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Abstract—Utilizing cumulative correlation information already
existing in an evolutionary process, this paper proposes a predic-
tive approach to the reproduction mechanism of new individuals
for differential evolution (DE) algorithms. DE uses a distributed
model (DM) to generate new individuals, which is relatively
explorative, whilst evolution strategy (ES) uses a centralized
model (CM) to generate offspring, which through adaptation
retains a convergence momentum. This paper adopts a key fea-
ture in the CM of a covariance matrix adaptation ES, the
cumulatively learned evolution path (EP), to formulate a new
evolutionary algorithm (EA) framework, termed DEEP, stand-
ing for DE with an EP. Without mechanistically combining
two CM and DM based algorithms together, the DEEP frame-
work offers advantages of both a DM and a CM and hence
substantially enhances performance. Under this architecture, a
self-adaptation mechanism can be built inherently in a DEEP
algorithm, easing the task of predetermining algorithm control
parameters. Two DEEP variants are developed and illustrated
in the paper. Experiments on the CEC’13 test suites and two
practical problems demonstrate that the DEEP algorithms offer
promising results, compared with the original DEs and other
relevant state-of-the-art EAs.

Index Terms—Cumulative learning, differential evolution (DE),
evolution path (EP), evolutionary computation.

I. INTRODUCTION

IN EVOLUTIONARY algorithms (EAs), two types of mod-
els are often used to generate new candidate solutions,

which we refer to as a distributed model (DM) and a cen-
tralized model (CM) in this paper. For example, in the genetic
algorithm (GA) [1], differential evolution (DE) [2], and parti-
cle swarm optimization (PSO) [3]–[9], each new candidate is
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evolved from certain parental individuals directly. This can
be regarded as following a DM because the parents are
distributed among the population. On contrast, in evolution
strategy (ES) algorithms, such as the estimation of distribution
algorithm (EDA) [10] and the covariance matrix adaptation
ES (CMA-ES) [11], all new individuals are generated using
a centralized probability model. Similarly, in ant colony opti-
mization (ACO) [12], [13], all ants use the same pheromone
model to generate new individuals. Therefore, these algorithms
can be regarded as using a CM to generate new candidates
because the parental information is centralized with an inter-
mediate model. Note that some other classification terms, such
as explorative/exploitative, diversification/intensification, and
individual-based/model-based, can also be used in classifying
EAs from different perspectives. The term DM/CM is used in
this paper because this paper focuses on the features of how
parental information is utilized in the evolutionary process.

In this paper, we first analyse the different features and
advantages of a DM and a CM, with a focus on combining
their advantages in the development of new algorithms. In the
literature, efforts are already seen in combining a CM with
a DM [14]–[19]. In [14], for example, the use of some DM
features to enhance the ACO algorithm is proposed, which
shows some promising results. In [20], the teaching–learning
optimization proposal combines a CM (a “teacher phase”) and
a DM (a “learner phase”) for constrained optimization. Other
relevant studies have focused on using a DM as a base algo-
rithm, such as the combinations of DE and EDA [17], [19],
PSO and EDA [15], and DE and CMA-ES [21]. These are
however, based on a direct combination of two algorithms of
a DM and of a CM. Hence, new populations are generated in
both ways to introduce and maintain a higher diversity than
using a single model alone.

However, such hybridizations result in complex reproduction
processes and lack the advantage of efficient cumulative learning
offered by a CM, such as the evolution path (EP) used in a
CMA-ES. This paper therefore attempts to address these issues
by developing a “DE with an EP” (DEEP) algorithm, using
DE as the base algorithm with enhancement through an EP.

The remainder of this paper is organized as follows. In
Section II, the DM and CM are fully analyzed, with reviews
on several related search models. In Section III, the DEEP
framework is introduced. In Section IV, two DEEP algorithms
are developed and experiments on the CEC’13 test suites are
performed to test the DEEP algorithms fully. The conclusion
is drawn in Section V, with future work also highlighted.
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Fig. 1. Two kinds of population reproduction models: DE versus EDA.

II. REPRODUCTION MODELS

This section analyses the differences and advantages of the
DM and CM models in generating new individuals. Take DE
and EDA as examples for the use of DM and CM, respectively.
Their differences are illustrated in Fig. 1.

Firstly, each new individual in the DE is generated based
on its own parents. In this sense, different new individuals can
be regarded to be generated according to the different mod-
els determined by their corresponding parental individuals.
Therefore, the whole population in DE can be regarded as gen-
erated by combining multiple models. However, in an EDA,
a uniform reproduction model is first created by using the
information from some selected parents, and then the whole
population is generated from a uniform Gaussian model. From
this viewpoint, the DE reproduction model is regarded as a DM
while the EDA a CM.

Secondly, in DE, the new population is directly generated by
the parent population while in EDA the population is first built
into a Gaussian model, which is then used as an intermediary
parametric model to generate the new population. Therefore, a
DM in DE is nonparametric whilst a CM in EDA is parametric.

Moreover, these two different types of models have different
advantages. The DM scheme enjoys flexibility in nonparamet-
ric modeling and distributed individual generation. There is a
direct generational parent-offspring relationship between the
two successive generations. New individuals can be gener-
ated alongside the best parental individuals regardless of their
distribution. On the other hand, as the CM scheme builds a
Gaussian model as an intermediate model to generate new
individuals, the CM scheme usually cannot work well on
multimodal problems when the population is separately dis-
tributed in different locales. However, the CM scheme enjoys
its advantage of parametric modeling, which can cumulate
historical information continuously during the evolutionary
process. The continuous adaptation of the CM can help adjust
the shape and location of the Gaussian model to gain a
better landscape approximation. Compared with the contin-
uously learning feature of the CM, the DM scheme can only
use the information of the immediate past generation, which
is regarded as “discrete” in such a sense. Therefore, the

Fig. 2. Evolution path over a number of generations.

advantage in cumulative learning helps algorithms with a CM
(such as the CMA-ES) work better on ill-shaped landscapes
such as nonconvex or narrow corridor ones [11].

Given the analysis above, a question arises whether the
advantages of both kinds of models can be combined. In the lit-
erature, some studies are reported in the sense of this question.
Deb et al. [22] and Someya [23] assert that there are different
kinds of crossover mechanisms in GA, such as the “parent
mode crossover,” with which each offspring is generated by a
corresponding parent, while “centric mode crossover” opera-
tions generate the whole offspring population by the center of
the current population. Someya [23] proposes an asymmetric
normal distribution crossover (ANDX) operation to tune these
two crossover modes for improved performance. For ACO,
Tsutsui [14] provides an interesting way to use the parental
solutions to modify new solutions generated by the CM model
with promising results.

Based on the analysis so far, we propose a new way other
than direct combination of a DM and a CM. Here, the main
structure of one model is retained while key features of the
other are added to keep the hybridized algorithm as simple
as possible. In this paper, we use the DE (which is based
on a DM) as the base algorithm and combine some key
features of a CMA-ES (which is based on a CM) into the
DE framework. The cumulatively learned evolution path (EP)
is used to adapt the parametric model of the CMA-ES for
improved efficiency and performance. According to [11], the
EP in the CMA-ES represents the migration path of the popu-
lation center. Using EP to cumulatively modify the distribution
shape of the Gaussian model plays a key role in the CMA-ES.
As an illustration, Fig. 2 shows how the population center
migrates, i.e., the EP.

Different from a superimposed DM and CM combination,
all the individuals are still generated by the DM. In order to
utilize the EP information, an additional differential vector is
added to a new individual after it has been generated by the DE
mutation and crossover operations. The added vector is gen-
erated by a Gaussian model along the direction of the EP, and
therefore is efficient to guide the new individual to a promising
region directed by the EP information.
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However, sometimes the EP may detour from a specific
center, like illustrated by the last several generations in
Fig. 2. Nevertheless, the center of the detoured EP may indi-
cate a good region for generating a new promising solution.
Therefore, an anchor point which is a weighted mean of the
recent population centers is used to maintain some momentum
of the EP when it detours significantly. This way, the algorithm
can be guided by both the EP direction and the anchor points.

Based on the analysis, it is apparent that the proposed DEEP
scheme can be applied to more than one DE variant. In this
paper, we illustrate and develop two DEEP algorithms, which
are based on the conventional DE/rand variant and the well-
performed adaptive DE variant, termed as JADE in [24]. In
the remainder of this section, a brief review on DE and CMA-
ES, which belong to DM and CM, respectively, are presented,
along with a state-of-the-art DE/CMA-ES hybrid algorithm.

A. Models in DE

The DE algorithm is a typical EC algorithm with three
basic operations for the population reproduction: mutation,
crossover, and selection. In every generation, a population P
first goes through mutation. The mutation operation of DE is
very special in that it uses a linear combination of a base vec-
tor and one differential vector or more to generate a mutated
vector. For example, for every individual xi (i = 1, . . . ,
population_size) in P, its mutated vector vi is generated by

vi = xr1 + F · (
xr2 − xr3

)
(1)

where r1, r2, and r3 are three randomly selected individuals,
and are also different from i. In this mutation scheme, the dif-
ference between individuals r2 and r3 is used as the mutation
step while factor F controls the step scale. After a mutated
population V is created, it will go through a crossover process
with the parent population P. The crossover operation for DE
can be in binary or exponential. Here, without loss of gen-
erality, we only illustrate the binary crossover, as it is used
in most cases. The crossover operation recombines every pair
of individuals of (vi, xi) to generate a new individual ui as
shown in

uij =
{

vij, if rand (0, 1) ≤ CR|| j == jrand
xij, otherwise

, for j = 1, . . . , D

(2)

where rand(0,1) is a random number uniformly distributed
within interval [0, 1], D is the number of dimensions, CR is
the crossover rate which controls how many dimensions of the
newly generated individual are from the mutated vector vi, and
jrand is a randomly selected index to make sure that at least
1-D of the mutated vector will enter into the newly generated
individual.

The crossover process creates a temporary population U,
which is evaluated and then enters into the selection proce-
dure. This procedure uses a pair-wise comparison of U and P.
As shown in the following equation, individual ui and xi are
compared and the better one will enter into the next generation:

xnew
i =

{
xi, if fitness (xi) is better than fitness (ui)

ui, otherwise.
(3)

The above basic framework of DE shows a very simple algo-
rithm for continuous optimization problems. A recent survey
on DE can be found in [25]. Recent studies on parameter
adaptation [26]–[29] and parameter composition [30] have
shown that algorithm parameters of DE are important for
the DE to perform well on different kinds of problems. This
observation has led to the use of different mutation strate-
gies to improve the performance of DE [26], [27], [30]–[32].
Mallipeddi and Suganthan [33] have proposed the framework
of using ensemble-based strategies and parameters. Resultant
ensemble-based algorithms are shown to adaptively choose
better performing strategies and parameters in dealing with
various kinds of problems. In [34], a bare-bone algorithm is
proposed to solve parameter setting problem. Moreover, mul-
tiple or different individuals are used to guide the search of
DE in [24] and [35]–[37], while local or neighbor informa-
tion is used to guide the search in [38]–[41]. Both methods
are used to improve the efficiency while maintaining the
global search ability of DE. Recently, theoretical study on
the convergence characteristics of DE has also made impor-
tant progress in [42]. DE based frameworks are also proposed
for constrained optimization in [43] and dynamic optimization
in [44] and [45]. Multistart JADE is proposed in [46], which as
a restart method works well for CMA-ES and EDA [47] and
could be further extended to other evolutionary computation
methods such as DE. In [48], a DE is reported to offer effi-
cient solutions to multimodal optimization problems. Overall,
current DE studies mainly cover ensemble-based algorithms,
which have shown advantage with automatic strategies and
parameter settings; parameter adaptation methods, which are
important to DE algorithm to solve different kinds of prob-
lems; and multiple guidance and local guidance, which have
been shown very useful in improving the global search ability
of DE. However, there has been no clear EP based studies for
DE so far.

B. CMA-ES

The CMA-ES has proved to be one of the most promis-
ing EAs. The CMA-ES uses CMA to adapt the Gaussian
distribution model to generate new individuals, the same as
in a common EDA. In CMA-ES, a covariance matrix C rep-
resents the population distribution shape and is cumulatively
updated.

Usually, there two ways to update the covariance matrix C,
but test results reveals that the algorithm works well when C
is updated by the “EP” only. The EP vEP is defined as the
cumulative migration step of the mean point of the population
(xg − xg−1) between successive generations. The EP vector
vEP can modify the shape of the distribution and enlarge it
along the direction of vEP by modifying C. CMA-ES works
well with such covariance matrix adaptation, which indi-
cates that the EP information is very useful to improve the
search efficiency. The cumulative EP information, as a fea-
ture of the whole population, is the key factor of the CM
of CMA-ES. Such a CM is helpful for a DM based algo-
rithm if properly used. More details of CMA-ES can be
found in [11].
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C. DCMA-EA

In [21], a hybrid algorithm of DE and CMA-ES, termed
differential covariance matrix adaptation EA (DCMA-EA), is
proposed. The DCMA-ES combines the DE operations into
the CMA-ES new individual generation, which is aimed to
enhance the global search ability of CMA-ES. The DCMA-EA
improves the performance of CMA-ES on complex multi-
modal functions, but may not be efficient on some unimodal
or simple multimodal problems. The DCMA-EA uses the
CMA-ES algorithm as a base algorithm. It thus inherits all
the complex parameters and computations such as eigen-
decomposition used in CMA-ES. Hence, it is more complex
than traditional DE variants.

III. DEEP FRAMEWORK

Following the analysis of key features in the DE and
CMA-ES algorithms, one key feature is selected in this section
to improve DE without needing eigen-decomposition or direct
hybridization of DE and CMA-ES. This is to retain simplicity
in implementation and to improve efficiency in operation.

A. Concepts, Problems, and Solutions of DEEP

The principle of DEEP is to use the EP learning model
of CMA-ES to enhance the DE reproduction. In particular,
DEEP incorporates an EP vector in the mutation of the original
DE algorithm. The EP is computed by accumulating historical
information of the population migration as an intermediate CM
for the DE to predict direction and hence move faster toward
a more promising region.

In developing the DEEP algorithm, the first issue to address
is to assess whether or not the population has already gone
too far in the EP direction and whether the population need to
reverse the direction. Our solution to this problem is to use an
adaptive parameter α to control the direction (either positive
for forward or negative for backward) of the mutation and
its step size. Parameter α thus lets the program decide the
direction and step size.

The second issue is to decide whether the direction of the EP
makes sense when the EP detours significantly. Observation
reveals that the EP often detours round and round when the
population is around a best region and slowly converges to the
approximate center. Hence we can use the historical centers of
the recent populations to calculate the centroid of their recent
trajectory (i.e., an approximate center of the recent evolution
path). The centroid can therefore be used as an anchor point
cEP to counter random detours.

B. Major Operations

Without loss of generality, EP is directly used as an addi-
tional mutation vector in DEEP rather than as a means of
building a covariance matrix used in CMA-ES. This way, the
framework of DEEP remains unchanged from the original DE
algorithm.

At the beginning, a normal DE population is generated. For
every subsequent generation in the evolution process, each
individual in the generation goes through the DE mutation and

crossover operations as shown in (1) and (2). Then an addi-
tional EP mutation is added to the new individual ui (for i = 1,
. . . , population_size)

u′
i = ui + F · sCR · (αi · vEP + βi · (cEP − ui)) (4)

where F and sCR = CR are the same parameters as F and
CR in (1) and (2), vEP is the cumulative learning EP vector
and cEP is the anchor point. Parameter αi is generated with
a Gaussian distribution to control the size and direction of
EP and β i is a parameter used to control the step size to the
anchor point cEP.

Based on (4), ui is further guided by the EP directional
information and the anchor point. It should be noted that
vEP is a vector along the population’s promising EP direction
and is therefore directly added to ui, while cEP advocates a
promising position with the β i–weighted difference (cEP – ui)
“correcting” ui.

The vEP vector is the migration vector of the mean point
of the population Centerg from the previous generation to the
current generation g

vEP = Centerg − Centerg−1 (5)

where Centerg is the mean position of the first s best individ-
uals in the population in generation g, defined as

Centerg = mean
(
xbest_1, xbest_2, . . . , xbest_s

)
. (6)

The anchor point cEP of the cumulative learning is defined as

cEP = λ · cEP + (1 − λ) · Centerg. (7)

Based on (5) and (7), vEP and cEP collect the EP infor-
mation from two different aspects. Firstly, vEP is for a fast
response to the recent population migration vector, which
can be very helpful when a long range migration is needed.
Secondly, cEP is updated using a learning parameter λ, which
can be taken as a weighted mean of the recent population
centers. This is useful when the population experience a con-
traction process. A λ value of 0.5 appears to be consistently
good based on our experimental studies (Section IV). For the
control parameters αi and β i in (4), simple self-adaptation
suffices.

With the EP applied to new individuals, DEEP reproduction
benefits from advantages of both distributed and CMs. In par-
ticular, each individual inherits from its parents by (1) and (2),
hence maintaining population diversity and good sampling of
the search space. Then, (4) acts as a CM to track the best par-
ents’ moving direction in the generation of new individuals.
Fig. 3 illustrates how a DEEP mutant is generated.

C. Parameter Adaptation in DEEP

In (4), parameter F is adopted to keep the EP with a similar
scale to the original DE mutation, while sCR is to control
the scale of EP information as it is added after the original
DE mutation and crossover operations. Experimental results
advise that using sCR to scale the EP information instead of
applying it before the crossover is better, for this preserves the
geometrical characteristics of the EP.
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Fig. 3. DEEP generates a new individual by adding vEP and a step
toward cEP.

Parameters αi and βi are self-adaptive in the algorithm.
Parameter αi is generated with a Gaussian distribution, where
both the size and sign of αi are used

αi = 2N
(
αm, αsig

)
. (8)

The distribution is centered at αm, which creates a balance
factor for the EP mutation direction. If αm > 0, the distri-
bution gears toward the forward direction of vEP. If αm < 0,
the distribution gears toward the backward direction of vEP.
Parameter αm is adaptively adjusted in a way similar to how
CR adapts in JADE [24]. Because N(αm, αsig)∈(−∞, ∞), αi

is truncated into an interval [−αmax, αmax] in implementations,
as shown in

αi =
{

αmax, if αi > αmax
−αmax, if αi < −αmax.

(9)

After the evaluation of the population, those αi values that
have helped generate better offspring are used to tune αm

adaptively by way of

αm = 0.9 αm + 0.1 mean
(
αgood

)
/2 (10)

where mean (αgood) is the mean value of αi that have
helped the individuals generate better new individuals. The
momentum from αgood helps the algorithm adapt itself in the
distribution of the EP during the search process.

Similarly, a self-adaptive adjustment for the scale factor βm

is formulated. For each individual, βi is generated by

βi =
⎧
⎨

⎩

0,

βmax,

if βi < 0
if βi > βmax

N
(
βm, βsig

)
, otherwise

(11)

where βm and βsig are the center point and standard devia-
tion of the Gaussian distribution used to generate βi. Those βi

values, βgood, that have helped the individuals generate better
new individuals are used for an adaptive center of the Gaussian
distribution, as shown in

βm = 0.9 βm + 0.1 mean
(
βgood

)
. (12)

The self-adaptation of the control parameters αi and βi

relieves the user from setting those parameters for the
EP mutation. Overall, the framework of DEEP is shown
in Fig. 4.

Fig. 4. DEEP framework.

TABLE I
PARAMETER SETTINGS USED IN THE TESTS

IV. TWO DEEP ALGORITHMS ILLUSTRATED WITH

EXPERIMENTAL STUDIES

In this section, we illustrate the DEEP framework through
two example DEEP algorithms and their experimental studies.
We first apply DEEP to a canonical DE variant DE/rand/1 and
to a state-of-the-art DE variant JADE [24] to develop a
DE/rand/EP and a JADE with an EP (JADEEP), respec-
tively. Experimental comparisons are then made with the
original algorithms and other relevant EAs, including the
DCMA-EA [21], CMA-ES [11], composite DE (CoDE) [30],
self-adaptive DE (SaDE) [27], self-adaptive ensemble param-
eters and strategies DE (SaEPSDE) [49] (a recent ver-
sion of EPSDE), and self-adaptive DE with neighborhood
search (SaNSDE) [26]. In the experiments, all algorithms are
tested on the single-objective box-constrained continuous opti-
mization problems in the CEC’13 benchmarks [50] and on
two practical problems [52]. Test codes of JADE, CoDE, and
CMA-ES are provided in [30]. Test codes of SaEPSDE and
SaNSDE are obtained from their authors, respectively. Test
code of DCMA-EA is implemented according to the pseudo
code provided by the authors.

A. Development of DEEP From DE/rand/1 and JADE

In the development of a DEEP algorithm from the traditional
DE algorithm, DE/rand/1, all the settings in Section III are
used. The bound handling method is adopted from JADE, as
shown in

uij
′ =

{(
xij + uboundj

)
/2, if u′

ij > uboundj(
xij + lboundj

)
/2, if u′

ij < lboundj
(13)
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TABLE II
TEST RESULTS OF DE/RAND/EP VERSUS DE/RAND/1 IN TEST PROBLEMS WITH D = 30, 50, AND 100 (NUMBER OF FES IS SHOWN IN

PARENTHESES IF MEAN ERROR IS ZERO; BETTER MEAN ERRORS ARE SHOWN IN BOLDFACE; SIGNIFICANTLY DIFFERENT

RESULTS ARE HIGHLIGHTED IN SHADE)

where u’ij is the jth dimension of the ith new individual gen-
erated by (4), and ubound and lbound are the upper and lower
bounds, respectively.

When developing a DEEP algorithm from JADE, F, and
sCR in (4) remain associated with each individual, as used in
the original DE. Two minor modifications are however, made
in JADEEP for the DEEP framework. First, when we use the
sCR scale factor to control the EP information in (4), a rela-
tively large sCR can be used of when CR is large, for example

sCRi =
{

1, if CRi > 0.2
CRi, otherwise

(14)

because a large CR usually indicates that the algorithm is
progressing well and the added EP information should be
used more. The second modification involves the anchor,
cEP, which is used as a promising point to guide the JADE
mutation. It is hence better to decrease the p-best guidance
in the original JADE mutation as follows:

vi = xi + F′
i · (

xpbest − xi
) + Fi · (

xr1 − xr2

)
(15)

where

F′
i = Fi · (1 − βi · sCRi). (16)

The scale factor F’ is used to control how the p-best
guidance information is decreased in relation to the mount
added by (4), so as to balance JADEEP for various kinds of
optimization problems.

A full pseudo code of JADEEP is shown in the Appendix.
Details of the parameters used in these tests, as well as in
the original DE/rand/1 algorithm, are given in Table I. The
original settings of JADE remain unchanged. The settings of
the control parameters used in the self-adaptation of the EP
mutation are also shown in Table I.

We endeavor to use the same settings for all the test algo-
rithms. The initial values of αm and βm are set to zero,
which means no EP guidance is used at the very beginning.
Empirically, αsig and βsig are set to a smaller value than the
search range, for tests advise that they work fine as long as
no extreme values are used. We shall conduct experiments to
test how the range control parameters αmax and βmax influence
DEEP performance and self-adaptation of αi and β i. We also
conduct experiments on the anchor point learning parameter
λ and the population center calculation parameter s.

B. Comparing the DEEP Algorithms With Their
Original DEs

DE/rand/1/EP and JADEEP are compared with their original
DE algorithms in Tables II and III, respectively, on 30, 50, and
100 dimensional test problems of CEC’13. All test results are
based on 51 independent runs. The results with better mean
fitness errors compared with the corresponding results of the
original algorithms are shown in boldface, while the results
which are significantly different (determined by the Wilcoxon
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TABLE III
TEST RESULTS OF JADEEP VERSUS JADE IN TEST PROBLEMS WITH D = 30, 50, AND 100 (NUMBER OF FES IS SHOWN IN PARENTHESES IF MEAN

ERROR IS ZERO; BETTER MEAN ERRORS ARE SHOWN IN BOLDFACE; SIGNIFICANTLY DIFFERENT RESULTS ARE HIGHLIGHTED IN SHADE)

rank-sum test with a significance level 0.05) are highlighted in
shade. In the last row of each table, the number of functions
on which the DEEP algorithm performs significantly better
than, similar to, and significantly worse than the original DE
algorithm are presented.

For each test function, the mean absolute errors between the
final best fitness and the theoretical best fitness and the stan-
dard deviation over the given number of test runs are presented
in the tables. The termination condition is the maximum num-
ber of function evaluations (FEs), set to be 104 per dimension,
i.e., for a maximum total of D × (1E+4) FEs. If the algo-
rithm converge to an absolute error smaller than 1E-9 (taken
as zero) on the CEC13’ benchmarks, the algorithm terminates
and the total number of FEs used are recorded and shown in
parentheses.

Compared with DE/rand/1, the DEEP algorithm has been
able to improve the performance on most of F1–F20 functions,
while maintaining comparable performance on the composite
functions F21–F28, as shown in Table II. The improvements
become more salient when the dimensionality of the prob-
lems increases. The DEEP algorithm has worked especially
well for most functions when D increases to 100 (with a
population size 400). One may be interested to measure how
much the DEEP improves on such a simple function as F1,
when performance on multimodal functions are at least not
worse. It is seen that the numbers of FEs were reduced to 46%
and 41% for D = 30 and D = 50, respectively. For D = 100,
the DE/rand/EP managed to find the theoretical minimum of

F1 with 56% of FEs of the original algorithm, which failed
to reach a zero error and was terminated at the end of the
predefined maximum FEs.

Similarly, JADEEP is also able to improve the performance
over JADE, not only on unimodal functions, but also on com-
posite functions, as shown in Table III. The JADEEP runs
much faster than JADE on simple functions like F5, with FEs
reduced to 60% when D = 100. Note that the acceleration
is gained while JADEEP can perform well on complicated
multimodal functions like F23 and F26. This is owing to
EP providing good but not greedy guidance. For a more
direct view on the improvements brought about by the DEEP
framework, a search performance chart comparing JADE and
JADEEP on some typical functions (D = 30) is shown in
Fig. 5.

We also tested the application of EP to ensemble-based DE
variants with multiple strategies, such as SaDE, CoDE, and
SaEPSDE, although EP showed less significant improvements.
The reason might be that the greedy mutation strategy DE/best
used in SaDE weakens the guidance effects of DEEP and the
competing mechanism of mutation strategies in these algo-
rithms weakens the effects of EP. We would hence propose
in future work that dedicated EP-based mutation strategies be
designed to work with the ensemble-based DE algorithms.

C. Functional Analysis on DEEP With Parameter Studies

In this sub-section, we investigate how EP functions with
key parameters in the DEEP framework. By testing different
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Fig. 5. Comparison of evolution processes between JADEEP and JADE on some representative functions.

(a) (b) (c) (d)

Fig. 6. Parameters study on (a) αmax, (b) βmax, (c) λ, and (d) s.

values of certain key parameters, the role of the two parts of
EP can be more clearly understood.

The EP vector vEP is designed to help the population in
long migration, and αmax is used to control possible maxi-
mum effects of vEP. The effects of vEP can be much clearer
if the initial populations happen to be far away from the
global best region, especially when a promising range of the
global best is unknown. We study such cases with different set-
tings of αmax and with the population initialized far from the
global best. The search results on some functions are shown
in Fig. 6(a) (scaled for the convenience of comparison). The
results show that with a larger αmax, the search speed can
be improved noticeably. This confirms that the EP vector vEP
can be helpful especially when a long migration is necessary.
Thus we have recommended a large αmax as a suitable setting
in Table I.

The EP anchor point cEP is designed to help the popula-
tion reduce wasteful detours in the search progress. In (4) the

mutation vector is affected by cEP – ui, being dragged closer
to cEP. Too much influence of cEP would cause the popula-
tion to converge prematurely, which is undesirable even when
cEP is different from the current best location. Thus parameter
βmax, which is used to control the effects of cEP, must be set
to a proper value. As shown in Fig. 6(b), different settings
of βmax are tested on several functions. To make a balance
on search speed and divergence, we choose a median value
of 0.25 for βmax as used in Table I. For the anchor learning
parameter λ, in Fig. 6(c), test results guided us to select a
value of 0.5, as used in Table I. Setting λ larger than 0 means
that more information than the current population center is
used, which leads to better performance on some functions.
On the other hand, setting λ to a value closer to 1 leads to
poor results in most cases, because the anchor point can be far
from the global best and may not change during the evolution
process. However, it can be good for multimodal functions, as
shown in Fig. 6(c) on F10, because the anchor can be helpful
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TABLE IV
JADEEP COMPARED WITH DCMA-EA, CMA-ES, AND DE/BEST/2 (NUMBER OF FES IS SHOWN IN PARENTHESES IF MEAN ERROR IS ZERO;

BETTER MEAN ERRORS ARE SHOWN IN BOLDFACE; SIGNIFICANTLY DIFFERENT RESULTS ARE HIGHLIGHTED IN SHADE)

Fig. 7. Self-adaptation of αm in the search process.

in creating divergence when it is far from the current local best.
This explains why the DEEP is able to help improve the perfor-
mance on the multimodal functions, with a possibility that the
cEP guidance can be quite different from the current local best.

Another key feature of the DEEP algorithms is the popula-
tion center. Parameter s is used to compute the center of the
population (center of the first s best individuals) and is studied
in Fig. 6(d). Using either the current best individual (s = 1) or
the whole population (s = 100 for JADE) is not as good as
using our recommended value s = 20. The test results show

Fig. 8. Self-adaptation of βm in the search process.

that the population center can make a better effect of guidance
than the current best in DEEP. It is also reasonable to use not
all the individuals in the population to calculate the population
center because some of the individuals in the population are
only used to maintain divergence.

The self-adaptation mechanism is profoundly used in the
literature. For other parameters in the self-adaptation, Table I
also lists their empirical values. The initial values of αm and
βm are set to 0, which means at the beginning the EP is
not used. Figs. 7 and 8 show the self-adaptation curve of αm



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON CYBERNETICS

TABLE V
JADEEP COMPARED WITH SADE, CODE, SAEPSDE, AND SANSDE (NUMBER OF FES IS SHOWN IN PARENTHESES IF MEAN ERROR IS ZERO;

BETTER MEAN ERRORS ARE SHOWN IN BOLDFACE; SIGNIFICANTLY DIFFERENT RESULTS ARE HIGHLIGHTED IN SHADE)

and βm during the evolution process of JADEEP on functions
F4, F6, F11, and F13. These curves show these two control
parameters behave differently for different problems. Based on
Fig. 7, the self-adaptation mechanism seems to be useful to
find different values of αm, large or small, negative or positive,
which are proper for different functions. For example, for func-
tion F6 (Rosenbrock) with a long descent corridor that would
require many generations of evolution, a large αm is found to
be necessary. Fig. 8 also shows that different settings of βm

emerge for different functions during the evolution process.

D. Comparing JADEEP With Other Relevant Algorithms

In this sub-section, the DCMA-EA [21] algorithm that
directly hybridizes the DE and CMA-ES is compared in
detail. More competitors include CMA-ES itself, which is
a state-of-the-art CM algorithm, the DE/best/2, which can
also be taken as a CM algorithm because all individuals are
generated based on the current best individual, and a num-
ber of state-of-the-art DE variants such as SaDE, CoDE,
SaEPSDE, and SaNSDE, which use ensemble mutation strate-
gies. Nonparametric Dunnett’s test [53] for multicomparisons
is used here with JADEEP taken as the control algorithm
against all other algorithms shown in Tables IV and V. The
results that are significantly different (with a significance
level 0.05) are highlighted in shade as before.

TABLE VI
COMPARISON ON TIME OVERHEADS BETWEEN JADEEP,

DCMA-EA, AND CMA-ES

From the test results shown in Table IV, we can see
that the proposed JADEEP performs better than DCMA-
EA and CMA-ES on most of the multimodal functions.
The search speed of JADEEP is also higher than that of
DCMA-EA. In DCMA-EA, EP information is used after
an eigen-decomposition, which can be time consuming, as
shown in Table VI comparing the computational overheads
of JADEEP, DCMA-EA, and CMA-ES. These are based on
51 independent runs of each function on a computer with
Intel Core i3-3240 CPU at 3.4 GHz and 4 GB memory and
the MATLAB 2013a environment. We can see that JADEEP
runs much faster, because the EP computation is in the order
of O(1) after the computation of the population center while
the eigen-decomposition used in DCMA-EA and CMA-ES is
O(n3) for a n-dimensional problem.
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TABLE VII
TEST RESULTS ON LENNARD-JONES AND TERSOFF POTENTIAL

OPTIMIZATION PROBLEMS

Fig. 9. Pseudo code of JADEEP.

The comparison in Table V shows that JADEEP works
better than SaDE and SaNSDE on most functions. SaDE is
already a fast DE algorithm and is better than the origi-
nal JADE, which is especially good at unimodal functions.
With the help of the EP, JADEEP improves its perfor-
mance on unimodal functions while maintaining advantages
on multimodal functions. JADEEP is also seen slightly bet-
ter than SaEPSDE and CoDE on multimodal functions and
is much faster than the two algorithms on unimodal func-
tions (such as F1, F2, and F5). However, EP is less useful
in JADEEP on some unimodal functions such as F3, as the
original JADE algorithm itself is not good at this function.

E. Comparison of JADEEP Applied to Practical Problems

Here JADEEP is applied to practical optimization problems
studied in [52] which are atomic potential minimization prob-
lems, important in molecular structure studies. Two potential
function minimization problems were studied: the Lennard-
Jones potential problem and the Tersoff potential function
minimization problem. For both problems, the goal is to find
the positions of a series of N atoms

�X = {�X1, �X2, . . . , �XN
}

(17)

such that the atomic potential is minimized, where �Xi is a
3-D position vector. For detailed formulation of these two
problems, refer to [52].

In the experiments, JADEEP and other relevant algorithms
were compared for N = 10 (i.e., 10 atoms with 30 decision
variables). As the population size of JADEEP could be reduced
to as low as 30, this size was used in the experiments, while all
settings for the other relevant algorithms remained unchanged.
The results are shown in Table VII. It can be seen that JADEEP
performed well and resulted in the lowest potential in these
two practical problems.

V. CONCLUSION

In this paper, the reproduction mechanism of the DE has
been enhanced through an evolution path, taking the advan-
tages of both a CM of CMA-ES and a DM of DE. Without
loss of generality, a Gaussian distribution is used in the CM
as a generator for a new population centered at the mean with
its path cumulatively learned during the evolutionary process.
This adds a momentum in the evolution to speed up search
along the trend. In the meanwhile, the DM inherent in DE
uses individuals more sparsely distributed in the population
without following a parametric model and hence exploration
in the evolution is much retained.

Instead of directly combing the DE and the CMA-ES algo-
rithms mechanistically together to develop a new algorithm,
only the key CM feature of the CMA-ES, i.e., the evolution
path, is used to develop DEEP efficiently for performance
improvements. In particular, the direction vector of EP is uti-
lized for additional mutation information and the cumulative
learning weighted mean of recent EP centers is used to guide
the new individuals generated by the DE. Further, CM features
are self-adaptive, which helps new individuals improve quality
in a new environment and simplifies algorithm design. Using
the DEEP framework, we have developed and illustrated two
DEEP algorithms. They have exhibited mostly better perfor-
mance than the original DE and other relevant state-of-the-art
algorithms.

For future work, stand-alone EP-dedicated mutation will be
studied. Comparative investigation and combination of para-
metric and nonparametric reproduction models of EAs are also
worthy of further studies, as the results could be very useful
in applying EP to other DM algorithms, such as PSO. A CM
algorithm enhanced by DM with a direct parent-offspring rela-
tionship could be very interesting, too. As surveyed in [54],
some machine learning tools may be useful for a possible
merger between the CM and DM.
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APPENDIX

Detailed pseudo code of JADE with EP modifica-
tions (JADEEP) is shown in Fig. 9. More information
please contact with the corresponding author Z. H. Zhan
(zhanzhh@mail.sysu.edu.cn).
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