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Abstract
We propose a multi-objective approach for solving challenging inverse parametric problems. The
objectives are misfits for several physical descriptions of a phenomenon under consideration,
whereas their domain is a common set of admissible parameters. The resulting Pareto set, or
parameters close to it, constitute various alternatives of minimizing individual misfits. A special
type of selection applied to the memetic solution of the multi-objective problem narrows the set
of alternatives to the ones that are sufficiently coherent. The proposed strategy is exemplified
by solving a real-world engineering problem consisting of the magnetotelluric measurement
inversion that leads to identification of oil deposits located about 3 km under the Earth’s surface,
where two misfit functions are related to distinct frequencies of the electric and magnetic waves.

Keywords: inverse problems, multi-objective optimization methods, memetic algorithms

1 Introduction

Parametric inverse problems (IPs) for partial differential equations (PDEs) play a crucial role
in numerous tasks in science, technology and medicine. There exist a variety of applications of
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IPs, including oil and gas exploration, structure health monitoring, and cancer tissue diagnosis
(see e.g. [19]). Typically, parametric inverse problems are formulated as global optimization
problems (GOPs), where the decision variables are induced by discrete representations of the
unknown parameter functions. The misfit between measurement and simulated PDE solutions
stands for the GOP’s objective functional. Numerical IPs solvers encounter multiple challenges,
generally caused by the ill-conditioning and non-uniqueness of the solution (multi-modality).
Misfit regularization (see e.g. [8]) and the use of complex stochastic searches (see e.g. [12]) allow
to overcome difficulties caused by mathematical model imperfections and numerical errors, but
neither of these approaches can handle the lack of data or its inappropriate utilisation.

The following multi-objective approaches for solving IPs might be found in the literature:
A. Multiple misfit functions obtained for multiple physics. In particular, the authors of [3] apply
the inverse quantitative structure-property relationship for designing new chemical compounds.
Optimal design of a magnetic pole is considered in [5]. Here, different objective functions are
associated with two independent methods of solving the considered forward problem.
B. Multi-objective analysis used to improve the conditioning of the solving method. A two-
objective parameter identification using a genetic algorithm is reported in [15]. The second
additional criterion was used to penalize populations with small diversity. Another approach,
used, e.g., in [6], was to combine two objective function formulations with an immunological
algorithm. The two objective functions modelled fitnesses of individuals and T-cells, respec-
tively.

The strategies presented in this paper fall into the first group (A). Let us assume that
we can observe n physical processes ui(ω) ∈ V i, i = 1, . . . , n, which depend on the unknown
parameter ω ∈ D, where V i are proper Sobolev spaces. Let Ai(ui(ω)) = 0 be the relevant
governing equations, where Ai : V i −→ (V i)′ is a family of differential operators from V i to
their conjugate. We assume to know d, the vector of state observations di ∈ Oi and introduce the
vector of misfit functionals f(d, u(ω)) with coordinates Oi × D 3 (di, ui(ω)) → f i(di, ui(ω)) ∈
R+, associated with particular physics i = 1, . . . , n.

The inverse problem formulated as the multi-objective problem consists of finding parame-
ters ω such that they minimize all misfit functionals in the Pareto sense (see e.g. [14])

min
ω∈D
{f(d, u(ω)) : A(u(ω)) = 0} , (1)

where A(u(ω)) = 0 is the system of equations Ai(ui(ω)) = 0, i = 1, . . . , n.
In this work, we analyze, whether such multi-objective approach, introduced in [11] allows to

develop algorithms with two important features. First, increased robustness, which in particular
leads to improved guarantee of finding a solution. Second, reduced computational cost, which
results from improved conditioning. The presented approach utilizing two (or more) physical
models aims at reducing the number of unwanted solutions by comparing the objectives results
and preferring similar solutions.

In this paper, we apply the complex, multi-deme Hierarchic Memetic Strategy (HMS) [17]
especially designed to solve inverse problems with multi-modal objectives (fitness). The search
of the Pareto set (or its connected parts) is performed by applying a particular type of rank
selection (cf. MOGA [9]), supplemented with the rank modification rule boosting fitness for
parameters ω ∈ D, for which most misfits achieve sufficiently small values. Such approach can
significantly improve results obtained by solving a single-objective problem with scalarization
of a misfit vector f(d, u(ω)).

The proposed strategy is exemplified by solving a real-world engineering problem consisting
of inverting magnetotelluric (MT) measurements (see [18]) in order to characterize oil deposits
located about 3 km under the Earth’s surface. In this problem, two misfit functions are related
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to distinct frequencies of the electric and magnetic waves, for which the maximum sensitivity
with respect to the search parameter, the impedance, is expected.

2 Multi-Objective Hierarchic Memetic Search

2.1 Hierarchic Memetic Search

This section contains a short description of HMS, concentrating on its computational aspects.
For the details on the system architecture and algorithms, we refer the reader to [17] and [18].

As a global optimization tool, HMS combines high-level exploratory capabilities with the
accuracy and efficiency of a local optimization method. In contrast to classical two-phase meth-
ods, in which the global search phase precedes a series of local search runs, HMS intermixes
local optimization executions with a global stochastic search machinery. The global part fol-
lows the multi-population evolutionary approach introduced by the Hierarchic Genetic Search
(HGS) [16]. Namely, the global search is performed by a collection of genetic populations. The
populations can evolve in parallel, but they are not mutually independent. The structure of
the dependency relation is hierarchical (i.e. tree-like, see Fig. 1) with a restricted number of
levels. Such a multi-population structure shows considerable exploratory capabilities combined

Level 1

Level 2

Level 3

root deme

branch demes

leaf demes

U1

U2

U3

genetic spaces

low accuracy

high accuracy

Figure 1: HMS evolutionary population tree

with a good search accuracy [21]. HMS inherits these abilities, and at the same time, it goes
beyond the HGS in some important aspects. First of all, it adds local optimization to the
set of operations applied to the genetic individuals. But this is done with care in order to
avoid the premature population convergence and the high cost of running instances of a local
method from inappropriate points. Namely, some genetic individuals (but not necessarily all
of them) receive an identity and some intelligence, hence becoming independent agents in a
multi-agent system (MAS), and the decision of performing the local search becomes their own
responsibility. In order to turn a passive genetic individual into an intelligent one, we have
to redefine the genetic operations in such a way that they can be applied to agents. This is
straightforward in the case of the mutation and the crossover, but the agent selection cannot
be performed in the simple genetic (or evolutionary) way. Instead, we follow the lines of the
Evolutionary Multi-agent Systems (EMAS) [4], thus performing an operation analogous to the
proportional or tournament selection, but realized as a two-agent rendezvous. It should be
noted that the agent orientation is not the only option. In the current implementation, the
active individuals are used only at the leaf level, where the search is most accurate. Therefore,
the local optimization can be executed only at this level. Higher, hence less accurate, tree level
demes are endowed with simple evolutionary populations. However, the demes themselves have
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corresponding manager agents. Thus, the overall HMS structure is agent-based. This allows
for a relatively easy and effective processing of the parallel evolution and synchronization of
demes, and the distribution of decisions on the execution of the local method.

Genetic individuals located at the tree levels close to the root perform the chaotic and
inaccurate search, whereas going towards the leaves the search becomes more and more focused
and the accuracy is increased (see Fig. 1). The variability of the search accuracy results from the
diversity of the genotype encoding precision used at different tree levels. The latter depends on
the encoding type. In the case of the binary encoding (as in the Simple Genetic Algorithm), it
can be achieved by the binary genotype length variation, whereas in the case of the real number
encoding (as in the Simple Evolutionary Algorithm), it can be realized by the appropriate
phenotype scaling. The latter case is used in the current implementation of the HMS so we
present here some details. The description is based on [21, 13].

In the real number encoding, both phenotypes and genotypes are vectors from RN . We
assume that the solution domain is a box D = [a1, b1]× · · · × [aN , bN ] and we take a sequence
of scaling factors ηi ∈ R such that η1 > η2 > . . . ηm−1 > ηm = 1. Then, the genetic universum
at the tree level j is Uj = [0, (b1 − a1)/ηj ]× · · · × [0, (bN − aN )/ηj ] and the encoding mapping
at the level j is defined as codej : D 3 ω → {(ωk − ak)/ηj}k=1,...,N ∈ Uj . Moreover, we define

the scaling mapping scalei,j : Ui 3 ω → (ηi/ηj)ω ∈ Uj that, in particular, enable to adopt the
objectives (misfit functions) to each level of the HGS tree f im = f i, f ij(x) = f i(code−1j (x)), x ∈
Uj , j < m. In such genetic universa, the search at lower levels is more chaotic (because the
mutation acts stronger) and less precise (the loss of precision is caused by limitations in the
real number representation). One can use various genetic operators in such an encoding. We
employ both the normal mutation and the arithmetic crossover. The selection operator is
described in the next subsection. A newly sprouted deme’s population is sampled according to
the N -dimensional Gaussian distribution centred at the properly encoded fittest individual of
the parent process with the diagonal covariance matrix with values (σsprout

j )2 on the diagonal.
The sprout cannot be performed in population P at level j if there exists a population P ′ at
level j+1 such that |y−scalei,i+1(y)| < cj , where y is the best individual in P , y is the average
phenotype of P ′ and cj is a branch comparison constant.

The variable-accuracy approach of HMS allows us to take advantage of one more solved
inverse problem feature. When the dependency of the forward problem solution upon the
parameters is Lipschitz continuous and the objectives are computed by means of an adaptive
Finite Element solver (hp-FEM) (see [7] for details), we can adapt the solver accuracy to the
assumed accuracy of HMS tree demes. Each objective f ij(x), i = 1, . . . , n can be computed at
the particular level j of the HMS tree in the following way:

1: solve a forward problem Ai(u(code−1j (x))) = 0 by hp-FEM for coarse and fine meshes
2: compute relative hp-FEM error erel
3: while erel is less than a level-dependent Ratio i(j) do
4: perform one step of hp adaptation
5: solve Ai(u(code−1j (x))) = 0 by hp-FEM for a new fine mesh and compute a new erel
6: end while
7: return approximate objective f ij(x) computed using the final mesh

where the parameter Ratio i(j) depends on the Lipshitz constant of the functional f i, and the
encoding accuracy at the j-th level of the hp-HMS tree. Note that the aforementioned Lipschitz
continuity is not obvious and it has to be proved for each particular case. For the MT problem
considered here, this was proven [18, Remark 1]. Furthermore, in a few important cases, we
know the dependency between the solver accuracy and the computational cost of the forward
problem solution (cf. [2, 12]), which is the main unit term of the overall HMS computational
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cost. Hence, by modulating the deme accuracy, we can optimize this overall cost.

2.2 Multi-objective selection and rank modification

A multi-objective version of HMS, denoted as MO-HMS, utilizes a multi-objective selection
operator based on the Pareto-dominance ranking procedure proposed by Fonseca and Fleming
in [9]. First, the rank of an individual is given as the number of solutions by which it is
dominated in a particular deme. Second, the population is sorted according to ranks and new
fitnesses are assigned according to some increasing function, so that individuals with the lowest
ranks obtain the lowest (best) fitness values, and individuals with the highest ranks obtain the
highest (worst) fitness values. Individuals with the same rank should obtain equal fitnesses to
be sampled at the same rate.

Third, we apply rank modification (RM), which allows to incorporate information about the
incidence between the objectives to the final fitness. RM can be used when the domains of the
composing physical models that induce objective functions are the same. Let us define modified
fitness function mod fitnessj : Uj → R+ ∪ {0} for an individual x ∈ Uj in a particular epoch:

mod fitnessj(x) =
rank(x)

µj
+ hj(x), (2)

where µj < +∞ is the population cardinality, Uj the genetic universum, and hj : Uj → R+∪{0}
is the rank modification function on the j-th level of the HMS tree. This function determines
the incidence between the objectives and increases the rank of an individual, if the objective
values for that individual differ considerably. In this paper, we use the following two-criteria
RM function:

hj(x) = c

[
f1j (x)

f̄1j
−
f2j (x)

f̄2j

]2
, (3)

where f ij , i = 1, 2 are the objective functions induced by two physical models, f̄ ij , i = 1, 2 are
the maximum observed values of objectives on the j-th level of the HMS tree, and c ∈ R+ is a
constant scaling parameter.

The fitness function for incidence-based rank modification is defined as the following:

fitnessj(x) =

{
mod fitnessj(x) if 0 ≤ mod fitnessj(x) ≤ 1

1 otherwise.
(4)

The proposed RM approach allows to decrease the number of sprouted demes in parts of
the Pareto front in which the incidence between objective functions is low. It also filters out
solutions resulting from artifacts and model inaccuracies. Thus, the computational complexity
is reduced and the number of objectives remains unchanged (cf. additional incidence criterion
for multiple physics models with different domains introduced in [11]).

We utilize a proportional selection, where the selection probability of an individual is ob-
tained from its fitness by using a decreasing validating function. The selection pressure can by
modified by using different validating functions (see e.g. [10]), and incidence pressure is steered
by parameter c in (3) or by changing the rank modification function.
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3 Twin Objective Magnetotelluric Data Inversion

3.1 Magnetotelluric inverse problem

The MT technique is used to recover a resistivity map of the Earth’s subsurface by performing
electromagnetic measurements with devices located on the Earth’s surface or on the oceans’ bed.
The MT technique differs from other geophysical measurement acquisition scenarios because
it only uses natural electromagnetic radiation sources generated within the ionosphere, instead
of human powered antennas. Thus, magnetolluric measurements are comparatively cheap, and
can cover large areas. This method can be applied to hydrocarbon (oil and gas) exploration
and to find suitable regions for storage of CO2.

MT measurements are governed by Maxwell’s equations. When the electrical field E depends
only upon two spatial variables (x, z), then two independent and uncoupled modes are derived
from these equations, namely Transverse Electric (TE) and Transverse Magnetic (TM). TE
mode involves (Ey, Hx, Hz) field components while TM uses (Hy, Ex, Ez), where H stands for
the magnetic vector field. In this work, we focus on the TE mode and we solve the equation for
Ey(ρ) in a regular domain Ω ⊂ R2, assuming a distribution of the electrical resistivity ρ which
belongs to the set D = {ξ ∈ L∞(Ω); ξ(x) =

∑
i=1,...,K ξiχi(x), 0 < ξmin

i ≤ ξi ≤ ξmax
i < +∞},

where {χi}i=1,...,n are the indicator functions of a disjoint covering {Ωi}i=1,...,K such that⋃
i=1,...,K Ωi = Ω, Ωi ∩Ωj , i 6= j. The goal-oriented hp-FEM is used for the effective simulation

of the measuring process [1] resulting in the electrical field component Ey(ρ) in Ω.
Our aim is to obtain the impedance, a suitable physical magnitude to perform the inversion.

To do so, the magnetic field is obtained from Maxwell’s equations and the impedance Z is
computed according to Z = Zyx = Ey/Hx, Hx(ρ) = (jωµ)−1(∂Ey(ρ)/∂z), so, the approximate
impedance at each antenna i = 1, . . . ,M can be computed as the nonlinear functional

gi(ρ) = jωµLi(Ey(ρ))

(
Li

(
∂Ey(ρ)

∂z

))−1
, Li(v) =

1

meas(Bi)

∫
Bi

v, (5)

where Bi is a small regular neighborhood surrounding each receiver i = 1, . . . ,M . The Eu-
clidean norm of a difference between measured and simulated impedances at all antennas con-
stitutes a typical misfit in the MT inverse problem:

f(d,Ey(ρ)) =
1

2M

M∑
i=1

∣∣gi(ρ)− di
∣∣2 , (6)

where di are the impedances measured at each antenna i = 1, . . . ,M . Notice that the above
misfit function is associated with the particular wave frequency for which the impedances di
are observed.

The details of forward problem formulation, its solution using goal oriented hp-FEM and
the dependence between forward and inverse error that allows for the effective application of
hp-HMS stochastic inversion was studied in [18].

The frequency range is 10−5–103 Hz, which allows to acquire measurements with a resolution
that ranges from a few meters to hundreds of kilometres. The frequency also affects the depth
at which the resistivity is recognized with the higher accuracy (see e.g. [20]). The sensitivity of
the probe depends also upon the frequency, usually achieving more than one maximum [1].

We performed computations leading to restoring a subsurface resistivity in an area of about
2500 km of diameter and a depth of 0–40 km, using measurements from 7 probes located
centrally, on the Earth’s surface (see Fig. 2). For this particular geological model, the mea-
surements di = {dij} were recorded at two frequencies, namely 10−3 and 10−1.2 Hz for i = 1, 2,
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Figure 2: Geological formations and and receivers location

respectively and for all receivers j = 1, . . . , 7. Such setting makes the best measurement con-
ditions concerning both: the maximum probe sensitivity and the best penetration for a depth
range 5–30 km (see [1]). The computing domain Ω is a vertical rectangle of length 2500 km and
height 40 km, which is decomposed into four subdomains Ωi, i = 1, . . . , 4: upper brown, orange,
lower brown and grey respectively, with a constant resistivity distributions inside (see Fig. 2).
We will use two impedance misfits f i(di, Ei

y(ρ)), i = 1, 2 of the same form (6) associated with
the frequencies ω1 = 10−3 Hz and ω2 = 10−1.2 Hz mentioned above. Both criteria use the
same domain D, which is the admissible set of resistivities on the modelling area. All above
settings were sufficient to formulate the Pareto problem (1) which intends to restore resistivities
ρ1, . . . , ρ4, and to apply MO-HMS with rank modification described in Sections 2.1, 2.2 for its
solution.

3.2 Computational results

In our simulations, we computed the impedance by means of a goal-oriented hp-FEM solver (see
[1] and [7] for details). Its great advantage is the ability to compute the impedance along with
its first partial derivatives in a single run. For both considered frequencies, we imposed three
solver accuracy levels: 60%, 20% and 3.5%, where the accuracy was measured as the maximal
relative FEM error percentage. The reference impedance vectors d1, d2 for both misfit functions
were obtained by solving the forward problem with the best available solver accuracy (3.2% for
ω1 and 1.2% for ω2), assuming the real values ρ1 = 1.0, ρ2 = 2.0, ρ3 = 3.0, ρ4 = 10.0. HMS has
three-level deme layout with Evolutionary Agents endowed with rank-modifying MO selection
at every level. The computations were quite expensive, as a single HMS run lasted about three
days. Therefore, the simulations were executed only five times. Each run was stopped after
20 root deme metaepochs. Other HMS execution parameters are summarized in Table 1. It
turned out that the average time of FEM computations were about: 1 min 5 s (ω1) and 1 min
35 s (ω2) for accuracy level 60%, 2 min 10 s and 4 min 5 s for accuracy level 20%, and 3 min
5 s and 5 min 20 s for accuracy level 3.5%. The reason of differences in execution times is that
for frequency ω2, the solver had to perform more steps of hp-FEM adaptation to obtain the
assumed accuracy. The average number of calls of each objective was: 453.4 for accuracy 60%,
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Table 1: HMS execution parameters
Root Middle Leaf

Population (initial) 20 10 5
Metaepoch length 2 2 2
Encoding scale 16384.0 128.0 1.0
Mutation rate 0.2 0.05 0.01
Crossover rate 0.5 0.5 0.5
Mutation std. dev. 3.0 0.6 0.1
Sprout std. dev. - 1.0 0.2
Sprout min. dist. - 1.0 0.2

573.4 for accuracy 20% and 233.4 for accuracy 3.5%. Therefore, the total average number of
objective evaluations was 2 · 1260.2 = 2520.4.

After the end of the computations, we selected the union of all obtained leaf populations,
and evaluated the modified fitness (2)-(4) in this set of individuals. In Fig. 3 we show the
objective values of three categories of these individuals. The categories are determined by the
modified fitness level. The fittest (red-square-marked) points form an approximation of the
Pareto front. Some points do not fit in the picture because their objectives diverge too much.
Namely, one point in the middle category and four points in the worst category. Tab. 2 shows
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Figure 3: MT problem: Fittest points (objective space)

the 10 best individuals from the final combined population ordered according to the decreasing
value of the modified fitness, given by equations (2), (3).
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Table 2: Ten fittest individuals
ρ1 ρ2 ρ3 ρ4 f1 f2 mod. fitness

1.13084 1.89134 4.95361 3.79417 4.36966e-12 1.3282e-09 3.233923e-10
1.00934 3.35482 7.20712 5.61759 1.72058e-10 1.00846e-11 5.734588e-10
1.01717 0.861847 1.11798 5856.51 6.47885e-10 4.8077e-10 0.003891
1.14103 3827.59 555.283 0.938879 5.52019e-09 3.20812e-10 0.003892
1.15335 1.88267 5.06596 4.00167 4.6676e-12 1.733e-09 0.0116732
0.840196 1.51921 809.341 173.729 1.64577e-10 1.93778e-09 0.015564
0.848216 1.36373 930.981 153.274 2.01386e-10 1.69992e-09 0.015564
0.839527 1.53301 799.904 175.562 1.61933e-10 1.95819e-09 0.015564
0.837674 1.57199 774.275 180.752 1.55012e-10 2.01536e-09 0.015564
0.807628 1.59017 95.1825 1.01592 4.55766e-11 2.06576e-09 0.015564

4 Conclusions

The paper contains a multi-objective approach for solving challenging IPs. The objectives are
misfits for the particular physical descriptions of the phenomenon under consideration (multi-
physics approach), while their domain is a common set of admissible parameters. The search
of the Pareto set (or its connected parts) is performed by a complex, multi-deme HMS with a
particular type of rank selection, supplemented with the rank modification rule boosting fitness
for parameters for which most misfits achieve sufficiently small values.

Taking into account more information coming from many physics (multiphysics) we obtain
more reliable solutions than in a single physics case. Moreover, the obtained Pareto solutions
or parameters close to the Pareto set deliver various possibilities of minimizing individual mis-
fits. Finally, the selection mechanism penalizing misfit discrepancy (2)-(4) narrows the set of
alternatives to the ones that are sufficiently coherent. It is still much more robust than the
solution obtained for an arbitrary scalarization of a misfit vector. The applied hp-HMS twin
adaptive strategy equipped with the common inverse and forward errors scaling and with the
rank modification, allows for a moderate computational cost of this complicated strategy.

The proposed strategy is exemplified by solving a real-world engineering problem consisting
of inverting MT measurements in order to characterize oil deposits located about 3 km under
the Earth’s surface. The results confirm that each objective delivers independent information on
the solved problem. Even after rank modification, we obtain solutions with differently balanced
misfits. Numerical results also show that the problem is much more sensitive to shallow and
vast ground layer resistivities than to deep or narrow layer ones, as physically expected.
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