32,940 research outputs found

    Differential evolution with an evolution path: a DEEP evolutionary algorithm

    Get PDF
    Utilizing cumulative correlation information already existing in an evolutionary process, this paper proposes a predictive approach to the reproduction mechanism of new individuals for differential evolution (DE) algorithms. DE uses a distributed model (DM) to generate new individuals, which is relatively explorative, whilst evolution strategy (ES) uses a centralized model (CM) to generate offspring, which through adaptation retains a convergence momentum. This paper adopts a key feature in the CM of a covariance matrix adaptation ES, the cumulatively learned evolution path (EP), to formulate a new evolutionary algorithm (EA) framework, termed DEEP, standing for DE with an EP. Without mechanistically combining two CM and DM based algorithms together, the DEEP framework offers advantages of both a DM and a CM and hence substantially enhances performance. Under this architecture, a self-adaptation mechanism can be built inherently in a DEEP algorithm, easing the task of predetermining algorithm control parameters. Two DEEP variants are developed and illustrated in the paper. Experiments on the CEC'13 test suites and two practical problems demonstrate that the DEEP algorithms offer promising results, compared with the original DEs and other relevant state-of-the-art EAs

    Metaheuristic design of feedforward neural networks: a review of two decades of research

    Get PDF
    Over the past two decades, the feedforward neural network (FNN) optimization has been a key interest among the researchers and practitioners of multiple disciplines. The FNN optimization is often viewed from the various perspectives: the optimization of weights, network architecture, activation nodes, learning parameters, learning environment, etc. Researchers adopted such different viewpoints mainly to improve the FNN's generalization ability. The gradient-descent algorithm such as backpropagation has been widely applied to optimize the FNNs. Its success is evident from the FNN's application to numerous real-world problems. However, due to the limitations of the gradient-based optimization methods, the metaheuristic algorithms including the evolutionary algorithms, swarm intelligence, etc., are still being widely explored by the researchers aiming to obtain generalized FNN for a given problem. This article attempts to summarize a broad spectrum of FNN optimization methodologies including conventional and metaheuristic approaches. This article also tries to connect various research directions emerged out of the FNN optimization practices, such as evolving neural network (NN), cooperative coevolution NN, complex-valued NN, deep learning, extreme learning machine, quantum NN, etc. Additionally, it provides interesting research challenges for future research to cope-up with the present information processing era

    Credit Assignment in Adaptive Evolutionary Algorithms

    Get PDF
    In this paper, a new method for assigning credit to search\ud operators is presented. Starting with the principle of optimizing\ud search bias, search operators are selected based on an ability to\ud create solutions that are historically linked to future generations.\ud Using a novel framework for defining performance\ud measurements, distributing credit for performance, and the\ud statistical interpretation of this credit, a new adaptive method is\ud developed and shown to outperform a variety of adaptive and\ud non-adaptive competitors

    Fast micro-differential evolution for topological active net optimization

    Get PDF
    This paper studies the optimization problem of topological active net (TAN), which is often seen in image segmentation and shape modeling. A TAN is a topological structure containing many nodes, whose positions must be optimized while a predefined topology needs to be maintained. TAN optimization is often time-consuming and even constructing a single solution is hard to do. Such a problem is usually approached by a ``best improvement local search'' (BILS) algorithm based on deterministic search (DS), which is inefficient because it spends too much efforts in nonpromising probing. In this paper, we propose the use of micro-differential evolution (DE) to replace DS in BILS for improved directional guidance. The resultant algorithm is termed deBILS. Its micro-population efficiently utilizes historical information for potentially promising search directions and hence improves efficiency in probing. Results show that deBILS can probe promising neighborhoods for each node of a TAN. Experimental tests verify that deBILS offers substantially higher search speed and solution quality not only than ordinary BILS, but also the genetic algorithm and scatter search algorithm

    The DUNE-ALUGrid Module

    Get PDF
    In this paper we present the new DUNE-ALUGrid module. This module contains a major overhaul of the sources from the ALUgrid library and the binding to the DUNE software framework. The main changes include user defined load balancing, parallel grid construction, and an redesign of the 2d grid which can now also be used for parallel computations. In addition many improvements have been introduced into the code to increase the parallel efficiency and to decrease the memory footprint. The original ALUGrid library is widely used within the DUNE community due to its good parallel performance for problems requiring local adaptivity and dynamic load balancing. Therefore, this new model will benefit a number of DUNE users. In addition we have added features to increase the range of problems for which the grid manager can be used, for example, introducing a 3d tetrahedral grid using a parallel newest vertex bisection algorithm for conforming grid refinement. In this paper we will discuss the new features, extensions to the DUNE interface, and explain for various examples how the code is used in parallel environments.Comment: 25 pages, 11 figure

    Image Segmentation with Eigenfunctions of an Anisotropic Diffusion Operator

    Full text link
    We propose the eigenvalue problem of an anisotropic diffusion operator for image segmentation. The diffusion matrix is defined based on the input image. The eigenfunctions and the projection of the input image in some eigenspace capture key features of the input image. An important property of the model is that for many input images, the first few eigenfunctions are close to being piecewise constant, which makes them useful as the basis for a variety of applications such as image segmentation and edge detection. The eigenvalue problem is shown to be related to the algebraic eigenvalue problems resulting from several commonly used discrete spectral clustering models. The relation provides a better understanding and helps developing more efficient numerical implementation and rigorous numerical analysis for discrete spectral segmentation methods. The new continuous model is also different from energy-minimization methods such as geodesic active contour in that no initial guess is required for in the current model. The multi-scale feature is a natural consequence of the anisotropic diffusion operator so there is no need to solve the eigenvalue problem at multiple levels. A numerical implementation based on a finite element method with an anisotropic mesh adaptation strategy is presented. It is shown that the numerical scheme gives much more accurate results on eigenfunctions than uniform meshes. Several interesting features of the model are examined in numerical examples and possible applications are discussed
    corecore