
For Peer Review

A Learning Automata based Multiobjective Hyper-heuristic

Journal: Transactions on Evolutionary Computation

Manuscript ID TEVC-00119-2017.R2

Manuscript Type: Regular Papers

Date Submitted by the Author: n/a

Complete List of Authors: Li, Wenwen; University of Nottingham, Computer Science School
Özcan, Ender; University of Nottingham, Computer Science
John, Robert; University of Nottingham, School of Computer Science

Keywords:
Online learning, Multiobjective optimisation, Hyper-heuristics, Evolutionary
algorithms, Operational research

IEEE Transactions on Evolutionary Computation

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Nottingham ePrints

https://core.ac.uk/display/141471249?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

For Peer Review

1

A Learning Automata based Multiobjective
Hyper-heuristic

Wenwen Li, Ender Özcan, and Robert John

Abstract—Metaheuristics, being tailored to each particular
domain by experts, have been successfully applied to many
computationally hard optimisation problems. However, once im-
plemented, their application to a new problem domain or a slight
change in the problem description would often require additional
expert intervention. There is a growing number of studies on
reusable cross-domain search methodologies, such as, selection
hyper-heuristics, which are applicable to problem instances
from various domains, requiring minimal expert intervention
or even none. This study introduces a new learning automata
based selection hyper-heuristic controlling a set of multiobjective
metaheuristics. The approach operates above three well-known
multiobjective evolutionary algorithms and mixes them, exploit-
ing the strengths of each algorithm. The performance and be-
haviour of two variants of the proposed selection hyper-heuristic,
each utilising a different initialisation scheme are investigated
across a range of unconstrained multiobjective mathematical
benchmark functions from two different sets and the real-
world problem of vehicle crashworthiness. The empirical results
illustrate the effectiveness of our approach for cross-domain
search, regardless of the initialisation scheme, on those problems
when compared to each individual multiobjective algorithm.
Moreover, both variants perform signicantly better than some
previously proposed selection hyper-heuristics for multiobjective
optimisation, thus signicantly enhancing the opportunities for
improved multiobjective optimisation.

Index Terms—Online learning, Multiobjective optimisation,
Hyper-heuristics, Evolutionary algorithms, Operational research

I. INTRODUCTION

Multiobjective optimisation problems (MOPs) require si-
multaneous handling of various and often conflicting objec-
tives during the search process. The solution methods designed
for MOPs seek a set of ‘equivalent’ solutions, each reflecting
a trade-off between different objectives.

There are distinct complexities associated with MOPs mak-
ing the development of effective and efficient solution methods
extremely challenging (e.g., very large search spaces, noise,
uncertainty, etc.). Metaheuristics, in particular, multiobjective
evolutionary algorithms (MOEAs) are the most commonly
used search methods in the area of solving MOPs. One of the
main advantages of MOEAs is that they are population based
techniques, capable of obtaining a set of trade-off solutions
with reasonable quality even in a single run [1]. Even though
‘optimality’ can not be guaranteed, empirical results indicate
the success of MOEAs on a variety of problem domains,
including planning and scheduling ([2], [3]), data mining [4],

W. Li, E. Özcan and R. John are with the ASAP research group, School
of Computer Science, University of Nottingham, UK
E-mail: {psxwl8,pszeo,pszrij}@nottingham.ac.uk

and circuits and communications [5]. There are different types
of MOEAs, each utilising different algorithmic components
during the search process and so perform differently. In
the majority of the previous studies, individual MOEAs are
designed and applied to a particular problem in hand. More
on MOEAs and their applications to various multiobjective
problems can be found in [6].

On the other hand, there is a growing number of studies
on selection hyper-heuristics which provide a general-purpose
heuristic optimisation framework for utilising the strengths of
multiple (meta)heuristics [7]. Selection hyper-heuristics con-
trol and mix low level (meta)heuristics, automatically deciding
which one(s) to apply to the candidate solution(s) at each
decision point of the iterative search process [8]. Raising
the generality level of heuristic optimisation methods is one
of the main motivations behind the hyper-heuristic studies.
The idea is, through automation of the heuristic search, to
provide effective and reusable cross-domain search method-
ologies which are applicable to the problems with different
characteristics from various domains without requiring much
expert involvement.

Learning is key to develop an effective selection hyper-
heuristic with the adaptation capability. There are some recent
studies looking into the interplay between data science tech-
niques, particularly machine learning algorithms and selection
hyper-heuristics leading to an improved overall performance.
For example, [9] and [10] used tensor analysis as a machine
learning approach to decide which low level heuristics to
employ at different stages of the search process. In [11], the
feasibility and effectiveness of using reinforcement learning
to improve the performance of metaheuristics and hyper-
heuristics have been discussed in depth. [12] introduced an
effective multi-stage hyper-heuristic for cross-domain search
which first, reduces the low level heuristics to be used in the
following stage based on a multiobjective learning strategy
and then mixes them under a stochastic local search frame-
work. More recently, computational intelligence techniques
have been used as components of general purpose methods
managing low level (meta)heuristics for overall performance
improvement. For example, [13] introduced a fuzzy inference
selection based hyper-heuristic which mixed and controlled
four search operators, each derived from a different meta-
heuristic to solve a computationally hard problem of t-way
test suite generation. However, the aforementioned studies
all focus on single objective optimisation. There have been
some studies on combining the strengths of multiple MOEAs
with the aim of providing a better overall performance for
multiobjective optimisation under a selection hyper-heuristic

Page 1 of 14

IEEE Transactions on Evolutionary Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

2

framework (e.g., [14], [15]). From this point onward, we will
refer to such selection hyper-heuristics as multiobjective hyper-
heuristics (MOHHs).

In this study, we present a new learning automata based
selection hyper-heuristic framework with implementation of
two variants, Learning Automata based Hyper-heuristic (HH-
LA) and Learning Automata based Hyper-heuristic with a
Ranking Scheme Initialisation (HH-RILA) for multiobjective
optimisation. Both selection hyper-heuristics mix and control
a set of three well-known MOEAs: nondominated sorting ge-
netic algorithm (NSGA-II) [16], strength Pareto evolutionary
algorithm 2 (SPEA2) [17] and indicator based evolutionary
algorithm (IBEA) [18]. The learning automaton acts as a
guidance for choosing the appropriate MOEA at each de-
cision point while solving a given problem. The proposed
two variants of selection hyper-heuristics mainly differ in
their initial set-up process. HH-LA employs all three low
level MOEAs and gives an equal chance initially to each
algorithm making a random start. HH-RILA applies a rank-
ing scheme which eliminates the relatively poor performing
MOEA(s) and uses the remaining MOEAs in the improvement
process (Section III-A). The performance of the proposed
hyper-heuristics are investigated against a variety of other
multiobjective approaches across a range of multiobjective
problems, including well-known benchmark functions and a
real-world problem of vehicle crashworthiness. The empirical
results indicate the effectiveness and generality of the proposed
hyper-heuristics with novel components.

The rest of the paper is organised as follows. Section
II introduces some essential concepts of MOPs, selection
multiobjective hyper-heuristics as well as learning automata
and provides background for vehicle crashworthiness. Section
III presents the details of the proposed method which embeds
three novel components. Firstly, the learning automaton com-
ponent designed for multiobjective optimisation operates in a
non-traditional way as explained in Section III-B. The second
component, as described in Section III-C supports the develop-
ment of a two-stage metaheuristic selection approach based on
the information obtained from the learning process, enabling
the use of two different metaheuristic selection methods at
different stages. The third component as described in Section
III-D adaptively decides when to switch to another MOEA
depending on a tuned improvement threshold parameter. The
parameter tuning and setting are included in Section IV, as
well as the discussion and analysis of the experimental results.
Section V concludes this study and provides directions for
future work.

II. BACKGROUND

A. Related Work on Multiobjective Selection Hyper-heuristics
MOEAs and other multiobjective approaches aim to identify

true Pareto fronts (PFs), i.e., equal quality optimal trade-off
solutions. If the true PFs are unknown, then MOEAs are
used to generate ‘good’ approximations [19]. The majority
of the multiobjective approaches contain certain algorithmic
components to achieve the following key goals [1]: i) preserve
nondominated solutions; ii) progress towards the true PFs; iii)
maintain a diverse set of solutions in the objective space.

WFG [20] and DTLZ [21] are two widely used test suites
in the MOEA literature that provide benchmark functions
with various characteristics. The comparison of different PFs
obtained from different MOEAs is not trivial because multiple
aspects should be considered, such as convergence (how close
the final fronts to the true PFs are) and diversification (how
dispersed the obtained fronts are) capabilities. There are a
variety of performance indicators including the convergence
indicators, such as hypervolume, ε+. [19]. Hypervolume mea-
sures the size of objective space covered by the resultant front
with respect to a reference point, while ε+ is the minimum
distance that a solution front needs to move in all dimensions
to dominate the reference front. As for diversification, the
most commonly used indicators include spread [16] and
generalised spread [22] which extends spread to higher than
two dimensions. Generalised spread is computed based on the
mean Euclidean distance of any nearest pairs of neighbours
in the nondominated solution set. The smaller the value, the
better the spread of the resultant front. More analysis and
review of various performance indicators for MOEAs can be
found in [19].

Designing, implementing and maintaining a (meta)heuristic
for a particular problem is a time-consuming process requiring
a certain level of expertise in both the problem domain and
heuristic optimisation. Once implemented, application of a
metaheuristic to a new problem domain or even a slight
change in the problem description would often require the
intervention of an expert. This is basically due to the fact that
metaheuristics are often customised for a particular problem
domain (benchmark). On the other hand, hyper-heuristics
have emerged as automated general-purpose cross-domain
optimisation methods with reusable components which can
be applied to multiple problem domains/benchmarks with the
least modification [7]. Dealing with multiple problem domains
and problem instances means dealing with various scales of
objective values, making it extremely difficult to compare the
cross-domain performances of algorithms. Which method to
use for performance comparison of hyper-heuristics across
multiple problem domains (distributions/benchmarks) and how
the performance comparison should be done are still open
issues in the hyper-heuristic research. Currently, there are two
commonly used metrics in the area: Formula 1 ranking ([9],
[12]) and µnorm ([23], [24]). In this work, we preferred the
latter one (details are in Section IV-B) which is a more in-
formative metric taking into account of the mean performance
of algorithms using normalised performance indicator values
over a given number of trials on the instances from multiple
problem domains/benchmarks.

The focus of this study is on selection hyper-heuristics
which choose and apply from a set of low level
(meta)heuristics at each decision point of the search [8]. A key
component in a selection hyper-heuristic is the (meta)heuristic
selection method which should be capable of adapting itself
depending on the situation to choose the appropriate low
level (meta)heuristic at each decision point. Hence, learning
is a crucial component of (meta)heuristic selection meth-
ods. Additionally, move acceptance technique is another key
component of selection hyper-heuristics ([25], [26]), which

Page 2 of 14

IEEE Transactions on Evolutionary Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

3

determines whether or not newly generated solution(s) should
be accepted as the input solution(s) to the next step/stage. The
majority of the previous studies on selection hyper-heuristics
focus on optimisation of single objective problems. Still, there
are a few studies on multiobjective selection hyper-heuristics
investigating either the use of selection hyper-heuristics con-
trolling multiple operators or mixing multiple multiobjective
metaheuristics.

[27] presented a selection hyper-heuristic (HH-AP) using
an online learning heuristic selection method based on adap-
tive pursuit [28] managing five domain-specific perturbation
operators. HH-AP is utilised for solving a multiobjective
design problem for an Earth observation satellite system. [29]
proposed a hyper-heuristic which mixes four different indica-
tors, each from a well-established MOEA, including NSGA-
II, SPEA2 and two IBEA variants to rank individuals for
mating. An indicator gets selected depending on the associated
probability for each individual and four subpopulations are
constructed. Mating occurs within each subpopulation using
binary tournament selection and eventually, four offspring
pools are formed constituting to the new population. The
indicator probabilities are maintained during the search via
mixture experiments based on a statistical model. [30] and
[31] incorporated a roulette wheel based heuristic selection
mechanism [32] into their multiobjective hyper-heuristic evo-
lutionary algorithm to select low level mutation operators. [33]
developed a hyper-heuristic based on two heuristic selection
methods (choice function [14] and multi-armed bandit [34])
for choosing from multiple mutation and crossover operators
during the search for the multiobjective integration and test
order problems [35].

Some offline learning techniques have also been seen in
recent MOHHs studies, e.g., genetic programming techniques
in ([36], [37], [38], [39], [40]), grammatical evolution [41] in
[42] and top-down induction of decision trees in [43].

On the other hand, there are a few studies on multiobjective
search methods that make use of multiple MOEAs. [44]
proposed a multialgorithm genetically adaptive multiobjective
(AMALGAM) method performing cooperative search using
various MOEAs. AMALGAM executes all MOEAs simulta-
neously, each with a separate subpopulation at each step, and
a pool of offspring gets generated by each MOEA. Those
offspring pools from MOEAs are merged to form the new
population. Afterwards, fast nondominated sorting is applied
to the union of the new and previous populations to choose the
elite solutions surviving to the next generation. The size of the
subpopulation for each MOEA gets updated adaptively based
on the number of surviving solutions from each MOEA. The
search continues until a set of termination criteria is satisfied.

[14] introduced a powerful online learning selection hyper-
heuristic for multiobjective optimisation, namely choice func-
tion based MOHH (HH-CF), managing NSGA-II, SPEA2
and MOGA [45]. The proposed choice function maintains an
adaptively changing score for each low level MOEA during
the search process based on two key components: individual
performance and time elapsed since the last call of an MOEA.
The former component uses four different indicators, includ-
ing hypervolume, uniform distribution, ratio of nondominated

individuals and algorithm effort [46]. It is for exploitation,
advocating the invocation of the most successful MOEA with
the highest score repeatedly, while the other component is for
exploration, giving a chance to the MOEAs which were used
the least. The MOEA with the top score is always chosen and
applied at each decision point. The results in [14] show that
HH-CF outperforms not only the three underlying MOEAs
which are executed individually, but also AMALGAM and a
random hyper-heuristic on the majority cases of bi-objective
WFG benchmark functions.

In this study, we focus on online learning techniques as
a part of selection MOHHs. It has already been observed
that different MOEAs show strengths with respect to differ-
ent metrics on different multiobjective optimisation problem
domains [47]. The learning ability for detecting the best
performing (meta)heuristic and/or identifying the synergetic
(meta)heuristics ([10], [48]) over time is crucial to design
an effective selection hyper-heuristic. Hence, it is reasonable
to incorporate different MOEAs within an online learning
selection hyper-heuristic framework for improving the cross-
domain performance of the overall approach which can benefit
from adaptively switching between those MOEAs over time.

HH-CF [14] is one of the best performing online learning
multiobjective hyper-heuristics, to the extent of our knowl-
edge. Similar to HH-CF, the proposed hyper-heuristics can
also perform exploration and exploitation. A major difference
is that the online learning method is based on learning au-
tomata within our selection hyper-heuristics for multiobjective
optimisation. Additionally, there is an adaptive mechanism
to ensure that the balance between the exploration and ex-
ploitation is maintained based on the information gathered
by this machine learning technique during the search. A
variant of learning automata was embedded into a single-
objective hyper-heuristic i.e., AdapHH [48] which won the
CHeSC competition1 across six problem domains: Max-SAT,
Bin Packing, Personnel Scheduling, Flow Shop, Travelling
Salesman Problem and Vehicle Routing Problem. The impor-
tance of learning in selection hyper-heuristics and the success
of AdapHH in solving single objective optimisation problems
motivated us to employ an online learning mechanism within
our multiobjective hyper-heuristics for cross-domain search.

B. Learning Automata

Learning automata, introduced by Testlin [49] as a rein-
forcement learning method, has been used in a range of fields,
including pattern classification [50] and signal processing [51].
A learning automaton performs an action and then classifies
it as desirable or not based on a reinforcement signal (neg-
ative/penalty or positive/reward) from the environment [52].
The learning scheme then updates the reward or penalty on
this action depending on the reinforcement signal. The set of
actions processed by learning automata is problem dependent
and varies from one application to another, for example, it
could be choices of a parameter value in [50], heuristics in
[51] or partitions in [53].

1http://www.asap.cs.nott.ac.uk/external/chesc2011/

Page 3 of 14

IEEE Transactions on Evolutionary Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

4

More formally, a learning automaton is defined as a quadru-
ple (A, β, p, U), where A is the action set, β (equals to 0 or
1) represents the (penalty or reward) feedback or reinforce-
ment signal obtained from the environment after taking the
chosen action ai at a given time t, p is the (action) selection
probability vector, where each entry indicates the probability
of an action being selected, and U is the update scheme. The
action set A is commonly considered to be a finite set, i.e.
A = {a1, a2, . . . , ar}. Thus, the traditional model of a learning
automaton is referred to finite action learning automaton [52],
which is denoted as LA in this paper. At a given time (t), the
action selection method chooses an action (say, ai) based on
p. After the selected action ai is performed, p is updated by
the scheme U as defined in Equation (1) and (2)) using the
feedback β(t) received from the environment. The sum of all
selection probabilities in p is always equal to 1.
If ai is the action chosen at time step t

pi(t+1) = pi(t)+λ
(1)β(t)(1−pi(t))−λ(2)(1−β(t))pi(t) (1)

For other actions aj 6= ai,

pj(t+ 1) = pj(t)− λ(1)β(t)(pj(t))

+ λ(2)(1− β(t))

[
1

r − 1
− pj(t)

]
(2)

The parameters λ(1) and λ(2) are the reward and penalty rates
respectively. When λ(1) = λ(2), the model is referred as linear
reward-penalty (LR−P). In case of λ(2) = 0, it is referred to
as linear reward-inaction (LR−I). If λ(2) < λ(1), it is called
linear reward-ε-penalty (LR−εP).

C. Vehicle Crashworthiness Problem (VCP)

In the automotive industry, crashworthiness refers to the
ability of a vehicle and its components to protect its occupants
during an impact or crash [54]. The crashworthiness design of
vehicles is of special importance, yet, highly demanding for
high-quality and low-cost industrial products. The structural
optimisation of the vehicle design involves multiple criteria
to be considered. [55] presented a multiobjective model for
the vehicle design which minimises three objectives: weight
(Mass), acceleration characteristics (Ain) and toe-board intru-
sion (Intrusion). More specifically, the weight of the vehicle
is to be minimised for enabling economic mass production.
An important goal of the vehicle design is to reduce any
potential harm to occupant(s). When the front of a vehicle
hits an object, it first begins to decelerate by the impact. The
velocity decreases to zero when the vehicle comes to a halt.
As the vehicle begins to bounce back, the velocity increases.
This acceleration can cause head injuries to occupant(s) and
be dangerous to other road users, because the vehicle is now
moving in the opposite direction. To reduce the acceleration
due to collision and possible head injuries to occupants
caused by the worst scenario of the acceleration pulse [56],
minimising an integration of collision acceleration between
0.05-0.07 seconds in the ‘full frontal crash’ is set as the second
objective. Another mechanical injury to occupants may come
from the toe-board intrusion during the crash. It could hurt
the knee trajectories of occupants and influence the steering

of the vehicle. Therefore, minimising the toe-board intrusion
in the 40% offset frontal crash is chosen as the third objective.
The decision variables are the thickness of five predefined
reinforced points, say x1, x2, x3, x4andx5, around the frontal
structure of a vehicle. Each decision variable is between 1 mm
to 3 mm. The VCP model is formulated as follows.

minimise F (X) = [(Mass,Ain, Intrusion)]

subject to 1.0 ≤ xi ≤ 3.0, i = 1, 2, . . . , 5

X = (x1, x2, . . . , x5)
T

(3)

where,

Mass = 1640.2823 + 2.3573285x1 + 2.3220035x2

+4.5688768x3 + 7.7213633x4 + 4.4559504x5
(4)

Ain = 6.5856 + 1.15x1 − 1.0427x2 + 0.9738x3

+0.8364x4 − 0.3695x1x4 + 0.0861x1x5 + 0.3628x2x4

−0.1106x21 − 0.3437x23 + 0.1764x24

(5)

Intrusion = −0.0551 + 0.0181x1 + 0.1024x2

+0.0421x3 − 0.0073x1x2 + 0.024x2x3 − 0.0118x2x4

−0.0204x3x4 − 0.008x3x5 − 0.0241x22 + 0.0109x24

(6)

Apart from the original problem instance requiring opti-
misation of all the three objectives, we formed additional
instances by considering pairs of objectives leading to four
VCPs, including VC1: minimise {Mass, Ain, Intrusion}, VC2:
minimise {Mass, Ain}, VC3: minimise {Mass, Intrusion} and
VC4: minimise {Ain, Intrusion} for our study.

III. METHODOLOGY

The proposed learning automata based multiobjective hyper-
heuristic framework enabling control of multiple MOEAs
operates as illustrated in Algorithm 1. Firstly, given a set of
MOEAs (H), the initialisation process takes place to set up
the relevant data structures (line 1). Our learning automaton
requires the maintenance of a transition matrix (P) which
describes the selection probabilities of metaheuristics transi-
tioning from the previously selected metaheuristics. At the end
of initialisation step, the transition matrix is set up and a sub-
or full set of MOEAs (A) is determined as the input of the
following learning scheme, as well as the input heuristic (hi)
and population (Popcurr) (See Section III-A).

The chosen MOEA (hi) is applied (line 3) to the incumbent
set of solutions (Popcurr) to the problem instance dealt with
for a fixed number of generations/iterations (g), producing
a new set of solutions (Popnext). The new population then
replaces the current population (line 4). If the conditions of
switching to another metaheuristic (line 5) are satisfied, the
reinforcement learning scheme updates the transition matrix
(line 6) based on the feedback received during the search.
Afterwards, the selection mechanism makes use of the updated
transition matrix (P) to decide which MOEA (hi) to run in
the next iteration. Then all those steps are repeated until the
termination criteria are satisfied.

The framework consists of four key components: initiali-
sation process, reinforcement learning scheme, metaheuristic

Page 4 of 14

IEEE Transactions on Evolutionary Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

5

(action) selection method and the method deciding when to
switch to another metaheuristic. Two multiobjective hyper-
heuristics, referred to as HH-LA and HH-RILA are designed
under this framework in this study. HH-LA and HH-RILA
differ only in their initialisation processes. The remaining
components are the same. The following subsections describe
each component in detail.

A. Initialisation

HH-LA utilises all r MOEAs and the transition matrix P is
initially created so that each MOEA has the same probability
of being selected, i.e., 1/r. The initial population for HH-LA
is generated randomly.

HH-RILA uses a more elaborate initialisation process. We
propose a ranking scheme to form a reduced subset of
MOEAs, eliminating the ones with relatively poor perfor-
mance. The ranking process begins with running each MOEA
successively for a number of stages. The number of stages is
set to the number of low level metaheuristics for giving each
MOEA an equal chance to show its performance. Initial popu-
lation is generated randomly. The resultant population obtained
at the end of each stage is directly fed into the following stage
for each MOEA. The hypervolume values for all resultant
populations obtained at the end of each stage from each
MOEA is computed based on the normalised objective values,
i.e., (fi(x)−fmini)/(fmaxi −fmini) for the ith objective, where
the extreme objective values for each dimension, i.e. fmaxi ,
fmini are updated using the maximum and minimum values
found so-far by all MOEAs. This process enables performance
comparison of all MOEAs with respect to hypervolume for
all stages. Then we count the number of stages (frequencies),
denoted as Frqbest(hi) (the higher, the better) that each
MOEA becomes the best performing algorithm out of all
stages. These counts are then used for ranking all MOEAs.
If more than one MOEA has the same rank, ties are broken

Algorithm 1: Learning Automaton based Hyper-heuristic
Framework

Popcurr : set (population) of input solutions,
Popnext : set of solutions surviving to the next stage,
H: set of metaheuristics (MOEAs) {h1, ..., hi, ..., hr},
P : transition matrix, g: fixed number of generations

1 [A, P , hi, Popcurr] ← Initialise(H) ; // A ⊆ H
2 while (termination criteria not satisfied) do
3 Popnext ← ApplyMetaheuristic(hi, Popcurr, g);
4 Popcurr ← Replace(Popcurr, Popnext);

// Decide whether to switch to
another metaheuristic

5 if (switch()) then
6 LearningAutomataUpdateScheme(P);

// Decision Point for
metaheuristic selection

7 hi ← SelectMetaheuristic(P , A);
end

end

using the diversification indicator of generalised spread (the
smaller, the better). Then MOEA(s) that rank worse than the
median MOEA get excluded from the low level MOEA set.
For example, if h3 becomes the top ranking metaheuristic in
all three stages, while h1 and h2 do not in any of the three
stages, then Frqbest(h1), F rqbest(h2), F rqbest(h3) are 0, 0
and 3, respectively. Consequently, the rank of each MOEA
with respect to normalised hypervolume is 2, 2 and 1. Suppose
h1 has a smaller generalised spread value than h2, then final
ranks of h1, h2, h3 are 2, 3 and 1, respectively. Eventually, h2
gets excluded from the following stage of the learning process.

Then HH-RILA operates as HH-LA with a reduced subset
of low level MOEAs for the remaining search process using
the final population from the best ranking MOEA as input.

B. Reinforcement Learning Scheme

The reinforcement learning scheme sits at the core of the
metaheuristic selection process. The system learns a mapping
(or policy) from situations to actions through a trial-and-
error process with the goal of maximising the overall reward.
To explore the possible cooperation among different action
pairs, the learning scheme in this study updates the transition
probability (p(i,j)) from a preceding action (ai) to a given
successor (aj), depending on the performance after applying
aj . The chosen heuristics logically form a chain of a heuristic
sequence as the search progresses. Although there are previous
studies ([9], [48], [57], [58], [59]) using some notion of
transition probabilities to keep track of the performance of
heuristics invoked successively, none of them employed the
same reinforcement learning scheme as we proposed. More
importantly, all the previously mentioned algorithms were
tested on single objective optimisation problems under a single
point based search framework managing move operators rather
than metaheuristics.

In the proposed learning scheme, an action (say hi) corre-
sponds to the selection of an MOEA, and the tth time step
is analogous to the tth decision point when an MOEA is
selected and applied to the trade-off solutions in hand. The
linear reward-penalty scheme is used to update the transition
probability from hi to hj at time (t + 1), i.e. p(i,j)(t + 1).
The update is performed as provided in Equation (7) and (8)
[52]. The value of β(t) is set to 1 for positive (or preferable)
feedback, 0 otherwise.
If the successor metaheuristic hj of hi is selected:

p(i,j)(t+ 1) =p(i,j)(t) + λ(i,j)(t)β(t)(1− p(i,j)(t))
− λ(i,j)(t)(1− β(t))p(i,j)(t)

(7)

For the rest of the metaheuristics that are not chosen, indexed
as l, where l 6= j:

p(i,l)(t+ 1) =p(i,l)(t)− λ(i,l)(t)β(t)p(i,l)(t)

+ λ(i,l)(t)(1− β(t))

[
1

r − 1
− p(i,l)(t)

]
(8)

We use the ‘change in the hypervolume value’ measured
before and after selecting and applying an MOEA for reward-
ing/penalising during the learning process for two reasons.
First, hypervolume is the only known unary Pareto compliant

Page 5 of 14

IEEE Transactions on Evolutionary Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

6

indicator ([19], [60]) i.e., if a PF P1 dominates P2, the
indicator value of P1 should be better than that of P2. Second,
theoretical studies show that maximising the hypervolume
indicator during the search is equivalent to optimising the
overall objective leading to an optimal approximation of the
true PF ([61], [62]).

Due to the non-stationary nature of the search process, it is
reasonable to give more weight to the recent rewards than the
long-past ones. One of the common ways of doing this is to
discount the past reward at a fixed ratio (α) [63]. The reward
is denoted as Q(i,j)(k+1), meaning the estimated action value
of the transition pair (hi, hj) occurring its (k + 1)th times at
the tth decision point:

Q(i,j)(k + 1) = Q(i,j)(k) + α[r(i,j)(k + 1)−Q(i,j)(k)] (9)

where r(i,j)(k+1) is the current reward obtained by pair (hi, hj)

r(i,j)(k + 1) = vj(t)− vi(t− 1) (10)

where vj(t) is the hypervolume obtained by executing the
action hj at the current tth decision point, vi(t − 1) is the
hypervolume obtained by action hi at the (t − 1)th decision
point. α is commonly fixed as 0.1 [63] as in this study. The
hypervolume here is computed in the normalised objective
space as described in Section III-A.

Given the varying performance of each MOEA pair (hi, hj)
during the search, instead of fixing the reward and penalty
rates of λ(i,j), it is adaptively updated using the estimated
action value of each transition pair (Q(i,j)) at each decision
point. The calculation of λ is used to update both reward and
penalty rates as follows.

λ(i,j)(t) = 0.1 +mQ(i,j)(k + 1) (11)

where m is fixed as small positive multipliers (e.g. 2) to
amplify the effect of the estimated action value Q(i,j)(t) on
the reward/penalty parameter.

Due to the nature of the search space and amplifying
multipliers, it is possible that the adaptive reward and penalty
rates (λ(i,j)(t)) can get out of the [0,1] range and so the
transition probabilities. In such cases, the value of λ(i,j)(t)
is reset to the closest extreme value (0 or 1) ensuring that it
stays within the range.

C. Metaheuristic Selection Method

In reinforcement learning, in order to take an action (i.e.,
choosing a metaheuristic), a selection method is required.
This method is normally based on a function of the selection
probabilities (utility values) to select an action at a given
certain point. Several selection methods are commonly used
in the scientific literature, such as roulette wheel, or greedy
[63]. Those methods differ when exploring new actions and
exploiting the knowledge obtained from the previous actions.
The roulette wheel selection method chooses an action with a
probability proportional to its utility value. The advantage of
this method is its straightforwardness and it does not introduce
any extra parameters. However, it has less chance to exploit the
best-so-far actions when compared to the other selection meth-
ods, in particular when the selection probabilities of actions are

similar. The greedy selection method only chooses the action
with the highest selection probability. As a drawback, this
method could overlook the other potentially good performing
actions which might give higher rewards in the later stages.
Further details on different selection methods can be found in
[63]. Each selection method has its strengths and weaknesses.
To exploit the merits of both roulette and greedy selection
methods, we propose a new selection method, named as ε-
RouletteGreedy selection. The main idea is that the selection
method first focuses on exploring different transition pairs by
performing a certain number of trials to get a better view of
the pairwise performances of metaheuristics at the early stage.
Then, the selection method becomes more and more greedy
exploiting the accumulated knowledge.

The proposed selection method works as follows. The
exploration phase parameter τ is fixed to a value in [0,1].
During the first τntotalIter iterations, where ntotalIter is the
total number of iterations, roulette wheel selection is solely
used to choose an action (say, hj) out of all the possible
successors of action hi based on the transition probability
p(i,j). Following this exploration phase, the probability ε of
applying the greedy selection method is increased linearly by
the formula τ +(1.0−τ)niter/ntotalIter, where niter denotes
the number of iterations has passed since the beginning of the
algorithm. We randomly generate a value between 0 and 1.
If that value is less than or equal to ε, the best action (with
the highest transition probability from the previously selected
action) is chosen to be performed at the next decision point. If
the random value is greater than ε, the next action is selected
by roulette wheel selection method.

D. Switching to Another Metaheuristic

In this study, we propose a threshold method to stop the
application of a selected MOEA (hi) repeatedly, enabling
the hyper-heuristic to switch to another MOEA, adaptively.
A selected metaheuristic is applied as long as there is an
improvement in the hypervolume as compared to the previous
iteration above an expected level. Hence, application of the se-
lected MOEA halts if the hypervolume improvement δ(viter)
is less than a threshold value of ∆v at a given iteration, or the
maximum number of iterations (denoted as K) for applying a
low level MOEA is exceeded. The hypervolume improvement
(change) δ(viter) is computed as (viter−v(iter−1))/v(iter−1),
where viter is the hypervolume of the trade-off solutions
obtained after the application of hi at the current iteration, and
v(iter−1) is the hypervolume obtained from hi at the previous
iteration.

IV. COMPUTATIONAL EXPERIMENTS

The proposed multiobjective selection hyper-heuristics, HH-
LA and HH-RILA controlling three low level MOEAs
{NSGA-II, SPEA2 and IBEA} are studied using a range
of three-objective benchmark functions from the WFG [20]
and DTLZ [21] test suites. The number of stages in the
initialisation for HH-RILA is set to 3. The performances
of HH-LA and HH-RILA are not only compared to each

Page 6 of 14

IEEE Transactions on Evolutionary Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

7

individual low level MOEA, but also to random choice hyper-
heuristic (HH-RC) serving as a reference approach utilising
no learning as well as the online learning hyper-heuristic of
HH-CF [14] using the same set of low level MOEAs. The
jMetal software platform [64] embedding implementations of
the WFG and DTLZ problems and three low level MOEAs are
used for the development of all the algorithms experimented
within this study.

A. Experimental Settings
Each experiment with an algorithm is repeated for 30 times

on each problem instance. The WFG and DTLZ benchmark
functions are all parameterised. Each WFG benchmark func-
tion has 20 distance and 4 position (total 24) parameters, while
DTLZ1, 2-6 and 7 have 7, 12 and 22 parameters, respectively.
Those parameter values are fixed as in [20] for the WFG and
[21] for the DTLZ problems.

It is commonly known that the performance of meta-
heuristics can be improved through parameter tuning, that is,
detecting the best settings (configuration) for the algorithmic
parameters ([65], [66]). Considering the large set of parameters
and their values associated with the proposed hyper-heuristics
and MOEAs used in this study, it is not feasible to test all the
combinations of settings considering the immense amount of
required computational budget. Instead, parameters of HH-LA
and HH-RILA are tuned based on the Taguchi experimental
design [67]. Whereas, the recommended configurations and
parameter settings are used for all the other algorithms, includ-
ing MOEAs ([16], [17], [68], [69]) and HH-CF [14] from the
scientific literature. Simulated binary crossover (also known as
SBX) and polynomial mutation [70] are used as the MOEA
operators. The distribution parameters of the crossover and
mutation operators are fixed as {ηc = 20.0} and {ηm = 20.0},
respectively. The crossover and mutation probabilities are set
to {pc = 0.9} and {pm = 1/np}, where np is the number of
parameters. Parents are selected using the binary tournament
operator [71]. The maximum number of solution evaluations
for each WFG and DTLZ problem is set to 50,000 and
100,000, respectively [68]. This particular setting is always
maintained for all algorithms tested in this study for a fair
performance comparison between them. The population and
archive sizes are both fixed as 100 for MOEAs. The number
of iterations for HH-CF and HH-RC is set to the recommended
value of 25, and intensification parameter of HH-CF to 100
[14]. The number of generations for each iteration is fixed as
g = 10 for HH-LA and HH-RILA.

For a fair comparison, the number of evaluations used for
the initialisation in HH-RILA are deducted from the total. As
mentioned above, parameters of the proposed hyper-heuristics
are tuned for an improved performance. The parameter tuning
experiments and sensitivity analysis of each parameter for HH-
LA and HH-RILA are provided in the following subsection.

B. Parameter Tuning of HH-LA and HH-RILA and Sensitivity
Analysis

Our multiobjective selection hyper-heuristics contains four
main parameters: exploration phase τ , reward/penalty multi-
plier m, maximum number of iterations K for applying a low

0.
1

0.
3

0.
5

0.
7

0.
9

3.1

3.15

3.2

3.25

3.3

3.35

3.4

3.45

M
ea

n

τ

1
1.
5 2

2.
5 3

m

1 2 3 4 5

K

0.
00

00
0.

00
25

0.
00

50
0.

00
75

0.
01

00

∆v

0.
1

0.
3

0.
5

0.
7

0.
9

3.15

3.2

3.25

3.3

3.35

3.4

M
ea

n

τ

1
1.
5 2

2.
5 3

m

1 2 3 4 5

K

0.
00

00
0.

00
25

0.
00

50
0.

00
75

0.
01

00

∆v

Fig. 1: Main effects plots for HH-LA (left) and HH-RILA
(right) for each parameter: exploration phase (τ), multiplier
(m), maximum iterations (K) for applying a low leve MOEA,
and hypervolume improvement threshold (∆v).

level MOEA, and hypervolume improvement threshold ∆v .
Five different values for each parameter are considered: τ ∈
{0.1, 0.3, 0.5, 0.7, 0.9}, m ∈ {1.0, 1.5, 2.0, 2.5, 3.0}, K {1, 2,
3, 4, 5}, ∆v ∈ {0.0, 0.0025, 0.005, 0.0075, 0.01}. Even with
this sample of five settings for each of the four parameters,
625 parameter tuning experiments would have been required
for testing all combinations of the parameter settings. In
this study, the Taguchi orthogonal arrays experimental design
method ([67], [72]) is used for parameter tuning. Sampling
the configurations based on the orthogonal array, denoted as
L25, reduces the number of parameter tuning experiments to
25 configurations for each algorithm, which are tested on the
benchmark functions.

The measurement used during the tuning experiments is
µnorm. The original µnorm is defined for the minimisation
problems. Since we are maximising hypervolume, we slightly
modify the formulation of µnorm as follows. Let S(x,n)

be the set of hypervolume (30 hypervolume values in our
case resulting from 30 trials) obtained by an algorithm x,
where x ∈ X on a problem n, where n ∈ N ; X and
N are the sets of algorithms and problems, respectively.
Let Sminn = MIN∀s∈S(x,n),∀x∈X be the minimum and
Smaxn = MAX∀s∈S(x,n),∀x∈X be the maximum hypervolume
obtained by all the algorithms on a problem n. The normalised
hypervolume of an algorithm x on a problem n is computed as
fnorm(x,n) =

Smax
n −AVGs∈S(x,n)

(s)

Smax
n −Smin

n
. The average of fnorm(x,n) defined

as µnorm(x) = AV G∀n∈N (fnorm(x,n)) serves as the measurement
for the tuning experiments. The lower the µnorm(x) value, the
better the performance of the algorithm x.

The main effects plots in Figure 1 indicate the mean
effect of each parameter setting on the performances of HH-
LA and HH-RILA. The parameter setting that achieves the
lowest mean µnorm averaged across all trials using that setting
regardless of the remaining parameter settings would be the
best value for that parameter. Thus, the best configuration for
HH-LA is {τ = 0.5,m = 2.5,K = 3,∆v = 0.0075}, and for
HH-RILA is {τ = 0.9,m = 3.0,K = 3,∆v = 0.0075}. Both
settings are used in this paper for the rest of the experiments.

Analysis of Variance (ANOVA) [73] test is performed to
observe how sensitive the performance of proposed hyper-
heuristics to the parametric settings is by looking into the

Page 7 of 14

IEEE Transactions on Evolutionary Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

8

significance and contribution (in percentage) of each param-
eter. Table I shows that exploration phase parameter τ has
the most significant influence on the performance of both
HH-LA and HH-RILA at a significance level of 5% (i.e., p-
value < 0.05). The parameter τ has the highest percentage
contribution of 43.93% and 53.61% to the performance of HH-
LA and HH-RILA, respectively. The reward/penalty multiplier
m also significantly contribute to the performance of HH-LA
with the second largest percentage contribution of 25.75%,
while this parameter has almost no contribution (3.16%) to
the performance of HH-RILA. The remaining two parameters
are not significantly influential on the performance of either
proposed hyper-heuristics.

TABLE I: ANOVA test to identify the contribution (%) of
each parameter for HH-LA and HH-RILA (DoF: degrees of
freedom, SS: sum of squares, MS: mean squares, F: variance
ratio).

HH-LA

Parameters DoF SS MS F p-value contribution (%)
τ 4 0.44 0.11 8.16 0.0063 43.93
m 4 0.26 0.06 4.78 0.0289 25.75
K 4 0.09 0.02 1.73 0.2357 9.32
∆v 4 0.10 0.03 1.90 0.2037 10.24
Residual 8 0.11 0.01
Total 24 100

HH-RILA

Parameters DoF SS MS F p-value contribution (%)
τ 4 0.24 0.06 5.05 0.0250 53.61
m 4 0.01 0.00 0.30 0.8715 3.16
K 4 0.04 0.01 0.92 0.4983 9.74
∆v 4 0.05 0.01 1.16 0.3972 12.27
Residual 8 0.09 0.01
Total 24 100

C. Experimental Results on WFG and DTLZ

In this section, we use hypervolume as the main perfor-
mance indicator. One-tailed Wilcoxon rank-sum test (also
known as Mann-Whitney U test) is applied based on the raw
hypervolume values obtained from 30 trials of each algorithm
to test if there is a statistically significant performance dif-
ference between a pair of algorithms. The significance level
is set to 5%. The reference (or nadir) point (denoted as r)
for the WFG and DTLZ benchmark problems are chosen as
follows. For each WFG problem, the reference point is set as
ri = 2i+ 1, where i = 1, 2, ..., k is the index of the objective
and k is the total objective number. Thus, for each WFG
problem, the reference point is (3, 5, 7). The reference point
for DTLZ problems is set as ri = 0.5 for DTLZ1, ri = 1.0 for
DTLZ2 to DTLZ6 and ri = 1.0 if i < k, otherwise, rk = 2k
for DTLZ7.

The convergence indicator ε+ is utilised as an additional
performance comparison indicator. We notice that in some
cases, the performance differences between algorithms are
not distinguishable if the raw values are plotted directly.
Here only for the visualisation purposes, we map the raw
hypervolume/ε+ value into the range of [0,1] via normalisation

using the extreme (minimum and maximum) values collected
from all algorithms over 30 trials on each instance, then the
mean hypervolume and ε+ values are plotted in Figure 2.
Higher the hypervolume or lower the ε+ value means a better
performance.

Figure 2 shows that IBEA performs the best on WFG
benchmark with respect to both hypervolume and ε+ in the
overall. HH-RILA and HH-LA follow the performance of
IBEA closely. NSGA-II clearly performs the worst on WFG.
The performance of IBEA gets much poorer and becomes
overall the worst approach for the DTLZ benchmark func-
tions with respect to both metrics. SPEA2 performs the best
on over half of DTLZ benchmark. HH-RILA and HH-LA
always achieve the second best performance on most DTLZ
benchmark or even the best on DTLZ7. In addition, the
hypervolume based performance ranking of all algorithms on
each benchmark problem is almost fully consistent with the ε+
based ranking except for WFG1. On WFG1, IBEA achieves
the best rank with respect to hypervolume, however, IBEA
performs slightly worse than SPEA2 on WFG1 with respect
to the ε+ indicator. This inconsistency, also discussed in [60],
is possibly due to the different working principles of both
indicators.

One-tailed Wilcoxon rank-sum test at 5% significance level
is conducted on the performance of each pair of algorithms
with respect to hypervolume. The statistical test results are
summarised in Table II and we have the following observa-
tions.

In the overall, both of our MOHHs deliver a better perfor-
mance than any of the individual MOEAs run on its own on
the WFG and DTLZ benchmarks. The statistical test results
show that HH-LA and HH-RILA outperform NSGA-II on
all nine WFG benchmark functions while 3 out of 7DTLZ
problems, including DTLZ1-2 and DTLZ5. HH-RILA addi-
tionally performs significantly better than NSGA-II on DTLZ6
and DTLZ7. HH-LA and HH-RILA perform significantly
better than SPEA2 on the same 8 out of 9 WFG benchmark
functions including WFG1, WFG3-9. HH-RILA additionally
outperforms SPEA2 on DTLZ2 and DTLZ7. Although IBEA
delivers a good overall performance on the WFG benchmark,
both our algorithms still manage to outperform IBEA on 5 out
of 7 DTLZ problems including DTLZ1, DTLZ3 and DTLZ5-
7. HH-RILA also performs significantly better than IBEA on
WFG2.

Both HH-LA and HH-RILA outperform HH-CF and HH-
RC. Specifically, both of our hyper-heuristics perform sig-
nificantly better than HH-CF on 11 benchmark functions
out of total 16, including the same eight WFG benchmark
functions (WFG1, WFG3-9) and three DTLZ benchmark
functions (DTLZ1-3 for HH-LA, while DTLZ1-2 and DTLZ6
for HH-RILA). The performance difference between each of
the proposed hyper-heuristics and HH-RC is statistically sig-
nificant with respect to hypervolume on 10 out of 16 problems
which include the same seven WFG benchmark functions
(WFG3-9) and three slightly different DTLZ problems: HH-
LA outperforms HH-RC on DTLZ1-2 and DTLZ5, while
DTLZ1-2 and DTLZ7 for HH-RILA. HH-CF only outperforms
HH-RC on DTLZ7, while they perform similarly on 8 out of

Page 8 of 14

IEEE Transactions on Evolutionary Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

9

NSGA-II SPEA2 IBEA HH-RC HH-CF HH-LA HH-RILA

1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

WFG Problem Index

M
ea

n
H

V

1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

WFG Problem Index

M
ea

n
ε+

1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

DTLZ Problem Index

M
ea

n
H

V

1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

DTLZ Problem Index

M
ea

n
ε+

Fig. 2: Performance comparison of all the algorithms with respect to hypervolume and ε+ on 3D WFG and DTLZ problems.

TABLE II: One-tailed Wilcoxon rank-sum test at 5% significance level on WFG and DTLZ benchmark problems with respect
to hypervolume. ‘W’ and ‘D’ are short for ‘WFG’ and ‘DTLZ’ respectively. ‘>’ means the significantly better than, ‘<’
significantly worse than, ‘∼’ no significant difference.

W1 W2 W3 W4 W5 W6 W7 W8 W9 D1 D2 D3 D4 D5 D6 D7
HH-LA vs HH-CF > ∼ > > > > > > > > > > ∼ ∼ ∼ ∼
HH-LA vs HH-RC ∼ ∼ > > > > > > > > > ∼ ∼ > ∼ ∼
HH-LA vs NSGA-II > > > > > > > > > > > ∼ ∼ > ∼ <
HH-LA vs SPEA2 > ∼ > > > > > > > < < < ∼ < < <
HH-LA vs IBEA < ∼ ∼ < < ∼ < < < > ∼ > ∼ > > >
HH-CF vs HH-RC < ∼ < < < < < < ∼ ∼ ∼ ∼ ∼ ∼ ∼ >
HH-RILA vs HH-CF > ∼ > > > > > > > > > ∼ ∼ ∼ > ∼
HH-RILA vs HH-RC ∼ ∼ > > > > > > > > > ∼ ∼ ∼ ∼ >
HH-RILA vs HH-LA < > < > ∼ < > < ∼ > ∼ ∼ ∼ < > ∼
HH-RILA vs NSGA-II > > > > > > > > > > > < ∼ > > >
HH-RILA vs SPEA2 > ∼ > > > > > > > < > < ∼ < < >
HH-RILA vs IBEA < > < < < < < < < > ∼ > ∼ > > >
NSGA-II vs SPEA2 < ∼ > < < < < < ∼ < < < > < < <
NSGA-II vs IBEA < ∼ < < < < < < < > < > > ∼ > >
SPEA2 vs IBEA < ∼ < < < < < < < > < > < > > >

16 problems (WFG2, WFG9 and DTLZ1-6). HH-CF delivers
a significantly worse performance than HH-RC on the rest of
the seven problems (WFG1 and WFG3-8).

As for the performance comparison between HH-LA and
HH-RILA, HH-LA is slightly better than HH-RILA in the
overall on the WFG problems. This performance difference
is statistically significant on four WFG problems including
WFG1, WFG3, WFG6 and WFG8, while HH-RILA performs
significantly better than HH-LA on three WFG problems:
WFG2, WFG4 and WFG7. However, considering DTLZ

benchmark, HH-RILA performs slightly better than HH-LA in
the overall. This performance difference is statistically signif-
icant on DTLZ1 and DTLZ6, while HH-LA only outperforms
HH-RILA on DTLZ5.

D. Analysis of Hyper-heuristics on WFG and DTLZ

1) Utilisation of Low Level Metaheuristics: The ‘utilisation
rate’ of a low level metaheuristic is the number of invocations
of this metaheuristic divided by the total number of meta-
heuristic selection decision points in a given trial. The mean

Page 9 of 14

IEEE Transactions on Evolutionary Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

10

NSGA-II SPEA2 IBEA

HH-CF

0 0.2 0.4 0.6 0.8 1

W1
W2
W3
W4
W5
W6
W7
W8
W9

HH-RILA

0 0.2 0.4 0.6 0.8 1

W1
W2
W3
W4
W5
W6
W7
W8
W9

HH-LA

0 0.2 0.4 0.6 0.8 1

W1
W2
W3
W4
W5
W6
W7
W8
W9

HH-CF

0 0.2 0.4 0.6 0.8 1

D1

D2

D3

D4

D5

D6

D7

HH-RILA

0 0.2 0.4 0.6 0.8 1

D1

D2

D3

D4

D5

D6

D7

HH-LA

0 0.2 0.4 0.6 0.8 1

D1

D2

D3

D4

D5

D6

D7

Fig. 3: The mean utilisation rate of each metaheuristic by HH-
LA (left), HH-RILA (middle) and HH-CF (right) over 30 trials
on WFG (‘W’) and DTLZ (‘D’).

utilisation rates of the three MOEAs i.e., NSGA-II, SPEA2
and IBEA averaged over 30 trials on the WFG and DTLZ
benchmark functions produced by HH-LA, HH-RILA and HH-
CF [14] are illustrated in Figure 3.

Figure 3 shows the differences in learning characteristics
of these three online learning MOHHs. Firstly, HH-LA and
HH-RILA provide a bias towards using the best performing
MOEA with respect to hypervolume. Specifically, both HH-
LA and HH-RILA choose IBEA and SPEA2 more frequently
while solving the WFG and DTLZ problems, respectively.
This is not surprising, considering that hypervolume serves as
the main guidance in the learning mechanisms of our hyper-
heuristics. Secondly, in certain cases, such as WFG4-8 and
DTLZ6, HH-RILA almost exclude NSGA-II which is the
worst performed MOEA on those problems. Interestingly, HH-
CF generates a similar utilisation rate for low level MOEAs
across different problem sets. On average, HH-CF uses NSGA-
II, SPEA2 and IBEA for 40%, 40% and 20% of all the decision
points, respectively, on the WFG benchmark. Similarly, HH-
CF uses NSGA-II, SPEA2 and IBEA for 34%, 38% and 28%,
respectively, on the DTLZ benchmark. This might indicate
that the adaptation mechanism in HH-CF has some issues
controlling these three low level metaheuristics properly on
different problem instances.

2) An Analysis of the Transition Probabilities: The pro-
posed hyper-heuristics embed a learning mechanism which
maintains the transition probabilities between any pair of
MOEAs. Figure 4 provides the final transition probability
matrices obtained by HH-LA and HH-RILA averaged over
30 trials for the sample cases of WFG7 and DTLZ3.

Figure 4 illustrates that both HH-LA and HH-RILA yield
higher probability entries preferring transitions to IBEA than
to other MOEAs for WFG7. This is consistent with the
performance assessment of each individual MOEA (Figure
2), which shows that IBEA performs the best on WFG7.
Moreover, HH-RILA excludes the worst performing MOEA
i.e., NSGA-II after the initialisation stage for solving WFG7.
This is likely the reason why HH-RILA performs significantly
better than HH-LA on WFG7.

DTLZ3 is an interesting case. IBEA delivers a better perfor-

NSGA-II SPEA2 IBEA

IBEA

SPEA2

NSGA-II

HH-LA DTLZ3

0.42

0.38

0.40

0.35

0.31

0.37

0.24

0.31

0.23

NSGA-II SPEA2 IBEA

IBEA

SPEA2

NSGA-II

HH-LA WFG7

0.19

0.22

0.25

0.19

0.29

0.37

0.62

0.49

0.39

NSGA-II SPEA2 IBEA

IBEA

SPEA2

NSGA-II

HH-RILA DTLZ3

0.38

0.17

0.65

0.16

0.44

0.09

0.46

0.39

0.26

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

NSGA-II SPEA2 IBEA

IBEA

SPEA2

NSGA-II

HH-RILA WFG7

0.00

0.00

0.00

0.22

0.21

0.00

0.78

0.79

0.00

Fig. 4: The averaged transition probability matrices (over 30
trials) produced by HH-LA (left column) and HH-RILA (right
column) while solving WFG7 and DTLZ3. The lighter the
colour, the higher the transition probability.

mance in the early stages, but stagnates and even deteriorates
later during the search process. Due to the misleading perfor-
mance of IBEA in the early stage, HH-RILA rewards IBEA
more than the other MOEAs, while excluding the ones with
potentially good performance, such as, SPEA2. Consequently,
HH-RILA ends up performing significantly worse than HH-
LA on DTLZ3.

In summary, the proposed learning mechanism is capable of
adaptively updating the transition probabilities between pairs
of MOEAs giving bias towards the right algorithms (with good
performance) during the search process in an online manner.
Moreover, the ranking initialisation scheme is, in some cases,
capable of improving the overall performance significantly by
detecting and excluding potentially poor performing MOEA(s)
in the early stages of the search.

3) An Analysis of Approximate Pareto Fronts: So far, IBEA
is a strong competitor of HH-LA and HH-RILA with respect
to hypervolume. To get more insights on the distribution of
solutions from IBEA and the proposed hyper-heuristics, PFs
obtained from HH-RILA and IBEA for WFG7 and DTLZ3
are illustrated in Figure 5. HH-LA produces PFs very similar
to HH-RILA on almost all problems, and so we focus on HH-
RILA here.

Figure 5 demonstrates that IBEA is prone to be trapped at
a local optimum. IBEA produces uneven solution distribution
for WFG7, leaving clear gaps between the boundary and
inner regions, whereas HH-RILA reaches a better solution
distribution for this problem.

IBEA performs poorly on DTLZ3. All the solutions are
clustered around the ‘corner’ points which suggests that the
performance of IBEA degrades during the search process.
This interesting behaviour of IBEA has also been observed
previously by Tušar et al. [69] (in Figure 7) and [74]. More
importantly, solutions from HH-RILA clearly spread much
more evenly on the front than IBEA, possibly due to the
utilisation of multiple MOEAs.

Page 10 of 14

IEEE Transactions on Evolutionary Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

11

0
0 0

2 1

HH-RILA

4 2

5

0
00

12

IBEA

24

5

(a) WFG7

0
00

0.50.5

0.5

HH-RILA

1 1

1

0
0 0

0.50.5

0.5

IBEA

11

1

(b) DTLZ3

Fig. 5: Approximate PFs produced by HH-RILA (left column)
and IBEA (right column) on WFG7 and DTLZ3.

NSGA-II SPEA2 IBEA

0 10 20 30 40 50

0

5

10

15

20

25

30

Iterations

N
um

be
r

of
In

vo
ca

tio
ns

HH-LA WFG7

0 10 20 30 40 50

0

5

10

15

20

25

30

Iterations

N
um

be
r

of
In

vo
ca

tio
ns

HH-RILA WFG7

0 10 20 30 40 50 60 70 80 90 100

0

5

10

15

20

25

30

Iterations

N
um

be
r

of
In

vo
ca

tio
ns

HH-LA DTLZ3

0 10 20 30 40 50 60 70 80 90 100

0

5

10

15

20

25

30

Iterations

N
um

be
r

of
In

vo
ca

tio
ns

HH-RILA DTLZ3

Fig. 6: The number of invocations of each MOEA at each
iteration over 30 trials on WFG7 and DTLZ3 obtained from
HH-LA (left column) and HH-RILA (right column).

4) An Analysis of Search Dynamics: To have a further
understanding of the search progress induced by each low
level MOEA at each trial under the proposed hyper-heuristics,
we recorded which MOEA was chosen and applied at each
iteration of 30 trials. Figure 6 provides plots based on that
data as a representative of the search dynamics for HH-LA
and HH-RILA on WFG7 and DTLZ3. Each tick on the plot
indicates the total number of trials that the relevant MOEA
is selected and invoked by the indicated hyper-heuristic at a
given iteration. For example, HH-LA calls NSGA-II, 11 times,
SPEA2, 7 times and IBEA, 12 times at the first iteration out
of 30 trials when solving WFG7.

As observed from Figure 6, HH-LA slowly reduces the

usage of poor performing MOEAs which are NSGA-II and
SPEA2 for WFG7 during the exploration phase which corre-
sponds to the first half of the search process (τ=0.5). Then
the best performing MOEA; i.e., IBEA is predominately used
for the remaining iterations. Meanwhile, HH-RILA excludes
NSGA-II after the initial ranking stage (first nine iterations).
Following the exploration phase, HH-RILA prefers invoking
IBEA more and more while SPEA2 less and less as the search
progresses. This behaviour is also reflected on the transition
probability matrix (Figure 4). The transition probabilities from
any MOEA to IBEA are higher than to the other MOEAs
for both HH-LA and HH-RILA. Moreover, the transition
probabilities to and from NSGA-II are all 0s for HH-RILA
on WFG7.

On DTLZ3, HH-LA tends to prefer employing, firstly,
NSGA-II and then SPEA2 more than IBEA after the ex-
ploration phase. Nevertheless, HH-RILA cannot detect the
degrading performance of IBEA rapidly enough during the
search, and this results in excluding SPEA2 or NSGA-II in
some trials. Therefore, the performance of HH-RILA becomes
worse than HH-LA with respect to hypervolume. This be-
haviour is also consistent with the mean utilisation rates as
provided in Figure 3, which shows that HH-LA uses NSGA-
II and SPAE2 more than HH-RILA does on DTLZ3.

E. Experimental Results for Vehicle Crashworthiness
HH-LA and HH-RILA are also tested on the real-world

problem of VCP. The same experimental settings as in [14]
are used for a fair performance comparison. The population
size is fixed as 30 in these experiments. Each iteration consists
of 50 generations. Each algorithm terminates whenever 75,000
solution evaluations are exceeded. The reference point for each
VC instance is set to ri = znadiri + 0.5(znadiri − zideali),
where i is the index of an objective, znadiri and zideali

are the nadir (highest) and ideal (lowest) value of objective
i, respectively. The performances of each algorithm with
respect to hypervolume and ε+ are provided in Table III.
The results show that NSGA-II performs the best (with the
highest hypervolume and lowest ε+) on VC1 and VC2, while
HH-RILA performs the best on VC3 and VC4 based on both
performance indicators when compared to the other algorithms
including each MOEA used on its own. The proposed hyper-
heuristic exploits the synergy between MOEAs with different
performances leading to an improved overall performance.

The one-tailed Wilcoxon rank-sum test comparing the per-
formance difference of all pairs of multiobjective approaches
are summarised in Table IV). The results suggest that both
NSGA-II and SPEA2 perform significantly better than IBEA.
HH-RILA outperforms HH-CF on 2 out of 4 VC problem
instances (VC3 and VC4), and HH-RC on 3 out of 4 VC
problem instances (VC2-4), and beats IBEA on all four VC
problems. HH-LA performs similar as HH-CF, significantly
better HH-RC on VC2, and also outperforms IBEA on all
four VC problems. HH-RILA outperforms HH-LA on VC2-4.

F. Generality Analysis
Different approaches perform the best on different problems.

The cross-domain search performance of algorithms indicating

Page 11 of 14

IEEE Transactions on Evolutionary Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

12

TABLE III: MeanSTD hypervolume and ε+ values for the vehicle crashworthiness problems, averaged over 30 trials and their
standard deviations provided as subscript entries. The best mean hypervolume and ε+ on each problem instance is highlight
in bold.

Hypervolume ε+
VC1 VC2 VC3 VC4 VC1 VC2 VC3 VC4

HH-LA 98.06931.55 53.07152.35 1.65530.10 2.05580.07 0.13540.04 0.07170.12 0.35650.13 0.08440.07
HH-RILA 98.82091.94 53.77291.26 1.77780.11 2.09240.03 0.12250.05 0.03740.06 0.19950.15 0.04950.03

HH-CF 98.90381.82 53.56281.74 1.66960.11 2.05820.05 0.11940.05 0.05010.09 0.33720.14 0.07940.05
HH-RC 98.25661.75 52.64602.78 1.71820.13 2.04570.06 0.13800.04 0.09820.14 0.27380.16 0.08970.06
NSGA-II 100.21631.48 53.95140.04 1.70930.12 2.08800.04 0.10070.04 0.03620.00 0.28640.16 0.05520.04
SPEA2 99.5532.02 53.65231.76 1.72780.12 2.06690.05 0.11880.05 0.04860.09 0.26510.16 0.08180.06
IBEA 96.94350.57 52.14653.06 1.68460.13 2.02130.06 0.1570.02 0.11840.16 0.31190.16 0.11480.06

TABLE IV: One-tailed Wilcoxon rank-sum test at 5% signifi-
cance level on VC problems with respect to hypervolume.‘>’
means the significantly better than, ‘<’ significantly worse
than, ‘∼’ no significant difference.

VC1 VC2 VC3 VC4
HH-LA vs HH-CF ∼ ∼ ∼ ∼
HH-LA vs HH-RC ∼ > ∼ ∼
HH-LA vs NSGA-II < < ∼ <
HH-LA vs SPEA2 ∼ ∼ ∼ ∼
HH-LA vs IBEA > > ∼ >
HH-RILA vs HH-CF ∼ ∼ > >
HH-RILA vs HH-RC ∼ > > >
HH-RILA vs HH-LA ∼ > > >
HH-RILA vs NSGA-II < < > ∼
HH-RILA vs SPEA2 ∼ > ∼ >
HH-RILA vs IBEA > > > >
HH-CF vs HH-RC ∼ ∼ < ∼
NSGA-II vs SPEA2 ∼ > < >
NSGA-II vs IBEA > > > >
SPEA2 vs IBEA > > > >

which algorithm is more general and the best across a range
of problems is often of interest [7]. As mentioned before,
µnorm is used in this work to assess the generality level of an
algorithm across different problems including the benchmark
functions and vehicle crashworthiness problems.

The empirical results based on µnorm are presented in
Table V. We also rank all the algorithms with respect to
µnorm values. The lower µnorm value is, the better the
rank of an algorithm. From Table V, we have the following
observations. There is no single MOEA performing well
across all three problem domains even though each uses
the same perturbative operators. The performance of each
individual MOEA varies vastly on different domains. IBEA,
SPEA2 and NSGA-II deliver the best performance on WFG,
DTLZ and VC, respectively. Although HH-RILA is always
the second best performing approach on each domain, it has
the best cross-domain performance and so the most general
approach among all algorithms tested in this study with a mean
µnorm of 0.2089 based on the results from all 20 problem
instances. Moreover, HH-LA turns out to be the second best
approach with a mean µnorm of 0.2571. The cross-domain
performance of our selection hyper-heuristics are followed by
IBEA, SPEA2, HH-RC, HH-CF and NSGA-II in that order.
If we consider only WFG and DTLZ benchmarks ignoring
the vehicle crashworthiness problem and compare the cross-
domain performance of all algorithms, HH-RILA and HH-LA
still rank the best and the second best based on the mean

TABLE V: Hypervolume µnorm for each algorithm on each
test problem instance. x̄W , x̄D, x̄V C , x̄WD, and x̄All denote
the mean µnorm on WFG, DTLZ, VC, both WFG and DTLZ,
as well as all three problem domains, respectively. The best
mean µnorm on each benchmark is highlight in bold, the
second best is in gray box.

NSGA-II SPEA2 IBEA HH-RC HH-CF HH-LA HH-RILA
W1 0.8200 0.6761 0.2911 0.5304 0.7004 0.5091 0.6165
W2 0.4985 0.3881 0.5906 0.4486 0.3356 0.5653 0.2386
W3 0.4431 0.8086 0.1435 0.2564 0.4344 0.1206 0.2008
W4 0.8744 0.6233 0.0154 0.3545 0.5546 0.0971 0.0614
W5 0.7905 0.5776 0.0148 0.3897 0.5819 0.0630 0.0653
W6 0.8021 0.5591 0.1126 0.4029 0.5648 0.1318 0.1519
W7 0.7047 0.5185 0.0066 0.3662 0.4684 0.0639 0.0337
W8 0.8353 0.5647 0.0295 0.5101 0.6688 0.1002 0.1354
W9 0.7689 0.7186 0.2357 0.6273 0.6421 0.4141 0.4357
x̄W 0.7264 0.6038 0.1600 0.4318 0.5501 0.2294 0.2155
D1 0.0411 0.0014 0.7981 0.2021 0.2160 0.0354 0.0335
D2 0.7336 0.2522 0.0114 0.3425 0.4315 0.0150 0.0107
D3 0.1000 0.0144 0.9974 0.4164 0.3687 0.2753 0.4280
D4 0.1327 0.2266 0.1859 0.1092 0.1465 0.3186 0.1669
D5 0.6549 0.1900 0.6945 0.4757 0.3996 0.2622 0.4605
D6 0.1654 0.0729 0.4437 0.1606 0.2082 0.2882 0.1654
D7 0.0862 0.0548 0.4093 0.1866 0.0550 0.1867 0.0339
x̄D 0.2734 0.1160 0.5057 0.2705 0.2608 0.1974 0.1855

VC1 0.2715 0.3746 0.7804 0.5762 0.4756 0.6054 0.4885
VC2 0.0288 0.0711 0.2839 0.2133 0.0837 0.1531 0.0540
VC3 0.4961 0.4402 0.5708 0.4693 0.6164 0.6596 0.2887
VC4 0.1291 0.2265 0.4378 0.3247 0.2672 0.2782 0.1088
x̄V C 0.2314 0.2781 0.5182 0.3959 0.3607 0.4241 0.2350
x̄WD 0.5282 0.3904 0.3113 0.3612 0.4235 0.2154 0.2024
x̄All 0.4688 0.3680 0.3526 0.3682 0.4110 0.2571 0.2089
Rank 7 4 3 5 6 2 1

µnorm values averaged over all benchmark functions, yielding
0.2024 and 0.2154, respectively.

V. CONCLUSION AND FUTURE WORK

In this study, we proposed two variants of a learning au-
tomata based multiobjective selection hyper-heuristic: HH-LA
and HH-RILA. The performance and generality of HH-LA and
HH-RILA controlling three MOEAs are investigated on three
multiobjective continuous optimisation problem domains, in-
cluding two sets of benchmark functions (WFG and DTLZ)
and the real-world problem of vehicle crashworthiness. The
experimental results show that the different MOEAs perform
the best on different problem domains. However, HH-RILA
and HH-LA perform the best and second best, respectively,
across all test problem instances based on the µnorm indicator.

Page 12 of 14

IEEE Transactions on Evolutionary Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

13

In addition, both HH-LA and HH-RILA outperform a state-
of-the-art online learning hyper-heuristic and a random choice
hyper-heuristic. The results also suggest that the proposed
hyper-heuristics are indeed capable of exploiting the strengths
of the low level MOEAs delivering an improved perfor-
mance via a learning automata in this work. The proposed
component for metaheuristic (action) selection, that is the ε-
RouletteGreedy method adaptively balances exploration and
exploitation of the use of MOEAs by combining the merits
of two regular selection methods of roulette wheel and greedy
selection.

In future work, both HH-LA and HH-RILA will be applied
to other discrete and continuous real-world problems and
their performance as well as the level of generality will be
assessed. In single objective optimisation, it has been observed
that the performance of selection hyper-heuristics might vary
depending on the set of low level heuristics [25], hence another
interesting research direction would be investigating the per-
formance of the proposed hyper-heuristics using different sets
of low level multiobjective metaheuristics. Moreover, there is
a growing interest into many-objective (problems with more
than three objectives) optimisation and recent studies show
that many-objective optimisation requires different approaches
from multiobjective metaheuristics [75]. The tests that we
performed in this study is somewhat at the boundary of
multi and many-objective optimisation considering that three
objective problems are used in the experiments. Therefore,
the low level metaheuristics used in the proposed multiob-
jective selection hyper-heuristic framework can be replaced
by other state-of-the-art many-objective metaheuristics (such
as, NSGA-III [76] and AGE [77]), and tested on a range of
many-objective optimisation problems. Although hypervolume
is utilised in this study as the main indicator for guiding
the search and combining strengths of different MOEAs for
multiobjective optimisation, the proposed framework allows
the use of different indicators. It would be worth investigat-
ing the behaviour of the proposed selection hyper-heuristics
when other convergence/performance indicators are used for
guidance, such as the ε+ indicator.

REFERENCES

[1] C. A. C. Coello, D. A. Van Veldhuizen, and G. B. Lamont, Evolutionary
algorithms for solving multi-objective problems. Springer, 2002, vol.
242.

[2] M. Saadatseresht, A. Mansourian, and M. Taleai, “Evacuation planning
using multiobjective evolutionary optimization approach,” European
Journal of Operational Research, vol. 198, no. 1, pp. 305–314, 2009.

[3] T. Hanne and S. Nickel, “A multiobjective evolutionary algorithm for
scheduling and inspection planning in software development projects,”
European Journal of Operational Research, vol. 167, no. 3, pp. 663–678,
2005.

[4] B. Alatas, E. Akin, and A. Karci, “Modenar: Multi-objective differential
evolution algorithm for mining numeric association rules,” Applied Soft
Computing, vol. 8, no. 1, pp. 646–656, 2008.

[5] E. Masazade, R. Rajagopalan, P. K. Varshney, C. K. Mohan, G. K.
Sendur, and M. Keskinoz, “A multiobjective optimization approach to
obtain decision thresholds for distributed detection in wireless sensor
networks,” IEEE Transactions on Systems, Man, and Cybernetics, Part
B (Cybernetics), vol. 40, no. 2, pp. 444–457, 2010.

[6] A. Zhou, B.-Y. Qu, H. Li, S.-Z. Zhao, P. N. Suganthan, and Q. Zhang,
“Multiobjective evolutionary algorithms: A survey of the state of the
art,” Swarm and Evolutionary Computation, vol. 1, no. 1, pp. 32–49,
2011.

[7] E. K. Burke, M. Gendreau, M. Hyde, G. Kendall, G. Ochoa, E. Ozcan,
and R. Qu, “Hyper-heuristics: a survey of the state of the art,” J
Oper Res Soc, vol. 64, no. 12, pp. 1695–1724, Dec 2013. [Online].
Available: http://dx.doi.org/10.1057/jors.2013.71

[8] E. K. Burke, M. Hyde, G. Kendall, G. Ochoa, E. Özcan, and J. R. Wood-
ward, “A classification of hyper-heuristic approaches,” in Handbook of
metaheuristics. Springer, 2010, pp. 449–468.

[9] S. Asta, E. Özcan, and T. Curtois, “A tensor based hyper-heuristic for
nurse rostering,” Knowledge-Based Systems, vol. 98, pp. 185–199, 2016.

[10] S. Asta and E. Özcan, “A tensor-based selection hyper-heuristic for
cross-domain heuristic search,” Information Sciences, vol. 299, pp. 412–
432, 2015.

[11] T. Wauters, K. Verbeeck, P. De Causmaecker, and G. V. Berghe,
“Boosting metaheuristic search using reinforcement learning.” Hybrid
Metaheuristics, vol. 434, pp. 433–452, 2013.

[12] A. Kheiri and E. Özcan, “An iterated multi-stage selection hyper-
heuristic,” European Journal of Operational Research, vol. 250, no. 1,
pp. 77–90, 2016.

[13] K. Z. Zamli, F. Din, G. Kendall, and B. S. Ahmed, “An experimental
study of hyper-heuristic selection and acceptance mechanism for com-
binatorial t-way test suite generation,” Information Sciences, vol. 399,
pp. 121–153, 2017.

[14] M. Maashi, E. Özcan, and G. Kendall, “A multi-objective hyper-heuristic
based on choice function,” Expert Systems with Applications, vol. 41,
no. 9, pp. 4475–4493, 2014.

[15] R. A. Gonçalves, J. N. Kuk, C. P. Almeida, and S. M. Venske, “Moea/d-
hh: a hyper-heuristic for multi-objective problems,” in International
Conference on Evolutionary Multi-Criterion Optimization. Springer,
2015, pp. 94–108.

[16] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: Nsga-ii,” Evolutionary Computation,
IEEE Transactions on, vol. 6, no. 2, pp. 182–197, 2002.

[17] E. Zitzler, M. Laumanns, L. Thiele, E. Zitzler, E. Zitzler, L. Thiele,
and L. Thiele, “Spea2: Improving the strength pareto evolutionary
algorithm,” 2001.

[18] E. Zitzler and S. Künzli, “Indicator-based selection in multiobjective
search,” in Parallel Problem Solving from Nature-PPSN VIII. Springer,
2004, pp. 832–842.

[19] E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca, and V. G. Da Fon-
seca, “Performance assessment of multiobjective optimizers: an analysis
and review,” Evolutionary Computation, IEEE Transactions on, vol. 7,
no. 2, pp. 117–132, 2003.

[20] S. Huband, P. Hingston, L. Barone, and L. While, “A review of multiob-
jective test problems and a scalable test problem toolkit,” Evolutionary
Computation, IEEE Transactions on, vol. 10, no. 5, pp. 477–506, 2006.

[21] K. Deb, L. Thiele, M. Laumanns, and E. Zitzler, Scalable test problems
for evolutionary multiobjective optimization. Springer, 2005.

[22] A. Zhou, Y. Jin, Q. Zhang, B. Sendhoff, and E. Tsang, “Combining
model-based and genetics-based offspring generation for multi-objective
optimization using a convergence criterion,” in 2006 IEEE International
Conference on Evolutionary Computation. IEEE, 2006, pp. 892–899.

[23] L. Di Gaspero and T. Urli, “Evaluation of a family of reinforcement
learning cross-domain optimization heuristics,” in Learning and Intelli-
gent Optimization. Springer, 2012, pp. 384–389.

[24] S. Adriaensen, G. Ochoa, and A. Nowé, “A benchmark set extension and
comparative study for the hyflex framework,” in 2015 IEEE Congress
on Evolutionary Computation (CEC). IEEE, 2015, pp. 784–791.

[25] B. Bilgin, E. Özcan, and E. E. Korkmaz, “An experimental study on
hyper-heuristics and exam timetabling,” in International Conference on
the Practice and Theory of Automated Timetabling. Springer, 2006,
pp. 394–412.

[26] E. Özcan, B. Bilgin, and E. E. Korkmaz, “A comprehensive analysis
of hyper-heuristics,” Intelligent Data Analysis, vol. 12, no. 1, pp. 3–23,
2008.

[27] N. Hitomi and D. Selva, “A hyperheuristic approach to leveraging
domain knowledge in multi-objective evolutionary algorithms,” in ASME
2016 International Design Engineering Technical Conferences and Com-
puters and Information in Engineering Conference. American Society
of Mechanical Engineers, 2016, pp. V02BT03A030–V02BT03A030.

[28] D. Thierens, “Adaptive strategies for operator allocation,” in Parameter
Setting in Evolutionary Algorithms. Springer, 2007, pp. 77–90.

[29] J. Vazquez-Rodriguez and S. Petrovic, “A mixture experiments multi-
objective hyper-heuristic,” Journal of the Operational Research Society,
vol. 64, no. 11, pp. 1664–1675, 2013.

[30] A. C. Kumari and K. Srinivas, “Scheduling and inspection planning
in software development projects using multi-objective hyper-heuristic

Page 13 of 14

IEEE Transactions on Evolutionary Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

14

evolutionary algorithm,” International Journal of Software Engineering
& Applications, vol. 4, no. 3, p. 45, 2013.

[31] A. C. Kumari and K. Srinivas, “Hyper-heuristic approach for multi-
objective software module clustering,” Journal of Systems and Software,
vol. 117, pp. 384–401, 2016.

[32] A. Nareyek, “Choosing search heuristics by non-stationary rein-
forcement learning,” in Metaheuristics: Computer decision-making.
Springer, 2004, pp. 523–544.

[33] G. Guizzo, G. M. Fritsche, S. R. Vergilio, and A. T. R. Pozo, “A hyper-
heuristic for the multi-objective integration and test order problem,” in
Proceedings of the 2015 Annual Conference on Genetic and Evolution-
ary Computation. ACM, 2015, pp. 1343–1350.

[34] Á. Fialho, L. Da Costa, M. Schoenauer, and M. Sebag, “Analyzing
bandit-based adaptive operator selection mechanisms,” Annals of Math-
ematics and Artificial Intelligence, vol. 60, no. 1-2, pp. 25–64, 2010.

[35] W. K. G. Assunção, T. E. Colanzi, S. R. Vergilio, and A. Pozo, “A
multi-objective optimization approach for the integration and test order
problem,” Information Sciences, vol. 267, pp. 119–139, 2014.

[36] A. Masood, Y. Mei, G. Chen, and M. Zhang, “Many-objective genetic
programming for job-shop scheduling,” in Evolutionary Computation
(CEC), 2016 IEEE Congress on. IEEE, 2016, pp. 209–216.

[37] A. Masood, Y. Mei, G. Chen, and M. Zhang, “A pso-based reference
point adaption method for genetic programming hyper-heuristic in many-
objective job shop scheduling,” in Australasian Conference on Artificial
Life and Computational Intelligence (ACALCI), Melbourne, Australia,
2017.

[38] D. Karunakaran, G. Chen, and M. Zhang, “Parallel multi-objective job
shop scheduling using genetic programming,” in Australasian Confer-
ence on Artificial Life and Computational Intelligence. Springer, 2016,
pp. 234–245.

[39] S. Nguyen, M. Zhang, M. Johnston, and K. C. Tan, “Automatic design
of scheduling policies for dynamic multi-objective job shop scheduling
via cooperative coevolution genetic programming,” IEEE Transactions
on Evolutionary Computation, vol. 18, no. 2, pp. 193–208, 2014.

[40] M. Freitag and T. Hildebrandt, “Automatic design of scheduling rules
for complex manufacturing systems by multi-objective simulation-based
optimization,” CIRP Annals-Manufacturing Technology, 2016.

[41] C. Ryan, J. Collins, and M. O. Neill, “Grammatical evolution: Evolving
programs for an arbitrary language,” in European Conference on Genetic
Programming. Springer, 1998, pp. 83–96.

[42] T. Mariani, G. Guizzo, S. R. Vergilio, and A. T. Pozo, “Grammatical
evolution for the multi-objective integration and test order problem,”
in Proceedings of the 2016 on Genetic and Evolutionary Computation
Conference. ACM, 2016, pp. 1069–1076.

[43] M. P. Basgalupp, R. C. Barros, and V. Podgorelec, “Evolving decision-
tree induction algorithms with a multi-objective hyper-heuristic,” in
Proceedings of the 30th Annual ACM Symposium on Applied Computing.
ACM, 2015, pp. 110–117.

[44] J. A. Vrugt and B. A. Robinson, “Improved evolutionary optimization
from genetically adaptive multimethod search,” Proceedings of the
National Academy of Sciences, vol. 104, no. 3, pp. 708–711, 2007.

[45] C. M. Fonseca and P. J. Fleming, “Multiobjective optimization and
multiple constraint handling with evolutionary algorithms. i. a unified
formulation,” IEEE Transactions on Systems, Man, and Cybernetics-Part
A: Systems and Humans, vol. 28, no. 1, pp. 26–37, 1998.

[46] K. C. Tan, T. H. Lee, and E. F. Khor, “Evolutionary algorithms for multi-
objective optimization: performance assessments and comparisons,” Ar-
tificial intelligence review, vol. 17, no. 4, pp. 251–290, 2002.

[47] M. Maashi, G. Kendall, and E. Özcan, “Choice function based hyper-
heuristics for multi-objective optimization,” Applied Soft Computing,
vol. 28, pp. 312–326, 2015.

[48] M. Misir, K. Verbeeck, P. De Causmaecker, and G. Vanden Berghe, “A
new hyper-heuristic implementation in hyflex: a study on generality,”
in Proceedings of the 5th Multidisciplinary International Scheduling
Conference: Theory & Application, 2011, pp. 374–393.

[49] M. Tsetlin, “On behaviour of finite automata in random medium,”
Avtomat. i Telemekh, vol. 22, no. 10, pp. 1345–1354, 1961.

[50] M. Thathachar and P. Sastry, Adaptive stochastic algorithms for pattern
classification. Singapore: World Scientific, 2001.

[51] T. I. Ahamed, P. N. Rao, and P. Sastry, “A reinforcement learning
approach to automatic generation control,” Electric power systems
research, vol. 63, no. 1, pp. 9–26, 2002.

[52] K. S. Narendra and M. A. Thathachar, Learning automata: an introduc-
tion. Courier Corporation, 2012.

[53] B. J. Oommen and E. d. S. Croix, “Graph partitioning using learning
automata,” IEEE Transactions on Computers, vol. 45, no. 2, pp. 195–
208, 1996.

[54] P. Du Bois, C. C. Chou, B. B. Fileta, T. B. Khalil, A. I. King, H. F.
Mahmood, H. J. Mertz, J. Wismans, P. Prasad, and J. E. Belwafa,
“Vehicle crashworthiness and occupant protection,” 2004.

[55] X. Liao, Q. Li, X. Yang, W. Zhang, and W. Li, “Multiobjective
optimization for crash safety design of vehicles using stepwise regression
model,” Structural and Multidisciplinary Optimization, vol. 35, no. 6,
pp. 561–569, 2008.

[56] R. Yang, N. Wang, C. Tho, J. Bobineau, and B. Wang, “Metamodeling
development for vehicle frontal impact simulation,” Journal of Mechan-
ical Design, vol. 127, no. 5, pp. 1014–1020, 2005.

[57] A. Kheiri and E. Keedwell, “A sequence-based selection hyper-heuristic
utilising a hidden markov model,” in Proceedings of the 2015 Annual
Conference on Genetic and Evolutionary Computation. ACM, 2015,
pp. 417–424.

[58] P. Cowling, G. Kendall, and E. Soubeiga, “A hyperheuristic approach
to scheduling a sales summit,” in Practice and theory of automated
timetabling III. Springer, 2000, pp. 176–190.

[59] J. H. Drake, E. Özcan, and E. K. Burke, “A modified choice function
hyper-heuristic controlling unary and binary operators,” in 2015 IEEE
Congress on Evolutionary Computation (CEC). IEEE, 2015, pp. 3389–
3396.

[60] J. Knowles, L. Thiele, and E. Zitzler, “A tutorial on the performance
assessment of stochastic multiobjective optimizers,” Tik report, vol. 214,
pp. 327–332, 2006.

[61] K. Bringmann and T. Friedrich, “The maximum hypervolume set yields
near-optimal approximation,” in Proceedings of the 12th annual con-
ference on Genetic and evolutionary computation. ACM, 2010, pp.
511–518.

[62] K. Bringmann and T. Friedrich, “Tight bounds for the approximation
ratio of the hypervolume indicator,” in International Conference on
Parallel Problem Solving from Nature. Springer, 2010, pp. 607–616.

[63] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press Cambridge, 1998, vol. 1, no. 1.

[64] J. J. Durillo and A. J. Nebro, “jmetal: A java framework for multi-
objective optimization,” Advances in Engineering Software, vol. 42,
no. 10, pp. 760–771, 2011.

[65] D. B. Gümüş, E. Ozcan, and J. Atkin, “An investigation of tuning a
memetic algorithm for cross-domain search,” in Evolutionary Computa-
tion (CEC), 2016 IEEE Congress on. IEEE, 2016, pp. 135–142.

[66] N. S. Jaddi, S. Abdullah, and A. R. Hamdan, “Taguchi-based parameter
designing of genetic algorithm for artificial neural network training,”
in Informatics and Creative Multimedia (ICICM), 2013 International
Conference on. IEEE, 2013, pp. 278–281.

[67] R. K. Roy, A primer on the Taguchi method. Society of Manufacturing
Engineers, 2010.

[68] M. Wagner, K. Bringmann, T. Friedrich, and F. Neumann, “Efficient
optimization of many objectives by approximation-guided evolution,”
European Journal of Operational Research, vol. 243, no. 2, pp. 465–
479, 2015.

[69] T. Tušar and B. Filipič, “Differential evolution versus genetic algorithms
in multiobjective optimization,” in International Conference on Evolu-
tionary Multi-Criterion Optimization. Springer, 2007, pp. 257–271.

[70] K. Deb and R. B. Agrawal, “Simulated binary crossover for continuous
search space,” Complex Systems, vol. 9, no. 3, pp. 1–15, 1994.

[71] B. L. Miller and D. E. Goldberg, “Genetic algorithms, tournament
selection, and the effects of noise,” Complex systems, vol. 9, no. 3,
pp. 193–212, 1995.

[72] L.-Y. Deng, “Orthogonal arrays: Theory and applications,” Technomet-
rics, vol. 42, no. 4, pp. 440–440, 2000.

[73] N. P. Suh, The principles of design. Oxford University Press on
Demand, 1990, no. 6.

[74] W. Li, E. Özcan, R. John, J. H. Drake, A. Neumann, and M. Wagner,
“A modified indicator-based evolutionary algorithm (mibea),” 2017.

[75] S. Bechikh, M. Elarbi, and L. B. Said, “Many-objective optimization
using evolutionary algorithms: A survey,” in Recent Advances in Evo-
lutionary Multi-objective Optimization. Springer, 2017, pp. 105–137.

[76] K. Deb and H. Jain, “An evolutionary many-objective optimization
algorithm using reference-point-based nondominated sorting approach,
part i: Solving problems with box constraints,” IEEE Transactions on
Evolutionary Computation, vol. 18, no. 4, pp. 577–601, 2014.

[77] M. Wagner, K. Bringmann, T. Friedrich, and F. Neumann, “Efficient
optimization of many objectives by approximation-guided evolution,”
European Journal of Operational Research, vol. 243, no. 2, pp. 465 –
479, 2015.

Page 14 of 14

IEEE Transactions on Evolutionary Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

