585 research outputs found

    On the Effect of the Cooperation of Indicator-Based Multiobjective Evolutionary Algorithms

    Get PDF
    For almost 20 years, quality indicators (QIs) have promoted the design of new selection mechanisms of multiobjective evolutionary algorithms (MOEAs). Each indicator-based MOEA (IB-MOEA) has specific search preferences related to its baseline QI, producing Pareto front approximations with different properties. In consequence, an IB-MOEA based on a single QI has a limited scope of multiobjective optimization problems (MOPs) in which it is expected to have a good performance. This issue is emphasized when the associated Pareto front geometries are highly irregular. In order to overcome these issues, we propose here an island-based multiindicator algorithm (IMIA) that takes advantage of the search biases of multiple IB-MOEAs through a cooperative scheme. Our experimental results show that the cooperation of multiple IB-MOEAs allows IMIA to perform more robustly (considering several QIs) than the panmictic versions of its baseline IB-MOEAs as well as several state-of-the-art MOEAs. Additionally, IMIA shows a Pareto-front-shape invariance property, which makes it a remarkable optimizer when tackling MOPs with complex Pareto front geometries

    Metaheuristic design of feedforward neural networks: a review of two decades of research

    Get PDF
    Over the past two decades, the feedforward neural network (FNN) optimization has been a key interest among the researchers and practitioners of multiple disciplines. The FNN optimization is often viewed from the various perspectives: the optimization of weights, network architecture, activation nodes, learning parameters, learning environment, etc. Researchers adopted such different viewpoints mainly to improve the FNN's generalization ability. The gradient-descent algorithm such as backpropagation has been widely applied to optimize the FNNs. Its success is evident from the FNN's application to numerous real-world problems. However, due to the limitations of the gradient-based optimization methods, the metaheuristic algorithms including the evolutionary algorithms, swarm intelligence, etc., are still being widely explored by the researchers aiming to obtain generalized FNN for a given problem. This article attempts to summarize a broad spectrum of FNN optimization methodologies including conventional and metaheuristic approaches. This article also tries to connect various research directions emerged out of the FNN optimization practices, such as evolving neural network (NN), cooperative coevolution NN, complex-valued NN, deep learning, extreme learning machine, quantum NN, etc. Additionally, it provides interesting research challenges for future research to cope-up with the present information processing era

    Neural Architecture Search as Multiobjective Optimization Benchmarks: Problem Formulation and Performance Assessment

    Full text link
    The ongoing advancements in network architecture design have led to remarkable achievements in deep learning across various challenging computer vision tasks. Meanwhile, the development of neural architecture search (NAS) has provided promising approaches to automating the design of network architectures for lower prediction error. Recently, the emerging application scenarios of deep learning have raised higher demands for network architectures considering multiple design criteria: number of parameters/floating-point operations, and inference latency, among others. From an optimization point of view, the NAS tasks involving multiple design criteria are intrinsically multiobjective optimization problems; hence, it is reasonable to adopt evolutionary multiobjective optimization (EMO) algorithms for tackling them. Nonetheless, there is still a clear gap confining the related research along this pathway: on the one hand, there is a lack of a general problem formulation of NAS tasks from an optimization point of view; on the other hand, there are challenges in conducting benchmark assessments of EMO algorithms on NAS tasks. To bridge the gap: (i) we formulate NAS tasks into general multi-objective optimization problems and analyze the complex characteristics from an optimization point of view; (ii) we present an end-to-end pipeline, dubbed EvoXBench\texttt{EvoXBench}, to generate benchmark test problems for EMO algorithms to run efficiently -- without the requirement of GPUs or Pytorch/Tensorflow; (iii) we instantiate two test suites comprehensively covering two datasets, seven search spaces, and three hardware devices, involving up to eight objectives. Based on the above, we validate the proposed test suites using six representative EMO algorithms and provide some empirical analyses. The code of EvoXBench\texttt{EvoXBench} is available from \href\href{https://github.com/EMI-Group/EvoXBench}{\rm{here}}

    Identifying and Detecting Attacks in Industrial Control Systems

    Get PDF
    The integrity of industrial control systems (ICS) found in utilities, oil and natural gas pipelines, manufacturing plants and transportation is critical to national wellbeing and security. Such systems depend on hundreds of field devices to manage and monitor a physical process. Previously, these devices were specific to ICS but they are now being replaced by general purpose computing technologies and, increasingly, these are being augmented with Internet of Things (IoT) nodes. Whilst there are benefits to this approach in terms of cost and flexibility, it has attracted a wider community of adversaries. These include those with significant domain knowledge, such as those responsible for attacks on Iran’s Nuclear Facilities, a Steel Mill in Germany, and Ukraine’s power grid; however, non specialist attackers are becoming increasingly interested in the physical damage it is possible to cause. At the same time, the approach increases the number and range of vulnerabilities to which ICS are subject; regrettably, conventional techniques for analysing such a large attack space are inadequate, a cause of major national concern. In this thesis we introduce a generalisable approach based on evolutionary multiobjective algorithms to assist in identifying vulnerabilities in complex heterogeneous ICS systems. This is both challenging and an area that is currently lacking research. Our approach has been to review the security of currently deployed ICS systems, and then to make use of an internationally recognised ICS simulation testbed for experiments, assuming that the attacking community largely lack specific ICS knowledge. Using the simulator, we identified vulnerabilities in individual components and then made use of these to generate attacks. A defence against these attacks in the form of novel intrusion detection systems were developed, based on a range of machine learning models. Finally, this was further subject to attacks created using the evolutionary multiobjective algorithms, demonstrating, for the first time, the feasibility of creating sophisticated attacks against a well-protected adversary using automated mechanisms

    A learning automata based multiobjective hyper-heuristic

    Get PDF
    Metaheuristics, being tailored to each particular domain by experts, have been successfully applied to many computationally hard optimisation problems. However, once implemented, their application to a new problem domain or a slight change in the problem description would often require additional expert intervention. There is a growing number of studies on reusable cross-domain search methodologies, such as, selection hyper-heuristics, which are applicable to problem instances from various domains, requiring minimal expert intervention or even none. This study introduces a new learning automata based selection hyper-heuristic controlling a set of multiobjective metaheuristics. The approach operates above three well-known multiobjective evolutionary algorithms and mixes them, exploiting the strengths of each algorithm. The performance and behaviour of two variants of the proposed selection hyper-heuristic, each utilising a different initialisation scheme are investigated across a range of unconstrained multiobjective mathematical benchmark functions from two different sets and the realworld problem of vehicle crashworthiness. The empirical results illustrate the effectiveness of our approach for cross-domain search, regardless of the initialisation scheme, on those problems when compared to each individual multiobjective algorithm. Moreover, both variants perform signicantly better than some previously proposed selection hyper-heuristics for multiobjective optimisation, thus signicantly enhancing the opportunities for improved multiobjective optimisation

    Enhancing SAEAs with Unevaluated Solutions: A Case Study of Relation Model for Expensive Optimization

    Full text link
    Surrogate-assisted evolutionary algorithms (SAEAs) hold significant importance in resolving expensive optimization problems~(EOPs). Extensive efforts have been devoted to improving the efficacy of SAEAs through the development of proficient model-assisted selection methods. However, generating high-quality solutions is a prerequisite for selection. The fundamental paradigm of evaluating a limited number of solutions in each generation within SAEAs reduces the variance of adjacent populations, thus impacting the quality of offspring solutions. This is a frequently encountered issue, yet it has not gained widespread attention. This paper presents a framework using unevaluated solutions to enhance the efficiency of SAEAs. The surrogate model is employed to identify high-quality solutions for direct generation of new solutions without evaluation. To ensure dependable selection, we have introduced two tailored relation models for the selection of the optimal solution and the unevaluated population. A comprehensive experimental analysis is performed on two test suites, which showcases the superiority of the relation model over regression and classification models in the selection phase. Furthermore, the surrogate-selected unevaluated solutions with high potential have been shown to significantly enhance the efficiency of the algorithm.Comment: 18 pages, 9 figure

    An ensemble indicator-based density estimator for evolutionary multi-objective optimization

    Get PDF
    International audienceEnsemble learning is one of the most employed methods in machine learning. Its main ground is the construction of stronger mechanisms based on the combination of elementary ones. In this paper, we employ AdaBoost, which is one of the most well-known ensemble methods, to generate an ensemble indicator-based density estimator for multi-objective optimization. It combines the search properties of five density estimators, based on the hypervolume, R2, IGD+, ε+, and ∆p quality indicators. Through the multi-objective evolutionary search process, the proposed ensemble mechanism adapts itself using a learning process that takes the preferences of the underlying quality indicators into account. The proposed method gives rise to the ensemble indicator-based multi-objective evolutionary algorithm (EIB-MOEA) that shows a robust performance on different multi-objective optimization problems when compared with respect to several existing indicator-based multi-objective evolutionary algorithms

    Evolutionary Computation

    Get PDF
    This book presents several recent advances on Evolutionary Computation, specially evolution-based optimization methods and hybrid algorithms for several applications, from optimization and learning to pattern recognition and bioinformatics. This book also presents new algorithms based on several analogies and metafores, where one of them is based on philosophy, specifically on the philosophy of praxis and dialectics. In this book it is also presented interesting applications on bioinformatics, specially the use of particle swarms to discover gene expression patterns in DNA microarrays. Therefore, this book features representative work on the field of evolutionary computation and applied sciences. The intended audience is graduate, undergraduate, researchers, and anyone who wishes to become familiar with the latest research work on this field

    Multi-objective hierarchic memetic solver for inverse parametric problems

    Get PDF
    We propose a multi-objective approach for solving challenging inverse parametric problems. The objectives are misfits for several physical descriptions of a phenomenon under consideration, whereas their domain is a common set of admissible parameters. The resulting Pareto set, or parameters close to it, constitute various alternatives of minimizing individual misfits. A special type of selection applied to the memetic solution of the multi-objective problem narrows the set of alternatives to the ones that are sufficiently coherent. The proposed strategy is exemplified by solving a real-world engineering problem consisting of the magnetotelluric measurement inversion that leads to identification of oil deposits located about 3 km under the Earth's surface, where two misfit functions are related to distinct frequencies of the electric and magnetic waves
    corecore