trivial clustering where each individual forms its own cluster can always  

perfectly distinguish between case and control individuals. On the other hand such  

clustering carries minimum information.  Ideally, there should be two clusters per- 

fectly distinguishing diseased from control individuals. There is a trade-off between  

number of clusters and the information carried by clustering which results in trade-off  

between number of errors (i.e., incorrectly clustered individuals) and informativeness  

which was proposed to measure by information entropy instead of number of clusters 

[133].  

 

Optimum Disease Clustering Problem. Given a population sample S, find a 

partition P of S into clusters kSSS ∪∪= ..1 , with disease status 0 or 1 assigned to each 

cluster Si, minimizing  
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for a given bound on the number of individuals who are assigned incorrect status in clusters 

of the partition P, error(P) < α * |P|.  

The above optimization formulation is obviously NP-hard but has a huge advantage over 

the prediction formulation that it does not rely on cross-validation and can be studied with 

combinatorial optimization techniques.  Still, in order to make the resulted clustering 

algorithm useful, one needs to find a way ho to apply it to the original prediction problem.  

 

4.5  Model-Fitting Prediction  

The following general approach has been proposed by us [133]. Assuming that the 

clustering algorithm indeed distinguishes real causes of the disease, one may expect that the 

major reason for erroneous status assignment is in biases and lack of sampling. Then a plausible 

assumption is that a larger sample would lead to a lesser proportion of clustering errors. This 

implies the following transformation of clustering algorithm into prediction algorithm:  

Clustering-based Model-Fitting Prediction Algorithm  

Set disease status 0 for the testing individual t and  

 Find the optimum (or approximate) clustering P0 of S ∪ {t}  

Set disease status 1 for the testing individual t and  

 Find the optimum (or approximate) clustering P1 of S ∪ {t}  

Find which of two clusterings P0 or P1 better fits model, and  accordingly predict status of t, 
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Two clustering algorithms based the combinatorial and complementary greedy association 

searches has been proposed in [133]. This clustering finds for each individual an MSC or its 

cluster that contains it and is the most associated according to a certain characteristic (e.g., 

RR, PPV or lowest p-value)) with disease-susceptibility and disease-resistance.  Then each 

individual is attributed the ratio between these two characteristic values  -- maximum 

disease-susceptibility and disease-resistance.  Although the resulted partition of the training 

set S is easy to find, it is still necessary to decide which threshold between case and control 

clusters should be used.  The threshold can be chosen to minimize the clustering error.  

The combinatorial search-based prediction algorithm (CSP) exploits combinatorial search 

to find the most-associated cluster for each individual. Empirically, the best association 

characteristic is found to be the relative risk rate RR. The complimentary greedy search-

based prediction algorithm (CGSP) exploits complimentary greedy search to find the most-

associated cluster for each individual. Empirically, the best association characteristic is found 

to be the positive predictive value PPV. The leave-one-out cross-validation (see Section 4.6.3) 

show significant advantage of CSP and GCSP over previously known prediction algorithms 

for all considered real datasets.  

 

4.6  Experemental Study  

In this section we discuss the results of methods for susceptibility prediction on real 

datasets.  We first describe available real datasets, then overview search and prediction 

methods and conclude with description and discussion of their performance on leave-one-out 

and leave-many-out cross-validation tests. All experiments were ran on Processor Pentium 4 

3.2Ghz, RAM 2Gb, OS Linux.  
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4.6.1 Data Sets 

- Crohn's disease (5q31): The data set Daly et al [138] is derived from the 616 kilobase region of 

human Chromosome 5q31 that may contain a genetic variant responsible for Crohn's disease 

by genotyping 103 SNPs for 129 trios. All offspring belong to the case population, while 

almost all parents belong to the control population. In entire data, there are 144 case and 243 

control individuals.  

- Autoimmune disorder: The data set of Ueda et al [163] are sequenced from 330kb of human 

DNA containing gene CD28, CTLA4 and ICONS which are proved related to 

autoimmune disorder. A total of 108 SNPs were genotyped in 384 cases of autoimmune 

disorder and 652 controls.  

- Tick-borne encephalitis: The tick-borne encephalitis virus-induced dataset of Barkash et al 

[100] consists of 41 SNPs genotyped from DNA of 21 patients with severe tickborne 

encephalitis virus-induced disease and 54 patients with mild disease.  

The datasets have been phased using 2SNP software [101].  The missing data (16% in 

[138] and 10% in [163]) have been imputed in genotypes from the resulted haplotypes.  We 

have also created corresponding haplotype datasets in which each individual is represented 

by a haplotype with the disease status inherited from the corresponding individual genotype.  

 

 

4.6.2  Results for Universal Classifiers Methods  

Cross-validation Tests. In the leave-one-out cross-validation, the disease status of each 

genotype in the data set is predicted while the rest of the data is regarded as the training set. 

In the leave-many-out cross-validation, n individuals are uniformly at random picked up 
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from the data set, marked and put back, where n is the size of the data set. This way, 

approximately 2/3 of the individuals are picked at least once and marked while the rest will 

not be marked. The training set consists of marked data and the testing set consists of 

unmarked data. 

 

Table 4.1 Confusion table 

 

 

 

 

 

Quality Measures. In cross-validation tests, the predicted and the actual disease statuses 

are compared and the standard confusion matrix is filled (see Table 4.1). We report sensitivity, 

specificity, and accuracy of the prediction methods. We also report the the risk rate of the 

corresponding integrated risk factor associated with each prediction method. It is 

computed as the the ratio of the probability of developing disease among those predicted 

susceptible to the probability of developing disease among those predicted non-susceptible 

[152]:  
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We report the 95% confidence intervals (CI) for accuracy and risk rate, for leave-

one-out test 95% CI is computed using bootstrapping. We also compute significance 

level, p-value, for the accuracy of prediction algorithms computed using 5000 random- 

ized instances.  On the randomized instances, the average prediction rate for SVM and 

RF has been 60% and for all other methods except has been 50%.  

Results.  Table 4.2 compares 6 different prediction methods for both data sets. Column C 

denotes performed cross-validation tests, LOO stays for leave-one-out test and LMO 

stays for leave-many-out test. For leave-one-out test, the best accuracy is achieved by LP 

-- 69.5% on Daly et al.  [153] data and by MR -- 63.9% on Ueda et al.  [157] data. For 

leave-many-out test, the accuracy only slightly degrades showing resiliency to the size of the 

data. The risk rates for the integrated risk factor associated with prediction methods are 

comparable with risk rates for individual SNPs -- for the first data set, 2.23 (LP method) vs 

2.7 and for the second data set, 1.73 (RF method) and 1.64 (MR method) vs 3.2.  The good 

performance of SVM and certain other universal methods indicate that they can possibly be 

adjusted to improve specific ad hoc methods for prediction of susceptibility to complex 

diseases.  
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Table 4.2  The comparison of sensitivity, specificity, accuracy and risk rate with 95% 
confidence intervals (CI) and p-value for 6 prediction methods for two real data sets. 
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4.6.3  Results for Association Based Prediction Methods  

We compare the prediction algorithms based on combinatorial and complimentary greedy 

searches (see Section 3.2.3.1) from previous chapter [133] with three universal classifiers 

prediction methods.  We have chosen SVM, RF, and LP since they have best prediction 

results for two real data sets [138] and [163] (see Table 4.2).  

Table 4.3 reports comparison of all considered prediction methods. Their quality is 

measured by sensitivity, specificity, accuracy and runtime. Since prediction accuracy is  the 

most important quality measure, it is given in bold.1 Figure 4.2 shows the receiver operating 

characteristics (ROC) representing the trade-off between specificity and sensitivity. ROC is 

computed for all five prediction methods applied to the tick-borne encephalitis data [100].  

 

 

4.7 Conclusions 

In this chapter, we discuss motivation behind the genotype susceptibility studies. The 

proposed susceptibility prediction method based on linear programming is shown to have 

high prediction rates and high relevant risk rate for associated integrated risk factors for two 

completely different case-control studies for Crohn's disease [153] and autoimmune disorders 

[157].  

The comparison of the proposed association search-based and previously known 

susceptibility prediction algorithms (see Table 4.3) shows a considerable advantage of new 

methods. Indeed, for the first dataset the best proposed method (CGSP) beats the 

previously best method (LP) in prediction accuracy 76.3% to 69.5%. For the second dataset, 

the respective numbers are 74.2% (CSP(30)) to 65.1% (RF), and for the third dataset, they 

are 80.3% (CSP) to 75.5% (LP). It is important that this lead is the result of much 
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higher sensitivity of new methods -- the specificity is almost always very high since all 

prediction methods tend to be biased toward non-diseased status.   

 

Table 4.3  Leave-one-out cross validation results of four prediction methods for three real 
data sets.  Results of combinatorial search-based prediction (CSP) and complimentary 
greedy search-based prediction (CGSP) are given when 20, 30, or all SNPs are chosen as 
informative SNPs.  
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The ROC curve also illustrates advantage of CSP and GCSP over previous methods.  

Indeed the area under ROC curve for CSP is 0.81, for SVM is 0.52 compared with random 

guessing area of 0.5.  Another important issue is how proposed prediction algorithms 

tolerate data compression. The prediction accuracy (especially sensitivity) is increases for 

CGSP when more SNPs are made available -- e.g., for the second dataset, the sensitivity grows 

from 29.4% (20 SNPs) to 32.3% (30 SNPs) to 46.3% (all 108 SNPs).  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2  The receiver operating characteristics (ROC) for the five prediction methods 
applied to the tick-borne encephalitis data [100].  All SNPs are considered tags for CGSP and 
CSP.  

 

The extensive computational results show great potential of the proposed association 

search based susceptibility prediction algorithms.  
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CHAPTER 5 

SOFTWARE PACKAGES 

 

1. 2SNP: fast and scalable phasing software for trios and unrelated individuals, based on 

2-SNP haplotypes, http://alla.cs.gsu.edu/~software/2SNP.  

2. DACS: software for searching statistically significant multi-SNP combinations 

associated with a disease and predicting disease susceptibility of a given individual, 

http://alla.cs.gsu.edu/~software/DACS.  

3. TrioPhasing:  integer linear programming based software for phasing Trio data, 

requires LP solver, http://alla.cs.gsu.edu/»software/trioPhasing.html.  

4. GeneSuscept: software for predicting disease susceptibility. It implements  LP-

based prediction algorithm.  
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CHAPTER 6  

FUTURE WORK  

 

In our future work we concentrate on six challenges arising in disease-association and 

disease-susceptibility prediction studies (i) design of more robust, fast and scalable algorithms 

for disease association search, (ii) development of faster algorithms for adjusting to the 

multiple testing the significance of the risk factors, (iii) developing of fast and acceptable 

methods for validation of disease association search methods, (iv) developing of the scalable 

indexing methods for genome-wide study, (v) design and testing of several disease models, 

(vi) development of faster, scalable and more accurate disease susceptibility prediction 

methods.  

In the current work we had addressed the challenge of developing fast and 

scalable methods for disease association search (see chapter 3) and several good 

solutions had been proposed. The complimentary greedy search method (CGS) and its 

randomized implementation (RCGS) give very impressive results by finding the significant 

risk factors on the case-control study datasets where no associations were found before. Some 

of those risk factors had been confirmed by independent biological studies.  The CGS method is 

very fast and scalable.  However, it is too straightforward, and for several datasets, was 

unable to find risk factors significantly associated with a disease while slower RCGS found 

some of them. The problem with RCGS is that it is not scalable for genome-wide study.  

Therefore, one of our future goals is speeding-up of the RCGS method by limiting its 

randomness. We plan to implement randomization process using simulated annealing 



 106

We also plan to develop new searching methods for wide-genome scan. These 

methods will localize the DNA segments that possibly contain markers associated with a 

disease. Then on the extracted pieces of DNA we can run our exhaustive combinatorial search 

to find the multi-SNP combinations which mark disease.  

When the disease-association methods will be accurate enough, we will move to our next 

goal which is development of many disease models and their evaluation on different 

diseases using our search methods.  Successful models will allow us to understand how 

complex diseases are embedded within the DNA.  

The models which we will first analyze consider multiplicative and additive 

integration of SNPs in forming complex risk factors for a complex diseases.  In 

chapter 3 we search for a risk factor associated with a disease modeled as an MSC,  

i.e.,  set of SNPs with fixed allele values (multiplicative integration).  However, the same 

disease can be partially explained by several MSCs. Therefore, we should also consider 

additive integration of MSCs.  The next question arisen in model selection is haplotypes 

or genotypes are basis of the disease causes.  

One of the next goals is the design of the indexing methods which will allow us to 

reduce large datasets to smaller ones without losing markers which marks disease. In the 

reduced set we will be able to run more robust but slow searching methods. Currently we 

use MLR-Tagging method (see chapter 3) for indexing which helps to perform deeper 

disease association search.  However, this method is not extendable for wide-genome scan 

study.  

The next challenge that we address in our future work is design of the fast meth- 

ods for computing the significance of the risk factors. The significance of the risk 

factor should be adjusted to the multiple testing by considering the total num- 

ber of risk factors among which the search was performed and the complexity of the searching 
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method.  Currently we use permutation test which is very slow and completely useless for 

medium or large datasets. For large datasets we have to perform Bonferroni adjustment which 

is overly pessimistic and might disregard significant risk factors. Therefore, there is a great 

need for a method that adjusts the significance in more accurate than Bonferroni way and it is 

fast and scalable.  

The next challenge which we address in our future work is methods for validation of 

searching methods. Because of the lack of available genotype case-control study data and 

their small size there no established methods for validation of the disease-association 

search methods. In chapter 3 we propose to use cross-validation schemes usually applied for 

prediction methods.  However, this method is not very well tested and could be significantly 

modified in our future research.  

Based on the new developed searching methods we address in our future work the challenge 

of developing of faster, scalable and more accurate disease susceptibility prediction 

methods. The methods described in chapter 4 are acceptably accurate but extremely 

slow for large datasets.  Therefore, there is a great need for faster disease susceptibility 

prediction methods.  
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