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RESUM  
L’anàlisi de l’efecte dels gens i els factors ambientals en el desenvolupament de malalties complexes és un gran repte 
estadístic i computacional. Entre les diverses metodologies de mineria de dades que s’han proposat per a l’anàlisi 
d’interaccions una de les més populars és el mètode Multifactor Dimensionality Reduction, MDR, (Ritchie i al. 
2001). L’estratègia d’aquest mètode és reduir la dimensió multifactorial a u mitjançant l’agrupació dels diferents 
genotips en dos grups de risc: alt i baix. Tot i la seva utilitat demostrada, el mètode MDR té alguns inconvenients entre 
els quals l’agrupació excessiva de genotips pot fer que algunes interaccions importants no siguin detectades i que no 
permet ajustar per efectes principals ni per variables confusores. En aquest article il·lustrem les limitacions de 
l’estratègia MDR i d’altres aproximacions no paramètriques i demostrem la conveniència d’utilitzar metodologies 
paramètriques per analitzar interaccions en estudis cas-control on es requereix l’ajust per variables confusores i per 
efectes principals. Proposem una nova metodologia, una versió paramètrica del mètode MDR, que anomenem Model-
Based Multifactor Dimensionality Reduction (MB-MDR). La metodologia proposada té com a objectiu la identificació de 
genotips específics que estiguin associats a la malaltia i permet ajustar per efectes marginals i variables confusores. La 
nova metodologia s’il·lustra amb dades de l’Estudi Espanyol de Càncer de Bufeta.  
 
ABSTRACT 
Analyzing the effects of genes and environmental factors on the development of complex diseases is a great challenge 
from both the statistical and computational perspectives. Several data mining methods have been proposed for 
interaction analysis, among them, the Multifactor Dimensionality Reduction method, MDR, (Ritchie et al. 2001) that 
has recently achieved a great popularity. MDR strategy is to reduce the multi-factor dimension to one by pooling multi-
locus genotypes into two groups of risk: high and low. Although MDR has proven its usefulness it suffers from some 
major drawbacks including that important interactions could be missed due to pooling too many cells together and that it 
cannot adjust for main effects and for confounding factors. In this paper we illustrate the limitations of MDR strategy and 
nonparametric approaches and demonstrate the value of using a model-based approach for analyzing interactions in 
case-control studies where adjustment for confounding variables and for main effects is required. We propose a new 
approach, a model based version of MDR, which we refer as Model-Based Multifactor Dimensionality Reduction (MB-
MDR). The proposed modelling approach is aimed to identify specific multi-locus genotypes that are associated with 
disease susceptibility and allows adjusting for marginal effects and confounders. The new methodology is illustrated 
with data from the Spanish Bladder Cancer Study.  
 
RESUMEN 
El análisis del efecto de los genes y los factores ambientales en el desarrollo de enfermedades complejas es un gran 
reto tanto estadístico como computacional. Entre los diversos métodos de minería de datos que se han propuesto para 
el análisis de interacciones uno de los más populares es el métode Multifactor Dimensionality Reduction, MDR, 
(Ritchie et al. 2001). La estrategia de este método es reducir la dimensión multifactorial a uno mediante la agrupación  
de los diferentes genotipos en dos grupos de riesgo: alto y bajo. A pesar de su utilidad demostrada el método MDR 
tiene algunos inconvenientes entre ellos que la agrupación excesiva de genotipos puede hacer que algunas 
interacciones importantes no sean detectadas y que no permite ajustar por efectos principales ni por variables 
confusoras. En este artículo ilustramos las limitaciones de la estrategia MDR y de otras aproximaciones no 
paramétricas y demostramos la conveniencia de utilizar metodologías paramétricas para analizar interacciones en 
estudios caso-control que requieran el ajuste por variables confusoras y por efectos principales. Proponemos una 
nueva metodología, una versión paramétrica del método MDR, que denominamos Model-Based Multifactor 
Dimensionality Reduction (MB-MDR). La metodología propuesta tiene como objectivo la identificación de genotipos 
específicos que estén asociados con la enfermedad y permite ajustar por efectos marginales y variables confusoras. La 
nova metodología se ilustra con datos del Estudio Español de Cáncer de Vejiga. 
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1. INTRODUCTION 
 
Understanding the effects of genes and environmental factors on the development of complex 
diseases, such as cancer, is a major aim of genetic epidemiology. These kinds of diseases are 
controlled by complex molecular mechanisms characterised by the joint action of several genes, 
each having only a small effect. In this context traditional methods involving single markers have 
limited use and more advanced and efficient methods are needed to identify gene interactions and 
epistatic patterns of susceptibility.  
 
We will focus the discussion on case-control studies and single nucleotide polymorphisms (SNPs), 
though some of the considerations that will be given could be extended to other designs. In this 
scenario the data consists of two groups of subjects, cases and controls, affected and unaffected 
individuals that were randomly selected from a given population according to their disease status. 
For each subject, both a number of environmental and genetic variables (SNPs) are available. The 
goal is to detect significant differences between cases and controls that may explain the different 
disease status of these subjects. 
 
Standard methods to analyse case-control data in this context broadly fall into two classes: 
parametric multi-locus methods including regression (e.g., Park and Hastie 2007) and (bagged) 
logic regression (Ruczinski et al., 2004) or non-parametric multi-locus techniques such as most 
machine learning and data mining approaches. Several data mining methods have been used for 
interaction detection such as tree-based methods (e.g., Recursive Partitioning and Random 
Forests), pattern recognition methods (e.g., Symbolic Discriminant Analysis, Mining association 
rules, Neural networks and Support vector machines), and data reduction methods (e.g., Detection 
of Informative Combined Effects, Multifactor Dimensionality Reduction and Logic regression). A 
nice overview is given by Onkamo and Toivonen (2006).  
 
Whereas the aforementioned non-parametric approaches are appealing because no distributional 
assumptions are imposed on the genotype-phenotype effect, parametric approaches have severe 
limitations when there are too many independent variables in relation to the number of observed 
outcome events. However, when analyzing gene interactions in case-control studies adjustment for 
confounding variables and for main effects is usually required and parametric methods might be more 
flexible. 
 
We will centre our attention on the Multifactor Dimensionality Reduction method, MDR, (Ritchie et 
al. 2001) that has recently achieved a great popularity. The MDR strategy to tackle the dimensionality 
problem of interaction detection is to reduce the dimension to one by pooling multi-locus genotypes into 
two groups of risk: high and low. Although MDR has proven its usefulness (e.g., in bladder cancer: 
Chen et al 2007b, Huang et al 2007, Andrew et al 2006), it suffers from some major drawbacks 
including that some important interactions could be missed due to pooling too many cells together 
and that it cannot adjust for main effects and for confounding factors. In this paper we illustrate 
some of the MDR limitations and demonstrate the value of using a model-based approach for 
analyzing gene interactions in case-control studies where adjustment for confounding variables and 
for main effects is required. We propose a new approach, a model based version of MDR, which 
we will refer as Model-Based Multifactor Dimensionality Reduction (MB-MDR). The proposed 
modelling approach is aimed to identify specific multi-locus genotypes that are associated with 
disease susceptibility and allows adjusting for marginal effects and confounders.  
 
This work is motivated by the Spanish Bladder Cancer Study (SBCS), one of the largest bladder 
cancer studies ever carried out, up to now, aiming at to evaluate the role of both genetic and 
environmental factors, as well as their interaction, in bladder carcinogenesis. Bladder cancer is a 
paradigm for the participation of low penetrance genetic variants in combination with environmental 
exposures, in tumour development and progression. The study recruited 1356 cases and 1270 
controls from 18 participating hospitals during 1997-2001. After having accepted to participate, 
subjects gave information on their past exposure to several environmental risk factors and provided 
blood/saliva as a source of genomic DNA. Up to now, 2000 SNPs have been genotyped with 
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TaqMan and GoldenGate Illumina platforms at the Core Genotyping Facility, National Cancer 
Institute, USA. Here we provide some examples from the analysis conducted with those SNPs in 
genes involved in the inflammatory response according to GO (The Gene Ontology Consortium, 
2000) for which information on 282 SNPs genotyped in a total of 108 genes in this pathway is available.  
 
In Section 2.1 a brief description of the MDR methodology is given. A detailed description of it can 
be found at Ritchie et al. (2001) or Hahn et al. (2003).  In section 2.2 we enumerate some limitations 
of nonparametric approaches when applied to case-control studies and of the specific dimension 
reduction strategy followed by the MDR method. Real data from the Spanish Bladder Cancer Study 
are used to illustrate the discussion. The alternative new approach (MB-MDR) is described in 
Section 2.3 and is illustrated with the same bladder cancer dataset. The performance of both 
methods in terms of power under different situations is compared through a simulation study 
(Section 3). Finally, Section 4 is devoted to the discussion.  
 
2. METHODS 
 
A SNP is a change in one unique nucleotide, usually having only two possible values, two possible 
alleles, the common one, A, and the variant or minority one, a. Since DNA is duplicated in each cell this 
yields to 3 possible genotypes: AA for the common homozygous subjects, Aa for the heterozygous 
subjects and aa for the variant homozygous subjects. From a statistical point of view a SNP can be 
thought as a categorical variable with three different categories that we recode numerically as 0 for AA, 
1 for Aa and 2 for aa. Association of a SNP with a disease can be tested using different genetic 
models, the most frequently used being: 1) the dominant model (heterozygotes and minor 
homozygotes are combined and compared as a group with common homozygotes); 2) the recessive 
model  (common homozygotes and heterozygotes are compared as a group with minor homozygotes); 
3) the codominant model (the three genotype groups are considered separately) and 4) the additive 
model (assumes that risk increases additively with each addition copy of one allele and the genotype 
variable is treated as an ordinal variable). 
 
For the analysis of the interaction between SNPs the co-dominant model is usually used and the 
corresponding multifactor classes or cells are considered. For example, for the interaction between two 
SNPs, each with three genotypes, there are 32=9 two-locus genotype cells; for third order interactions 
there are 27 genotypes, and so forth. This dimensionality problem (Bellman, 1961) is one of the 
reasons why traditional methods of association, such as logistic regression, are less favourable for 
analyzing interactions in samples of relatively small sizes.  
 
 
2.1 Multifactor Dimensionality Reduction 
 
MDR strategy (Ritchie et al. 2001) to tackle this dimensionality problem is to reduce the dimension of 
the multifactor variable to one by pooling multi-locus genotypes into only two categories, high-risk and 
low-risk groups.  
 
After partitioning the data into some number n of equal parts for cross-validation, the ratio of the 
number of cases to controls is evaluated within each multifactor cell and compared with the 
global ratio of cases over controls in the whole sample. Those cells with a case/control ratio 
equal to or above the global ratio are labelled as “high-risk” and the rest of cells as “low-risk”. In 
this way, a model for cases and controls (or affected and unaffected pairs) is formed by pooling 
those cells labelled high-risk into one group and those cells labelled low-risk into another group. 
This strategy reduces the initial model to one dimension (i.e. one variable with two multifactor 
classes) (Hahn, 2003).  
 
The ability of the new model to correctly classify subjects as being a case or a control is 
evaluated through the balanced accuracy, defined as (sensitivity+specificity)/2, on the training 
set (training accuracy) and on the testing set (predictive accuracy). It has been shown via 
simulations that balanced accuracy should be used for MDR analysis of epistasis in 
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imbalanced data sets (Velez et alt., 2007). These accuracy measures are computed and 
averaged across the n cross-validation subsets yielding an average balanced training accuracy 
(ACC) and an average balanced predictive accuracy (PRED) for each model.  
 
MDR strategy is to select a single model from all multi-locus interactions explored and only 
when a final predictive model has been selected the null hypothesis of no association is tested 
via permutation testing.  However, MDR selection criteria for the final best model are confusing 
and differ depending on whether linux or windows version is used. 
 
The Linux version of MDR, described in Hahn (2003), uses the cross-validation consistency 
(CVC) which is measured in the following way. For each cross-validation subset, the model 
with the largest training accuracy is identified and scored with one. Cross-validation 
consistency of a particular model is the sum of the scores across the n cross-validation 
subsets, that is, CVC is the number of times MDR identifies a particular model across the n 
cross-validation subsets. Single best models that maximize the CVC and PRED are selected 
from among each of the one-factor, two-factor, three-factor, four-factor, up to N-factor 
combinations. Among this set of best multifactor models, the model that maximizes the CVC 
and PRED is selected and evaluated using permutation testing.  
 
Instead, the windows implementation of MDR (McKinney, 2006) uses the average balanced 
training accuracy (ACC) to select the best model for each specific dimension. Among this set 
of best multifactor models, the model that maximizes the average balanced predictive accuracy 
(PRED) is selected as the final best model. 
 
The significance of the predicted model is evaluated through a permutation hypothesis test of 
no association where case and control indicators are randomly permuted. For the linux version 
statistical significance is determined by comparing the cross-validation consistency from the 
observed data to the distribution of consistencies under the null hypothesis of no association 
derived empirically from 1,000 permutations. For the windows version statistical significance is 
determined by comparing the observed average balanced predictive accuracy with the 
permutation null distribution of average balanced predictive accuracies. 
 
Example: SNP 40 x SNP 252 interaction 
 
Table 1 illustrates the genotype distribution of the interaction between SNP 40 and SNP 252 
among former-smoker individuals in the SBCS. Each row represents a different 2-locus genotype 
and contains the number of cases, the number of controls and the ratio of the number of cases 
over the number of controls, as well as, the predicted risk category for this genotype. For 
example, the first row corresponds to subjects who are homozygous for the most common allele 
at both loci. The ratio of the number of cases (88) over the number of controls (77) is 1.14, which 
is greater than the overall ratio (1.12), so this genotype is labelled as high risk. 
 
The predicted MDR risk model in Table 1 gave an average balanced predictive accuracy of 57% and 
the result of the permutation test was not significant. Therefore, the null hypothesis of no association 
cannot be rejected and the interaction between SNP 40 and SNP 252 was not identified by MDR as an 
important gene interaction that deserves further investigation. 
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2.2 Limitations of MDR strategy and nonparametric approaches  
 
Though combining cells may potentially increase the power to detect significant gene-gene 
interactions, the specific dimension-reduction strategy followed by the MDR methodology conveys 
some limitations, among them,   are that MDR method may miss some important interactions, it cannot 
adjust for main effects and for confounding factors, it is restricted to binary outcomes, it is 
computational intensive to establish significance, and limited power is achieved in the presence of 
different sources of noise.  
 
Some important interactions could be missed 
 
MDR assigns to the new high risk category any cell with a cases/controls ratio above the global 
threshold, without taking into account the degree of evidence provided by each cell, that is, regardless 
of the size and magnitude of the ratio in each cell. This strategy causes loss of power to detect 
important cells when they are combined with not significant ones.  
 
To illustrate this we use the previous example corresponding to the interaction between SNP 40 
and SNP 252 in the SBCS (Table 1 ). The two-locus genotype (1,1) corresponding to those 
heterozygote individuals for both SNPs, which is highlighted in bold-face, is clearly associated 
with disease. The ratio of affected/unaffected for this genotype is equal to 2.59 in comparison 
with an overall ratio of 1.12. This is also confirmed by the usual measure of association, the odds 
ratio of this genotype versus the rest, which is equal to 2.7 with a p-value of 9.62.10-7.  Despite 
the magnitude of this association, this important interaction was not detected when using MDR 
because cell (1,1) was combined with cell (0,0) and cell (2,0) in the new high risk category. The 
two latter cells should not be considered as high risk cells because there is evidence of no 
association for cell (0,0) and there is not enough sample size in cell (2,0).  
 
This is an example of how this strategy is prone to false positive and negative assignments when 
the ratio of the number of cases and controls in a combination of genotypes is similar to that in 
the entire data, or when both the number of cases and controls in a combination of genotypes is 
small (Chung 2007). Lumping together too many cells may therefore defeat the purpose of 
creating better settings to detect gene-gene interactions. In the presence of high-dimensional 
data, power is likely to be higher when more specific alternative hypotheses are considered. 
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Lack of adjustment for main effects  
 
Another limitation of the MDR approach, which also extends to other nonparametric approaches, is the 
impossibility of adjustment for marginal effects. As already advised by the authors of MDR (Ritchie et 
al., 2003), if main effects are present, it could be difficult to evaluate whether a particular interaction 
was detected because of the main effects, or because a real epistatic effect. In Table 2, we report the 
significant interactions at a 0.05 level that where identified with MDR after permutation testing in the 
bladder cancer study. Significance was determined in a different way as described in 2.1. We think 
that, after the intensive computations required for exploring all possible interactions, reporting only one 
model and ignoring the others is very limited and it is a loss of valuable information. Instead, we think it 
is more appropriate to explore the permutation null distribution of PRED and report those models that 
have a significant PRED value, above the corresponding empirical critical value corresponding to the 
specified significant level. Five individual SNPs (145, 27, 151, 230, and 46), 6 second-order 
interactions, and 3 third-order interactions were predicted to be significantly associated with the 
disease. When observing this table in detail one can realize that all second-order interactions and two 
of the three third-order interactions contain one of the individual significant SNPs. These significant 
findings are probably only reflecting a marginal effect, that is, they are the result of not adjusting for 
main effects.  

 
Furthermore, we explored the two measures of accuracy, the average balanced training accuracy 
(ACC) and the average balanced predictive accuracy (PRED), for the 100 models with higher balanced 
training accuracy for the whole sample. We considered first, second, third and forth order interactions 
(1 SNP, 2 SNPs, 3 SNPs and 4 SNPs, respectively). The results are plotted in  Fig 1. First, it can be 
observed that, for each interaction order, these models have very similar performance in terms of ACC 
and also in terms of PRED which supports that reporting only the model with highest ACC or PRED is 
somehow arbitrary, because models with almost the same predictive value as the best one are ignored. 
The importance of controlling for main effects is also highlighted in Fig 1. For instance, when we looked 
at the best 100 predictive second-order models we realized that 64 of them contained SNP 145 (dark 
dot) which has a very strong main effect. Its marginal effect was also evident in third order interactions, 
almost half of them contained SNP 145.  
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Figure 1 . Average Balanced Training accuracy (Acc) versus Average Balanced Predictive  
accuracy (Pred) for the 100 models with higher balanced training accuracy for the whole  

sample. First, second, third and forth order interactions are considered. 
 
Lack of adjustment  for confounding factors 
 
Controlling for potential confounder variables is important when comparing two populations not 
perfectly matched. To our knowledge, unless a stratified analysis is carried out, confounding 
factors cannot be taken into account with MDR method. In this context, the impossibility of this 
adjustment is an important drawback of nonparametric methods. Some attempts have been done 
to generalize nonparametric techniques, such as classification trees, to semiparametric methods 
which allow controlling for confounders (Chen, 2007a). 
 
Outcome type: Binary  
 
MDR method is restricted to binary outcomes while the effect of gene-gene interactions over other kind 
of outcome variables, such as time-to-event variables, can be also of primary interest. In bladder 
cancer research, for example, it is also important the identification of genetic patterns associated to 
different courses of the tumour, that is, different times to recurrence or progression of the tumour.           
 
Computational  
 
Another drawback is the computational burden when exploring significance. As described in 2.1, MDR 
explores significance through a permutation test on either the cross-validation consistency or the 
average balanced predictive accuracy. These are not invariant reference statistics and consequently 
any application of the methodology requires the construction of the specific permutation null distribution 
for that particular case.   
 
Low power under genotyping error, missing data, phenocopy and genetic heterogeneity  
 
Ritchie et al. (2003) performed a simulation study with the goal of evaluating the power of MDR in the 
presence of common sources of noise in genetic studies: genotyping error, missing data, phenocopy, 
and genetic heterogeneity. They showed that MDR has high power to identify gene-gene interactions in 
the presence of 5% genotyping error, 5% missing data but has reduced power in the presence of 50% 
phenocopy, and 50% genetic heterogeneity. They suggested that extensions of MDR to address 
genetic heterogeneity are needed. One such extension took shape in the form of a focused interaction 
testing framework (FITF; Millstein et al 2006). Within this framework, a data reduction at each level is 
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achieved by including only those gene-combinations that show a sufficient amount of evidence on the 
basis of chi-squared association tests. The authors indicate improved performance in settings including 
the presence of main effects and genetic heterogeneity. In section 3 we report the results of their 
simulation study and compare them with the results of our alternative approach. 
 
 
2.3 MB-MDR: Model-Based Multifactor Dimensionality Reduction 
 
The alternative method proposed in this work keeps up the main idea under MDR of merging multi-
locus genotypes in order to increase the power to detect gene-gene interactions associated with 
disease. The principal difference between the proposed method and MDR is that only those genotypes 
exhibiting some significant evidence of high or low risk will be merged. Those cells which either show 
no evidence of association or have no sufficient sample size are included in an additional category, that 
of no evidence of risk. More precisely, MB-MDR is described as follows:  
 
Let us denote by cj , j from 1 to N, each multifactor cell for a specific interaction where N is the total 
number of multifactor cells. 
 
Step 1: 
 
Each genotype cell, cj, is assigned to one of three categories, High risk (H), Low risk (L) or no evidence 
(0), as a result of an association test on each of these individual genotype cells. The null hypothesis is 
that ORj=1 or, equivalently, betaj =0, with betaj=ln (ORj), where ORj refers to the odds ratio of 
individuals with a genotype cj versus the rest of individuals. This association test can be nonparametric 
(chi-squared test) or parametric (logistic regression) and, in this case, adjustment for main and 
confounders effects can be performed.  
 
Since the power to detect association using individual cells is very limited in this first step of the 
algorithm a conservative threshold of 0.10 is considered. Cells with an OR > 1 and a p-value smaller 
than 0.10 are assigned to the High risk category, cells with an OR < 1 and a p-value smaller than 0.10 
are assigned to the Low risk category and the rest, cells with p-values larger than 0.1, are assigned to 
the zero category.   
 
The result of this first step is a new categorical variable X with values H, L, and 0. The number nH of 
combined cells in category H and the number nL of cells in category L are also recorded and will be 
used in step 3 when assessing significance. 
 
Step 2: 
 
A new association test is performed with the new predictive variable X in {H,L,0} on the outcome 
variable Y. Again, this can be a nonparametric test (chi-squared test) or a parametric one (logistic 
regression) which allows adjusting for confounders and for main effects.  
 
The result of this step is an odds ratio for each risk category, ORH and ORL for the high and low risk 
categories, respectively, where ORH is the odds ratio of individuals in the predicted high risk category 
versus the rest of individuals and ORL is the odds ratio of individuals in the predicted low risk category 
versus the rest of individuals. The corresponding regression coefficients are denoted by bH and bL, 
where bH=ln (ORH) and bL=ln(ORL). 
 
Step 3: 
 
Significance is explored with the Wald statistic, W=[b/se(b)]^2. After the data manipulation of combining 
cells this statistic is no longer chi-squared distributed. It is natural that after merging the most significant 
genotypes the resulting Wald statistic increases and the corresponding raw p-value from the usual chi-
squared reference distribution is smaller. Using the raw p-value would be an artificial and incorrect way 
of achieving significance. An adjustment for the number of combined cells in each category, nH or nL, is 
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required. Permutation null distributions for each order interaction, j, conditional on the number of 
combined cells, k, denoted by Wjk, are obtained by randomly permuting the case and control labels on 
the response variable. They are invariant distributions and therefore they can be tabulated and it is not 
necessary to derive them specifically in every application. Figure 2 shows the shape of W21, W22 and 
W23.  
 
Example SNP 40 x SNP 252  
 
To illustrate the proposed approach we reanalyze the interaction between SNP 40 and SNP 252 from 
the SBCS dataset. We display in Table 3 the results of the association tests on each genotype cell 
(step 1). Two cells are assigned to the Low risk category (cells c2 and c6) and only one cell is 
exhibiting a high risk association (cell c5) and thus, labelled as High risk category. For each individual i 
in the sample and denoting by gi his genotype, the new predictive variable, X, is thus defined as Xi=H if 
gi=(1,1),  Xi=L if gi=(0,1) or gi=(1,2) and Xi=0 otherwise.  

 

 
Table 4 shows the results of the association test of the new 2-dimensional variable X and the outcome 
variable Y (step 2).  The low risk category, X=L, has a Wald statistic equal to 7.56 which would be 
significant at the 0.05 level in a standard Wald test situation (p-value 0.005951). However, in this 
example the low risk category was obtained after merging two original categories (nL=2) and a 
correction for this is needed. A value of 7.56 on the reference permutation null distribution W22 has a p-
value equal to 0.0745 and thus it is no longer significant at a 0.05 level. The test for the high risk 
category, X=H, yields a Wald statistic equal to 21.62 which has a p-value of 3.34 e-5 on the reference 
permutation null distribution, W21. After adjusting for the number of combined cells it remains 
significant. In conclusion, while MDR was not able to find this interaction, the MB-MDR identifies a 
specific two-locus genotype, c5=(1,1), which confers a high risk of bladder cancer after adjusting for 
main and confounder effects.   
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Fig 2. Permutation null distributions, Wjk, for second-order interactions, j=2, conditional on 
the number of combined cells, k=1, 2 and 3.  

 
3. SIMULATION 
 
In order to compare the power of the proposed method (MB-MDR) with that of MDR we replicated a 
simulation study performed by Ritchie et al. (2003) using exactly the same datasets used by these 
authors which is available at http://chgr.mc.vanderbilt.edu/ritchielab/ . They simulated case-control data 
using six different two-locus epistasis models exhibiting interaction effects in the absence of main 
effects. Each dataset consisted of 200 cases and 200 controls, each with 10 SNPs, 2 of which were 
functional (SNP5 and SNP10). Genotypes were generated according to Hardy-Weinberg proportions. 
Penetrance functions and alleles frequencies are given in Table  5 for each model. The minor allele 
probability, p, is 0.5 in models 1 and 2, 0.25 in models 3 and 4 and 0.1 in models 5 and 6. The data 
was generated under these six models in the absence or presence of commonly encountered sources 
of noise in genetic epidemiology studies: genotyping error, missing data, phenocopy, and genetic 
heterogeneity. For each epistasis model, 100 datasets were simulated with no noise, and 100 datasets 
for each noise type (5% genotyping error, 5% missing data, 50% phenocopy, or 50% genetic 
heterogeneity). Genotyping error was simulated resulting in overrepresentation of one allele. 
Phenocopies were simulated such that 50% of the affected individuals had genotype combinations that 
were consistent with low risk according to the epistasis model. These individuals were assumed to be 
affected due to random environmental factors. Fifty percent genetic heterogeneity was simulated such 
that there were actually two different two-locus combinations that increased the risk of disease. Half of 
the affected individuals had one high-risk genotype combination (SNP5 and SNP10), and the other half 
had the other high-risk genotype combination (SNP3 and SNP4).  
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Table 6 reports the results of this simulation study. The power of the two approaches is not measured 
in the same way and therefore the results are not completely comparable, however some important 
conclusions can be built from this simulation study. The power of the MDR method is taken from the 
paper by Ritchie et al. (2003) and corresponds to the number of times that the functional interaction 
(SNP5 and SNP10) is identified by MDR as the best model in each of the 100 simulated datasets of 
each scenario. The power of the MB-MDR approach is the number of cases in each scenario where the 
correct interaction (SNP5 and SNP10) was significant at a 0.05 level. For the genetic heterogeneity 
situation two different power measures are reported: the number (percentage) of cases where both 
interactions (SNP5 x SNP10 and SNP3 x SNP4) were significant and the number (percentage) of 
cases where at least one of the two interactions was significant. 
 
For these simulated scenarios, the new approach clearly outperforms the original MDR. More 
specifically, when no error source is added to the simulated data, the MDR method suffers a decrease 
in power when the minor allele probability is small (models 5 and 6). This fact is not affecting so much 
the power of the MB-MDR method.  Neither method is very affected for the 5% genotyping error when 
the minor allele frequency is relatively large but a decrease in power of the MDR method is observed 
when the minor allele frequency is small (models 5 and 6). The simulated phenocopy situation reduces 
the power of both methods except for models 1 and 2 where minor allele frequency is large. The power 
improvement of the new methodology is especially relevant under genetic heterogeneity where MDR 
performs very poorly. As mentioned before, under genetic heterogeneity two different two-locus 
combinations were simulated to increase the risk of disease. The new approach is able to detect at 
least one of the two-locus interactions with a quite large power for any model and is able to detect both 
interactions if the minor allele frequency is large enough (models 1 and 2). To sum up, for those 
situations where MDR performs well the new approach performs very similarly and we observe an 
increase in power in these situations where MDR did not succeed. As mentioned before the power of 
each method was computed in a different way and therefore it is likely that part of the advantage of 
MB-MDR over MDR observed in this simulation study is due to the difference in power calculation. 
However, what these results clearly show is that the strategy of only retaining one final model, the 
supposed best model, reduces drastically the power of MDR for identifying the real functional model. 
 
 
4. DISCUSSION 
 
In complex disorders, like bladder cancer, there are likely to be many susceptibility genes, each with a 
mixture of rare and common alleles and genotypes that impact susceptibility mainly through nonlinear 
interactions with both genetic and environmental factors. For interacting genetic loci, the interest may 
lie in the potential marginal effects of an interaction (in line with hierarchical modeling) or in the 
interaction itself (in line with non-hierarchical modeling). Genotyping a large number of SNPs feeds the 
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multiple comparisons problem and forces the researcher to adopt very small p-values for establishing 
significance. For these reasons, data reduction techniques that are able to maintain an adequate level 
of complexity and at the same time are able to keep the loss of information to a strict minimum are 
valuable. 
 
In reducing data, the danger is to throw out the baby with the bath water. We have illustrated that the 
pooling process of susceptible cells may just do that. In complex genetic networks, reducing highly 
dimensional data to just one dimension will surely leave some statistical interactions undetected. Part 
of the observed difficulties can be explained by the discrepancy between biological and statistical 
interactions (Cordell 2002). What is meant by an “interaction” is indeed not always clearly specified. 
Whereas Bateson (1909) referred to gene-gene interactions as distortions of mendelian segregation 
ratios due to one gene masking the effects of another, Fisher (1918) referred to gene-gene interactions 
whenever deviations from linearity can be proven in a statistical model involving both genes. The 
translation of genetic or biological epistasis to a mathematical or statistical model is far from obvious in 
most instances; evidence of genetic or biological epistasis does not necessarily imply statistical 
epistasis or vice versa (Moore and Williams, 2005). 
 
Although MDR has proven its usefulness it suffers from some major drawbacks including (i) 
susceptibility can only be investigated in association with binary traits rather than interval or continuous 
outcomes, (ii) adjusting for main effects is not possible, (iii) unless a stratified analysis is carried out, 
confounding factors cannot be taken into account or cannot be conditioned upon, (iv) some important 
interactions are missed due to pooling too many cells together, (v) it is computational intensive to 
establish permutation-based p-values, (vi) limited power is achieved in the presence of phenocopies 
and genetic heterogeneity (Ritchie et al, 2003), (vii) apart from case-control and nuclear families, no 
extensions are available to deal with larger pedigrees or groups of correlated phenotypes. 
 
With most techniques that are currently available, there is no adequate way to deal with missing 
genotypes. Although MDR allows a fourth category level to indicate a missing genotypic recording, it is 
unclear how to interpret combinations with this extra level. Parametric approaches typically adopt a 
complete case scenario. As was laid out by Rubin (1976), a complete case analysis is only under a 
missing completely at random process. We therefore strongly recommend to investigate missing 
patterns and to consider a multiple imputation (Rubin 1987) approach to create “complete” data sets.  
 
No single approach will be able to deal with all issues involved in the search for gene-gene interactions 
of high complexity. Flexible frameworks are needed that can combine the best of several worlds 
(Moore et al 2006): Parametric versus non-parametric, testing versus predicting. MB-MDR allows 
elements of model-based testing and prediction to be incorporated in one data analysis flow. It can deal 
with more than 3-level rich categorical genetic or non-genetic variables, as apposed to classical MDR 
and is non-conditional in nature, as opposed to FITF. The design and the nature of the outcome 
variable(s) can easily be incorporated in the model-step of MB-MDR.  
 
In summary, in this paper we demonstrated the value of using a model-based approach for analyzing 
gene interactions in case-control studies where adjustment for confounding variables and for main 
effects is required.  We illustrated some of the aforementioned limitations exhibited by the classical 
MDR method. Instead of searching for the best overall predictive model our approach is aimed at 
characterizing the association of specific multi-locus genotypes with phenotype. Though in Section 2.3 
the method is formally developed for binary outcomes, it is straightforward to be reformulated in terms 
of continuous and time-to-event phenotypes. Since significance of results can be determined via 
invariant reference statistics, applicable to any implementation, the computational burden of our 
technique over MDR is substantially reduced. MB-MDR has improved power over MDR in the presence 
of genetic heterogeneity. In principle, the association test prior to cell grouping can be chosen in such a 
way to encompass family structure or correlated phenotypes. Hence, our newly proposed method is 
flexible enough to deal with the aforementioned limitations (i) – (vii) exhibited by the classical MDR 
technique.  
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