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Abstract: In this paper we present the new Dune-ALUGrid module. This module contains a
major overhaul of the sources from the ALUGrid library and the bindings to the Dune software
framework. The main improvements concern the parallel feature set of the library, such as
user-defined load balancing, parallel grid construction, and a redesign of the 2d grid which
can now also be used for parallel computations which was not possible before. In addition
many improvements have been introduced into the code to increase the parallel efficiency and to
decrease the memory footprint.

The original ALUGrid library is widely used within the Dune community due to its good parallel
performance for problems requiring local adaptivity and dynamic load balancing. Therefore,
this new module will benefit a number of Dune users. In addition we have added features to
increase the range of problems for which the grid manager can be used, for example, introduc-
ing a 3d tetrahedral grid using a parallel newest vertex bisection algorithm for conforming grid
refinement. In this paper we will discuss the new features, extensions to the Dune interface, and
explain for various examples how the code is used in parallel environments.
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1 Introduction

The ALUGrid package was originally developed as part of the PhD thesis of Bernhard Schupp
[Schupp, 1999]. Back then, the task was to develop a software that could solve the compressible
Euler equations of gas dynamics with a Finite Volume scheme on a parallel computer in 3d in-
cluding local grid adaptivity. To achieve this task Schupp implemented a 3d hexahedral adaptive
mesh including dynamic load balancing based on METIS graph partitioning [Karypis and Kumar,
1999]. Later, support for tetrahedral elements were added by Mario Ohlberger and the code was
successfully used to simulate solar eruption phenomena based on the MHD equations [Dedner
et al., 2004]. Shortly after this, the library (also referred to as grid manager in the following) was
used to implement the Dune grid interface [Burri et al., 2006]. The ALUGrid bindings were the
first grid implementation providing the full interface for an adaptive, distributed grid including
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dynamic load balancing, and a thorough investigation showed that ALUGrid is a very efficient
implementation of the Dune grid interface. For an explicit Finite Volume scheme, the perfor-
mance loss introduced by the Dune bindings is roughly 10% compared to the native ALUGrid
implementation [Bastian et al., 2008a, Burri et al., 2006, Klöfkorn, 2009]. At that time also a serial
2d simplex grid was added to the code basis. The following releases of the software saw only
maintenance work with no substantial increase in the feature set.

In this paper a major overhaul of the ALUGrid code basis is described. Originally, ALUGridwas
available as a stand alone library with a quite complex user API. Consequently, ALUGrid was
used exclusively through the bindings available in the Dune-Gridmodule. Therefore the original
ALUGrid library and its bindings to Dune have been integrated into a new Dune-ALUGrid
module which is available as an open source package under the GNU General Public License
version 2, or (at your option) any version later. In addition a number of new features have been
added and the efficiency of the code has been increased while the memory footprint has been
substantially reduced.

ALUGrid is a capable and reliable parallel-adaptive grid manager and has been used in codes
based on Dune, for example, in life science applications [Albrecht et al., 2013, Jehl et al., 2015], in
the simulation of nanotechnology [May, 2009, Fallahi and Oswald, 2012], in simulations related
to numerical weather and climate prediction [Brdar et al., 2013, Müller and Scheichl, 2014],
simulation of reactive flow in a moving domain [Klöfkorn and Nolte, 2014], or in subsurface
simulations [Faigle, 2014].

Within Dune another unstructured grid manager capable of parallel-adaptive computations is
UG [Lang et al., 2003] with the UGGrid realization of the Dune grid interface. A comparison for
time-explicit applications with and without adaptivity using the different grid implementations
available in Dune is presented in [Klöfkorn and Nolte, 2012].

Besides a vast number of structured or Cartesian grid managers supporting adaptive refinement
(see http://math.boisestate.edu/~calhoun/www_personal/research/amr_software/) there
exist a few other open source unstructured grid managers (at present without bindings to Dune),
for example, deal.II [Bangerth et al., 2013] which is build on top of p4est [Burstedde et al., 2011]
for parallel computations. Hexahedral grids with non-conforming refinement are provided. As
a drawback, the macro mesh has to be present on every core limiting the macro mesh size.
Other very capable unstructured grid managers are, for example, the "Flexible Distributed Mesh
Database (FMDB)" [Xie et al., 2014], libMesh [Kirk et al., 2006], or AMDIS [Vey and Voigt, 2007].
The latter is providing tetrahedral elements with bisection refinement.

In this paper we present work done in recent years to improve the useablility, efficiency, and
reduce maintenance cost of ALUGrid. In the previous versions of ALUGrid the implementation
of the 2d and 3d grids were completely seperate. This resulted in a disjoint set of features with the
2d grid implementing bisection not available for the 3d grid while at the same time the 2d grid did
not provide any parallel features. In Dune-ALUGrid the original code for the 2d grid has been
removed. Grids in two space dimensions or surface grids are now implemented by embedding
them into three space dimensions, making it possible to directly use the 3d grid implementation.
The main advantage of this is the significant reduction in code maintenance while at the same
time all improvements in performance or feature set of the 3d code will be directly available also
for 2d grids. Furthermore, since conforming bisection is now also available in 3d, this merge has
not resulted in any loss of functionality.

To simplify the installation, the Dune bindings and the library itself have been combined in a
single Dunemodule. This module includes a number of new features, which make the ALUGrid
implementation a lot more flexible and make it possible to use it through Dune for a wider range
of problems:

• extension to implement a wider range of methods:
the main extension is conforming grid refinement implemented in the parallel 3d code.
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Furthermore the 2d grid can be used for distributed computations so that the 2d and 3d
code now share the same feature set. In addition the support for quadrilateral and surface
grids in 2d and periodic boundary treatment in 3d for parallel computations has been
improved.

• increasing usability and efficiency:
the memory footprint is considerably reduced (Section 2.1), a cleaner interface for callback
adaptation, which was partially available before, is discussed in Section 3.6.

• increasing usability and efficiency for parallel computation:
new features include: parallel grid construction (discussed in Section 3.3), backup and
restore (discussed in Section 3.4), overlapping communication and computation, (discussed
in Section 3.5), wider range of load balancing algorithms by providing bindings for the
library Zoltan [Boman et al., 2012], an nternal implementations based on space filling
curves, and user-defined partitioning algorithms (these are discussed in Sections 3.7 and
3.8).

In Section 2 we describe how we have evaluated the performance of the Dune-ALUGridmodule
and report on a number of different strong and weak scaling results obtained on both a computing
cluster and a highly integrated high performance computing system. Following, in Section 3, we
present the new features and interface extensions from a user’s point of view. Finally we make
some concluding remarks and discuss some open issues with this module.

While not necessary, being familiar with the Dune terminology might positively influence the
reading experience of this paper. A comprehensive introduction into the Dune terminology is
given in the Dune papers [Bastian et al., 2008a,b].

2 Performance Testing

The aim of [Schupp, 1999] was to develop an efficient parallel implementation of an adaptive ex-
plicit Finite Volume scheme. These schemes are widely used for solving hyperbolic conservation
laws. The appearance of steep gradients or shocks in the solution make grid adaptivity a manda-
tory feature for state-of-the-art schemes. These shocks move in time requiring the refinement
zones to move with the shocks and coarsening to take place behind them. In combination with a
domain decomposition approach for parallel computation, this means that the load is difficult to
balance between processors and dynamic load balancing is essential. So in each time step the grid
needs to be locally refined or coarsened and the grid has to be repartitioned quite often. What
makes this problem extremely challenging is the fact that evolving the solution from one time
step to the next is very cheap since the update is explicit and no expensive linear systems have to
be solved. So adaptivity and load balancing will dominate the computational cost of the solver.
Both of these steps require global communication steps and the communication of possibly a
significant amount of data and are therefore difficult to implement even with a moderate amount
of parallel efficiency (see for example [Burstedde et al., 2011]). Therefore, grid performance plays
a crucial role in this problem, as it does in any matrix-free method where frequent grid iteration
occurs in order to evaluate differential operators even if the discrete function space used is of
higher order. In contrast, the performance of implicit matrix-based methods will have a stronger
dependency on the efficiency of the parallel solver package than on the grid implementation.
Therefore, testing implicit methods would not provide as much insight into the performance of
the grid module itself. For these reasons we have decided to continue using explicit Finite Volume
schemes as a demanding problem for a parallel grid manager to measure the performance of the
Dune-ALUGridmodule.

As a simple example, we consider the scalar transport equation

∂tu + ∇ ·
(
(1.25, 1.25, 0)T u

)
= 0
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with suitable initial and boundary data (see examples/problem−transport.hh ). In the adaptive
Finite Volume scheme we use an upwind numerical flux and a jump indicator to trigger grid
adaptation.

For a more demanding example, we also apply this scheme to the Euler equations of gas dynamics

∂t

 ρρ~v
ε

 + ∇ ·

 ρ~v
ρ~v ⊗ ~v + p I

(ε + p) ~v

 = 0,

where I ∈ Rd×d denotes the identity matrix. We consider an ideal gas, i.e., p = (γ − 1) (ε − 1
2 ρ |~v|

2),
with the adiabatic constant γ = 1.4. In the adaptive scheme, we use an HLLC numerical flux [Toro,
2009] in the evolution step and the relative jump in the density to drive the grid adaptation. Two
typical test problems found in the literature, the Forward Facing Step and the interaction between
a shock and a bubble (see [Dedner and Klöfkorn, 2011] and references therein) are implemented
(see examples/problem−euler.hh ).

To benchmark solely adaptation and load balancing, we implemented a third, even more de-
manding test case. Instead of using the solution to a partial differential equation to determine
the zones for grid refinement and coarsening, a simple boolean function E 7→ ηE is used (see
examples/problem−ball.hh ). We refine all elements located near the surface of a ball rotating
around the center of the 3d unit cube:

y(t) :=
(

1
2 + 1

3 cos(2πt), 1
2 + 1

3 sin(2πt), 1
2

)T
,

ηE :=

1 if 0.15 < |xE − y(t)| < 0.25,
0 otherwise,

(1)

where xE denotes the barycenter of the element E. A cell E is marked for refinement, if ηE = 1
and for coarsening otherwise. This sort of problem was also studied in [Schupp, 1999]. Since the
center of the ball is rotating, frequent refinement and coarsening occurs, making this an excellent
test for the implemented adaptation and load balancing strategies.

2.1 Memory Consumption

Memory consumption has become more and more critical for any numerical software since the
overall memory available per core has declined lately. First we need to give a short summary
of the data structure used to store grid elements: A vertex stores its coordinates, an edge stores
pointers to the two vertices, a quadrilateral face stores pointers to the four edges and a hexahedron
stores pointers to the six faces it consists of. For example, the memory consumption of a vertex
on a 64bit architecture is 56 bytes: storage of coordinates (3 double result in 24 bytes), 8 bytes
for the vtable (all interfaces in ALUGrid use dynamic polymorphism), 8 bytes for a pointer to
the grid class, and another 12 bytes for flags, reference counting, and index storage, which due to
padding add up to 16 bytes.

An overview on memory consumption of individual entities in ALUGrid is given in Table 1.

Depending on the size of the coarsest level (the macro grid) and the face/edge to element ratio a
hexahedral grid consumes between 700 and 800 bytes per element. The tetrahedral version of the
grid consumes between 350 and 400 bytes per element. Note that these numbers strongly depend
on the macro grid chosen and might vary for other macro grids. For the old version 1.52 storing a
hexahedral element needed between 1 300 and 1 500 bytes. For a tetrahedral element version 1.52
needed between 650 and 750 bytes. The code has been revised such that every grid object class
only has one virtual base class, and thus only one vtable pointer has to be stored which was not
the case in version 1.52. Furthermore, some classes have been fused to avoid padding of small
data members such as int and char variables into 8 byte data members. In Figure 1 we show
the memory consumption for the old and the new version for the ball test case with adaptation
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type tetra hexa macro tetra macro hexa

vertex 56 (64) 56 (64) 80 (80) 80 (80)

edge 56 (136) 56 (136) 64 (144) 64 (144)

face 88 (160) 96 (174) 96 (168) 104 (184)

element 96 (160) 112 (184) 104 (168) 120 (192)

Table 1: Memory consumption by ALUGrid’s entities in bytes (in braces we put the memory
consumption in ALUGrid’s 1.52 version).
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Figure 1: Comparison of memory usage for the old and the new version. Both version use
dlmalloc as memory allocator. The 1.52 version has been patched for this purpose.

using the refinement from (1). In summary the memory consumption has been reduced by about
a factor of 2.

In an adaptive grid, entities are frequently created during refinement and destroyed during
coarsening. As ALUGrid allocates memory for each grid entity separately, efficient memory
allocation and deallocation plays an important part in this process. To allow for customization,
ALUGrid derives all entities from an object called MyAlloc , which contains overloaded operators
new and delete . Two such objects are shipped with Dune-ALUGrid.

default does not overload the operators new and delete , so that standard C++ memory
allocation is used. This is the default memory allocation used.

dlmalloc makes use of Doug Lea’s memory allocator ( dlmalloc ) [Lea, 1996], which can be
downloaded from http://g.oswego.edu/dl/html/malloc.html. If the configure option
�with-dlmalloc=PATH is provided specifying a path to the dlmalloc installation, dlmalloc
will be used for allocation of grid entities.

In Figure 2 we present a comparison of runtimes between the different memory allocation strate-
gies. The former internal ALUGrid implementation based on std :: map and std :: stack has
been removed since it did not lead to performance gains, anymore. For adaptation with the
ball refinement from equation (1) using dlmalloc around 10 % less CPU time is consumed in
comparison to the standard C++ memory allocation on Yellowstone [NCAR/CISL, 2012].

As mentioned in the introduction the codes for the 2d and 3d grid have been unified. The only
drawback of embedding the 2d into a 3d grid is an increase in the memory requirements of the

c© by the authors, 2016 Archive of Numerical Software 4(1), 2016

http://g.oswego.edu/dl/html/malloc.html


6 Alkämper, Dedner, Klöfkorn, Nolte

 0.01

 0.1

 1

32 64 128 256 512 1024 2048 4096

ru
n

 t
im

e

#cores

ALUGrid(cube) main_ball (all)

optimal
ALUGrid 1.52

dlmalloc
C++

Figure 2: Comparison of run times for the different memory allocation strategies. The memory
allocation using Doug Lea’s memory allocator [Lea, 1996] performed best, the strategy used
in ALUGrid 1.52 performed worst and has therefore been removed in the new version. For
load balancing we used the internal space filling curve approach with locally computed linkage
(partition method id 4).

2d grid. For example a 2d quadrilateral grid is modelled using a 3d hexahedral grid by replacing
each quadrilateral by one hexahedron. Effectively this leads to a doubling of the memory usage
in this case. For a triangular grid the resulting increase in memory usage is less severe. This is
confirmed by the results shown in Figure 3a. This increase in memory consumption in the new
version in compensated by improvements in performance, as can be seen in Figure 3b.

2.2 Scaling results

We start with testing the new parallel version of the 2d code. In Figure 4 we present the results
of a 2d version of the shock-bubble interaction problem taken from [Dedner and Klöfkorn, 2011]
using a small size computer cluster consisting of 20 Intel Core-i3 2100 (Sandy-Bridge) desktop
computers connected via standard gigabit ethernet. Throughout the paper, all scaling plots show
relative runtimes, i.e. per elements and per timesteps. The curves represent different parts of the
code (solve: computation and synchronization of the update vector, comm: global synchronization
of time step, adapt: grid adaptation, and lb: load balancing). Finally we show the total runtime.
Note that there are some small parts of the time loop not seperately shown so that the total
runtime is not exactly the sum of the four parts shown. For the dynamic load balancing we use
the space filling curve approach newly implemented in Dune-ALUGrid (see also Section 3.7).
The grid load balancing is checked every 25th time step and is performed when the number of
elements between the largest and smallest partition differs by 20% or more.

As we can see the Finite Volume part of the code scales very well up to 64 cores. The overall
scaling is still acceptable. Note that we are using hyperthreading to execute four processes per
node although these are dualcore machines. Parallel efficiency increases by about 10% when only
two proceses are put on one node but the runtime using a given number of nodes is quite a bit
higher. Note that the number of degrees of freedom was quite small in this simulation so that
even on a few cores, the cost for the solve step and for the adaptation are comparable. Thus
the total runtime more or less follows the curve for the adaptation cost leading to 50% efficiency
going from 4 to 64 cores while the solve step itself is still close to optimal. We repeated the test
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Figure 3: Comparison of memory usage and run times for the 2d version in the old and the new
implementation. Both versions use dlmalloc as memory allocator. The 1.52 version has been
patched for this purpose.
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Figure 4: On the left, strong scaling results for the 2d Euler shock-interaction problem on a small
size computer cluster with parameters 22 0 5 and 802 macro quadrilaterals. On the right, strong
scaling on the peta scale supercomputer Yellowstone [NCAR/CISL, 2012] using parameters 23 0 4
and 2562 macro quadrilaterals.

on the supercomputer Yellowstone NCAR/CISL [2012] with a different problem size. We observe
good scaling from 32 to 256 cores.

We repeated the same test but now using the 3d grid (Figure 5). The macro grid was larger in this
simulation and combined with a slightly higher per element cost of the 3d Finite Volume scheme,
the solve step dominates the adaptation up to 64 cores. The efficiency going from 4 to 64 cores is
thus higher with an value at about 70%.

In Figure 6 we present resuts for the same computation but this time on the Yellowstone supercom-
puter [NCAR/CISL, 2012]. We made two changes to the settings described above which increase
performance on large core counts with a strong interconnect: we use the space filling curve
approach with linkage storage (see Section 3.7) and instead of rebalancing when the partitions
differ by 20%, the grid is repartitioned already when the inbalance is more than 5%. Efficiency
is quite good up to 2 048 processors but after that the problem size is too small to adequately
distribute among 4 096 core and no noticeable performance increase is achieved. At this point
the communication cost becomes comparable to the cost of the actual evolution step. The grid
adaptation stage is still scaling well at 1000 cores while the loadbalancing starts becoming less
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efficient earlier. But the computational costs of these two parts of the algorithm is still quite small
compared to the evolution step. Note that in the previous cluster case with its slow interconnect
the loadbalancing step was not scaling at all.

The computations reported on above were strong scaling tests, keeping the problem the same and
only increasing the number of cores used. Thus the computational cost is reduced while increasing
the parallelization overhead at the same time. In addition parallel efficiency is difficult to achieve
since obtaining a good load distribution becomes challenging when the problem size is fixed.
Therefore, we also include a weak scaling test in Figure 7. Since with adaptive simulations it is
difficult to increase the problem size in a systematic way necessary for weak scaling experiments,
we have performed a fixed grid computation here. As can be seen the computational cost only
slowly increases leading to high parallel efficiency of 88% going from 16 to 8192 cores.
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Figure 5: Strong scaling results for 3d Euler shock-interaction problem on a small size computer
cluster. The macro grid contains 4 096 hexahedrons which is also the coarsest grid and the
maximal refinement level is set to 4 (parameter 22 0 4).

3 Using the DUNE-ALUGRID Module

This section discusses the features of Dune-ALUGrid from a user perspective. Special emphasis
will be put on extensions to the Dune grid interface.

3.1 Structure of the Module

The structure of the new module is as follows: the main code for the grid implementation and
the Dune bindings are in the dune folder of the Dune-ALUGridmodule. A program to read in
a macro grid on a single processor and to write a partitioned version in a binary format to a file
is provided in the utility folder. Finally the examples folder contains the main executables for
testing the Dune-ALUGrid modules. All the test problems can be used with any grid manager
implementing the Dune-Grid interface. This makes it not only possible to test the ALUGrid
implementation but also to compare with other realizations of the Dune grid interface. The code
is very similar to the example provided in the Dune-Fem-Howto (http://www.dune-project.
org/fem/index.html) and comparable with the tutorial found in the Dune-Grid-Howto.
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Figure 6: Strong scaling results for Euler shock-interaction problem on the peta scale supercom-
puter Yellowstone [NCAR/CISL, 2012]. The macro grid contains 32 768 hexahedrons which is also
the coarsest grid and the maximal refinement level is set to 6 (parameter 23 0 6).
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Figure 7: Weak scaling results for Euler shock-interaction problem on the peta scale supercom-
puter Yellowstone [NCAR/CISL, 2012]. The number of elements is kept constant per core at
131 072 hexahedrons (parameter 25 2 0).

For each example, the code is mainly distributed across four files;

main.cc contains the initial grid construction and the time loop.

fvscheme.hh contains the computation of the update vector and the marking strategy.
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adaptation.hh contains the code for carrying out the grid modification.

piecewisefunction.hh contains all classes used to handle the degrees of freedom including stor-
age, restriction and prolongation, and communication.

Switching between the three different test cases is done via pre-processor flags or by making one
of the three executables main_ball , main_transport , or main_euler . Each program takes three
command line parameters:

./main [problem-nr] [startLevel] [maxLevel]

The first one determines the test case to use (including initial data and macro grid); startLevel
and maxLevel determine the coarsest and finest grid level, respectively.

Extensions of the Dune grid interface discussed in this paper can be tested in different sub-folders
of examples . The basic code is always the same with the necessary changes described in detail
in the following chapters. There are four sub-folders, each containing a script, to compare the
original and the modified implementation. Again, pre-processor defines are used to provide
different implementations in the same code:

callback compare dof storage and callback adaptation in serial.
Script: check−adaptation.sh
Pre-processor flags: CALLBACK_ADAPTATION and USE_VECTOR_FOR_PWF .

communication test asynchronous communication with callback adaptation and persistent con-
tainer (best from before)
Script: check−communication.sh
Pre-processor flags: NON_BLOCKING .

loadbalance test the extensions to the loadbalancing interface. In addition to the internal load-
balancing methods, user-defined weights can be added (preprocessor flag USE_WEIGHTS
and a simple user-defined loadbalancing strategy is available (flag USE_SIMPLELB . With
the flag USE_ZOLTAN a complete reimplementation of the internal zoltan bindings is
available based on the extensions of the grid interface (requires the configure option
enable−experimental−grid−extensions ).

testEfficiency test on one computer using multi-core, e.g. 1 → 2 → 4 → 8, and test on cluster
with N computers and P cores, e.g., P → 2P → 4P → 8P. By changing the pre-processor
flags in the script different versions can be tested.
Script: check−efficiency.sh
Pre-processor flags: CALLBACK_ADAPTATION , USE_VECTOR_FOR_PWF , NON_BLOCKING ,
and NO_OUTPUT .

Note that by default the cube version of Dune-ALUGrid is used. This can be changed in
Makefile.am ( autotools ) or CMakeLists.txt ( CMake ).

3.2 Configuration

The new Dune-ALUGrid module is available via the module home page https://gitlab.
dune-project.org/extensions/dune-alugrid. The repository can be accessed using the git
repository from https://gitlab.dune-project.org/extensions/dune-alugrid.git.

The Dune-ALUGridmodule depends on Dune-Grid and can be easily configured using the Dune
build system. Using Dune-ALUGrid in a user module then only requires adding a dependency
(or suggestion) in the dune.module file, including dune/alugrid/grid.hh , and using
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C++ code

1 Dune::ALUGrid< dimgrid, dimworld , eltype, refinetype , communicator >

with 2 ≤ dimgrid ≤ dimworld ≤ 3 for grid and world dimension, eltype = Dune::simplex ,
Dune::cube , and refinetype = Dune::conforming , Dune::nonconforming . In this version, the only
restriction is that conforming refinement is not a valid choice for cube grids. Contrary to previous
versions, conforming refinement for a 3d simplex grid is now available. For the communicator,
either ALUGridMPIComm for a parallel grid or ALUGRIDNoComm for a serial grid can be used.
By default, MPI communication is used, if available. Note that if Dune-ALUGrid was compiled
in parallel mode then MPI has to be initialized before constructing a grid object even in a serial
computation.

There are a number of packages which can be used to increase the flexibility and performance of
the Dune-ALUGridmodule. Paths to the installed versions of these packages have to be provided
during the configuration of the module, i.e., within the configuration file used in the call of the
dunecontrol script:

�with-dlmalloc=PATH: path to Doug Lea’s malloc library (required version >= 2.8.6). If this
library is available the memory management for Dune-ALUGrid will use the dlmalloc
package [Lea, 1996]. This can improve performance as shown in Section 2.1.

�with-metis=PATH: path to the Metis library [Karypis and Kumar, 1999]. If available, Metis can
be used for load balancing.

�with-metis-lib=NAME: name of the metis libraries (default is metis ).

�with-zoltan=PATH: path to the Zoltan package. This package provides a wide range of addi-
tional load balancing methods including those provided by Metis and ParMetis. Details
on how to use different load balancing methods are provided in Section 3.7.

�with-zlib=PATH: path to zlib [Gailly and Adler]. If available, zlib compression can be used
for backup and restore of a full Dune-ALUGrid grid object. More details on data I/O are
provided in Section 3.4.

3.3 Parallel Grid Construction

Any grid-based numerical simulation must at some time construct a grid of the computational
domain. The general Dune grid interface assists this step by providing three basic construction
mechanisms:

GridFactory is a general interface for the construction of unstructured grids. Basically, it con-
structs the grid from a list of vertex coordinates and a list of elements.

StructuredGridFactory can be used to construct a grid of an axis-aligned cube domain. For
unstructured grids, a default implementation based on the GridFactory is provided.

GridReaders can be used to read files given in a special format. These readers will generally use
the GridFactory to construct the grid. A Dune specific format is available through the DGF
reader. An extension of this format to partitioned grids is discussed in Section 3.3.3.

Additionally, Dune-ALUGrid provides a native file format for predistributed macro grids.

Currently, the GridFactory interface does not support the construction of unstructured grids
in parallel. The entire grid must first be constructed on one process and then distributed to
all processes using the load balancing algorithm. For large macro grids, this method is at least
inefficient if not impossible as the macro grid might not even fit into the memory of one com-
putational node. Without specialization, this restriction also holds for the StructuredGridFactory
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and the DGF parser. Dune-ALUGrid overcomes this difficulty by providing specializations of all
three grid construction mechanisms. In addition the Dune-ALUGridmodule contains utilities to
perform the distribution off line, writing native distributed ALUGrid files for use in the actual
computation. These will be described at the end of this section.

3.3.1 The GridFactory In Dune, the construction of unstructured grids is handled by the
GridFactory class, which has to be specialized for each grid implementation supporting them.
The most important interface methods are

C++ code

1 void insertVertex ( const Dune::FieldVector<ctype,dimensionworld> &coord
);

2 void insertElement( const Dune::GeometryType &type,
3 const std::vector<unsigned int> &vertices );
4 void insertBoundarySegment( const std::vector<unsigned int> &vertices );

The main difficulty when constructing a predistributed grid is the identification of the process
boundaries. Using a large amount of global communication and coordinate comparison this
could be achieved using the interface provided by the Dune-Grid module. Since this is neither
efficient nor very reliable, we extend the interface requiring the user to provide a globally unique
number for each vertex in the macro grid using the method:

C++ code

1 void insertVertex ( const Dune::FieldVector<ctype, dimensionworld> &coord,
2 VertexId globalId );

This unique numbering is sufficient to use the grid factory concept in parallel. Notice that
elements and boundaries are inserted using a local vertex number corresponding to the insertion
order. VertexId in the current implementation is an unsigned integer.

To further increase efficiency, faces on process boundaries can also be inserted, reducing the
need for global communication during grid construction. Similar to the insertBoundarySegment
method, the grid factory in Dune-ALUGrid allows the insertion of process borders through the
method

C++ code

1 void insertProcessBorder ( const std::vector<unsigned int> &vertices );

While it is not necessary to insert process borders, we strongly recommend doing so, because the
construction of this information within the grid factory requires an expensive global communi-
cation. Note that this method will not work accurately, if it is called for some process borders
only.

In some cases it is easier to simply insert into the factory that a certain face of an element is on the
border or on the boundary (see the example in Section 3.3.2). The grid factory in Dune-ALUGrid
allows this through the following methods:

C++ code

1 void insertBoundary ( int element, int faceInElement );
2 void insertProcessBorder ( int element, int faceInElement );

The local face numbering used for faceInElement corresponds to the Dune reference element.
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3.3.2 StructuredGridFactory An example of how to use the new methods on the grid factory
to construct a distributed grid is provided in the specialization of the StructuredGridFactory in
dune/alugrid/common/structuredgridfactory.hh .

Given an interval [a, b] ⊂ R3 and a subdivision vector N ∈ N3, a distributed Cartesian grid is
constructed. Each process first uses YaspGrid (a structured grid manager available in Dune-grid)
to setup a Cartesian grid locally using MPIHelper::getLocalCommunicator() as MPI communni-
cator. Dune-ALUGrid’s space filling curve ordering is then used to partition this grid and the
distributed grid is constructed using the extended grid factory of Dune-ALUGrid on each pro-
cess. The space filling curve is either the Hilbert curve if Zoltan is available or Dune-ALUGrid’s
Z curve otherwise. Note that the resulting partition on each process does not consist of a product
of intervals, since the distribution is done using the space filling curve.

The following code snippet shows the idea in a very general setting. The gridView object is
the leaf grid view of a given grid (e.g. of a YaspGrid ), indexSet denotes its index set, and the
partitioner object provides a method rank(const Entity &) returning the MPI rank that the entity
shall be assigned to (e.g. based on a space filling curve).

C++ code

1 // create ALUGrid GridFactory
2 GridFactory< Grid > factory;
3
4 // map global vertex ids to local ones
5 std::map< IndexType , unsigned int > vtxMap;
6
7 const int numVertices = (1 << dim);
8 std::vector< unsigned int > vertices( numVertices );
9

10 int nextElementIndex = 0;
11 const auto end = gridView.template end< 0 >();
12 for( auto it = gridView.template begin< 0 >(); it != end; ++it )
13 {
14 const Entity &entity = *it;
15 if( partitioner.rank( entity ) != myrank )
16 continue;
17
18 // insert vertices and element
19 const typename Entity::Geometry geo = entity.geometry();
20 for( int i = 0; i < numVertices; ++i )
21 {
22 const IndexType vtxId = indexSet.subIndex( entity, i, dim );
23 auto result = vtxMap.insert( std::make_pair( vtxId, vtxMap.size() ) );
24 if( result.second )
25 factory.insertVertex( geo.corner( i ), vtxId );
26 vertices[ i ] = result.first->second;
27 }
28 factory.insertElement( entity.type(), vertices );
29 const int elementIndex = nextElementIndex++;
30
31 const auto iend = gridView.iend( entity );
32 for( auto iit = gridView.ibegin( entity ); iit != iend; ++iit )
33 {
34 const Intersection &isec = *iit;
35 const int faceNumber = isec.indexInInside();
36 // insert boundary face in case of domain boundary
37 if( isec.boundary() )
38 factory.insertBoundary( elementIndex , faceNumber );
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39 // insert process boundary if the neighboring element has a different
rank

40 if( isec.neighbor() && (partitioner.rank( *isec.outside() ) != myrank) )
41 factory.insertProcessBorder( elementIndex , faceNumber );
42 }
43 }

3.3.3 Dune Grid Format (DGF) The DGFParser has also been extended to make use of
the parallel grid construction available in Dune-ALUGrid. For each process a dgf file (e.g.,
grid.dgf.P.1 , ..., grid.dgf.P.P ) is used containing only one part of the grid. As in the serial case
the blocks with the information on the elements uses a process local numbering of the vertices. A
new block GlobalVertexIndex has to be added, where a globally unique integer for each vertex
in this partition is provided in the same order used for the coordinates in the Vertex block. The
file passed to the GridPtr class (e.g. grid.dgf.P ) contains only the block ALUParallel listing the
file names of the individual partitions for each process.

The following shows an example for the domain [0, 1]3 divided into 4 elements and distributed
over two processors:

cube.dgf.2

DGF
ALUPARALLEL
cube.dgf.2.1
cube.dgf.2.2

#

cube.dgf.2.1

DGF
VERTEX
0 0 0
0.5 0 0
0 0.5 0
0.5 0.5 0
0 0 1
0.5 0 1
0 0.5 1
0.5 0.5 1
0 1 0
0.5 1 0
0 1 1
0.5 1 1
#
CUBE
0 1 2 3 4 5 6 7
2 3 8 9 6 7 10 11
#
GLOBALVERTEXINDEX
0
1
2
3
4
5
6
7
12
13
14
15
#

cube.dgf.2.2

DGF
VERTEX
0.5 0 0
1 0 0
0.5 0.5 0
1 0.5 0
0.5 0 1
1 0 1
0.5 0.5 1
1 0.5 1
0.5 1 0
1 1 0
0.5 1 1
1 1 1
#
CUBE
0 1 2 3 4 5 6 7
2 3 8 9 6 7 10 11
#
GLOBALVERTEXINDEX
1
8
3
9
5
10
7
11
13
16
15
17
#

These files were generated by using the utility ParallelDGFWritter class (in
dune/alugrid/common/writeparalleldgf.hh ) to provide distributed dgf files from a given input
dgf file.

Archive of Numerical Software 4(1), 2016 c© by the authors, 2016



The Dune-ALUGridModule 15

3.3.4 Utility programs The Dune-ALUGrid module also provides an utility program
utils /convert−macrogrid/convert to convert a normal DGF file or a legacy ALUGrid macro
grid file into Dune-ALUGrid’s new binary or compressed binary macro grid file format. This
tool can also decompose the macro grid into several partitions. Dune-ALUGrid is able to read
decomposed macro grids if the number of partitions of the macro grid is smaller or equal to
the used number of cores. This is especially useful for very large macro grids which will not
fit into the memory of a single core. In addition the compressed binary format reduces storage
requirements and decreases storage access times.

3.4 Backup and Restore

For backup and restore as it is needed for checkpointing and postprocessing a new interface was
recently introduced into Dune-Grid. To our knowledge Dune-ALUGrid is the first grid manager
implementing this interface so we will go into a bit more detail in the following. The interface is
given by

C++ code

1 template< int dim, int dimworld,
2 ALUGridElementType elType,
3 ALUGridRefinementType refineType , class Comm >
4 struct BackupRestoreFacility<
5 ALUGrid< dim, dimworld, elType, refineType , Comm > >
6 {
7 /** perform backup of grid to given std::ostream */
8 static void backup ( const Grid &grid, std::ostream &stream ) ;
9

10 /** restore grid from std::istream and return pointer to
11 newly created grid object */
12 static Grid* restore ( std::istream &stream ) ;
13 };

The BackupRestoreFacility provides two further backup and restore methods where a filename
is the argument instead of a stream. These methods have been added for legacy codes like
ALBERTA [Schmidt and Siebert, 2005] that might not support the read and write via streams.
For Dune-ALUGrid these are simply implemented using a file stream and then calling the above
mentioned methods.

For data I/O on large parallel machines we provide two mechanisms. The conventional approach
is to use standard file streams to create a binary file for each process containing the macro grid cells,
refinement information of all children spawned from each macro cell, and index information for
the corresponding partition. This becomes very cumbersome when the code is used with many
cores. Therefore, the second approach is to use a std :: stringstream to write all information into a
buffer of type char∗ and then use a library like SIONlib [Frings et al., 2009] to write the data to
the storage unit. This approach has the advantage that libraries like SIONlib provide the maximal
I/O performance but do not limit Dune-ALUGrid to be used only with this library. For libraries
that require the size of data to be written, like SIONlib, the intermediate storage in a char buffer
is necessary since for the adaptive grid the number elements is not known apriori. How SIONlib
is used is shown in the examples presented in examples/backuprestore . This example explains
how backup/restore is done using different ways to write data to the storage device.

Note that Dune-ALUGridwill only backup/restore it’s LocalIdSet . The GlobalIdSet is generated
from the unique macro element id (built from the unique vertex ids) and the position in the
refinement tree and therefore does not need to be stored explicitly. Furthermore, the persistent
order of the macro grid automatically induces the same traversal order for the hierarchical grid.
Since both, the LevelIndexSet and the LeafIndexSet are generated by grid traversal and insert on
first visit strategy, both index set variants preserve their indices over a backup and restore process.
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3.5 Overlapping Communication and Computation

In a numerical algorithm, degrees of freedom are typically attached to grid entities. Now, a
single grid entity can be visible to multiple processes and any data attached to it needs to be
synchronized between these processes. The Dune grid interface therefore requires each grid view
to support this synchronization through a communicate method:

C++ code

1 template< class DataHandle >
2 void communicate ( DataHandle &, InterfaceType ,
3 CommunicationDirection ) const;

The interface type and communication direction specify the set of entities on which data has to
be sent or received. On the sending side the data handle is responsible for packing entity data
into a buffer; on the receiving side it unpacks the data again (see Bastian et al. [2008a] for details).
The actual data transfer is done transparently by the grid implementation.

After all data has been sent, the grid implementation has to wait until incoming data is received,
which can be a waste of valuable computation time. Indeed, many numerical algorithms can
be split into work that depends on the shared data and work that does not. The latter part can
actually be done while communication is in progress simply by splitting sending and receiving
in two parts and is supported even by the oldest MPI implementations.

To make use of the valuable communication time, Dune-ALUGrid allows to delay the receiv-
ing process to a convenient point in the algorithm. The actual communication initiated by
communicate becomes an object:

C++ code

1 template< class DataHandle >
2 Communication< DataHandle > communicate ( DataHandle &, InterfaceType ,
3 CommunicationDirection ) const;

Such a Communication object is an implementation of the future concept described in [Baker
and Hewitt, 1977] and satisfies the following interface:

C++ code

1 struct Communication
2 {
3 // wait for communication to finish if not already done
4 ~Communication () { if( pending() ) wait(); }
5
6 // is this communication still pending?
7 bool pending () const;
8
9 // wait for communication to finish

10 void wait ();
11 };

While the communication is pending, i.e., while wait has not been called, the reference to the data
handle must remain valid. As wait is automatically called in the destructor, ignoring the return
value will result in a blocking communication. Thus no change is required to existing code if
blocking communication is to be used.

If gridView is a grid view of an ALUGrid object, overlapping communication and computation
is rather simple:
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C++ code

1 // construct data handle for the communication
2 auto comm = gridView.impl().communicate ( dataHandle , interface , dir );
3 // do some computation not depending on the remote data
4 comm.wait();
5 // do computation depending on the remote data

Note that the method impl is only available if experimental grid extensions have been enabled
in Dune-Grid and would no longer be required once the new interface is added into Dune-Grid.

A possible usage of the communication hiding is presented in the following code snippet. The
method is implemented in examples/communication where the main change in the time loop is
quite simple:

C++ code

1 // original non-blocking code: dt = scheme( time, solution , update ) ;
2 {
3 // new code: compute data on border and ghost entities
4 dt = scheme.border( time, solution , update );
5 // start non-blocking communication
6 auto commObject = grid.communicate( handle, interface , direction );
7 // do computation not depending on remote data
8 dt = std::min(dt , scheme( time, solution , update ) );
9 } // communication will be finished when commObject goes out of scope

3.6 Adaptation Using Call-Backs

Grid modification in Dune is performed in three steps. First grid.preAdapt() is called to start
the modification phase. After this method has been called the index sets are no longer valid and
data has to be accessed based either on one of the IdSets or using a PersistentContainer . Both
allow storage of data persistently during grid modification and on the whole hierarchy of the
grid making it possible for data to be restricted and prolongated from one level to another. Next
grid.adapt() is called which refines or coarsens grid elements according to markers set by the
user. Finally grid.postAdapt() is called, ending the modification phase and reinitializing the
Dune consecutive, zero starting index sets allowing to store user data in consecutive memory
locations.

The main steps for the user consist in making data persistent during the modification stage of the
grid, prolongation of data if elements are refined, and restriction of data if elements are coarsened.
A common approach is to store the data in a vector-like structure in the computation phase for
efficient memory access. The necessary copying of the data into a PersistentContainer during
the modification phase makes this step computationally more expensive. Alternatively, the user
can store data directly in a PersistentContainer which means that the storage does not have to
be modified during grid changes but sacrificing efficiency during the computation phase due to
more expensive data access. In Dune the PersistentContainer can be specialized for each grid
implementation. A default implementation uses a std :: map to store the data using the LocalIdSet
of the grid as key. Dune-ALUGrid uses a speciallization of this class based on a std :: vector to
store the data. Each entity stores an integer which is unique within the grid hierarchy and which
can be used to access the data within the vector. In contrast to a Dune IndexSet this index is not
necessarily zero starting and consecutive, resulting in holes within the PersistentContainer but
allowing for a constant retrieval time of the data. In our example adaptive Finite Volume scheme
the two storage strategies are available for testing. By default the PersistentContainer is used
but by defining USE_VECTOR_FOR_PWF the degrees of freedom will be stored in a vector-like
structure and moved into a PersistentContainer only during the grid modification stage. In all
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our tests the storage of data in the PersistentContainer was significantly more efficient. Some
results are shown in the Dune columns of Table 2.

In addition to the approach described above, Dune-ALUGrid provides a second adaptation
mechanism using a callback approach, a method also used by other finite element packages,
e.g., Schmidt and Siebert [2005]. The use of callbacks is also used for other methods within
the Dune interface, e.g., for communication and loadbalancing (see Section 3.7). Instead of
the grid.preAdapt() , grid.adapt() , grid.postAdapt() algorithm, a single call to grid.adapt(
dataHandle ) is required. The dataHandle has to be derived from

C++ code

1 template< class Grid, class Impl >
2 struct AdaptDataHandle
3 {
4 typedef typename Grid::template Codim< 0 >::Entity Element;
5
6 void preCoarsening ( const Element &father );
7 void postRefinement ( const Element &father );
8 };

The method preCoarsening is called on the element father before all its descendants are removed.
Accordingly, the method postRefinement is called immediately after descendants for an entity
father are created. Since these methods are called during grid modification the IndexSets on
the grid are not available and data has to be stored in some peristent manner, e.g., using the
PersistentContainer . There is no need to call preAdapt(),postAdapt() on the grid.

This variant of the adaptation cycle is implemented in examples/callback/adaptation.hh . As-
suming that the degrees of freedom are stored in a PersistentContainer one simply needs to
call

C++ code

1 grid_.adapt( *this );

and implement the two callback methods

C++ code

1 void preCoarsening ( const Entity &father )
2 {
3 Container &container_ = getSolution().container();
4 // average the data from all children and copy onto the father entity
5 Vector::restrictLocal( father, container_ );
6 }
7
8 // called when children of father where newly created
9 void postRefinement ( const Entity &father )

10 {
11 Container &container_ = getSolution().container();
12 container_.resize();
13 // copy the data from the father onto all its children
14 Vector::prolongLocal( father, container_ );
15 }

The results of using the callback approach are shown in the corresponding columns of Table 2.
In summary, our tests indicate a gain of up to 10% using callback adaptation compared to
the approach based on the current Dune interface which is for example also showcased in the
Dunegrid-howto. The performance increase is mostly due to a reduction of number of times the
degree of freedom vector has to be copied. In addition the overall implementation is simpler
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since the hierarchic restriction and prolong methods do not have to be implemented. To run the
test described here go to the examples/callback directory and run the check−adaptation.sh
script. The implementation with a PersistentContainer is also compared here with the version
based on vector-like structure. The advantage of using a PersistentContainer for the degrees of
freedom in the Finite Volume scheme is significant (more than 20%).

storage vector vector PersistentContainer PersistentContainer

adaptation Dune callback Dune callback

T 2 0 2 251s 227s 194s 173s

T 2 0 3 2411s 1820s 2222s 1647s

E 21 0 3 106s 83s 99s 77s

E 21 0 4 1070s 1037s 833s 766s

Table 2: Results for callback adaptation and dof storage strategy obtained on a single core from
our small cluster. See script examples/callback/check−adaptation.sh . T stands for transport
problem and E for Euler problem, followed by the three program parameters used.

3.7 Internal Load Balancing

There are two phases in a computation where load balancing is essential in a simulation. During
the start up phase of the computation where the grid has to be distributed from scratch over
the available number of processes and after the grid has been locally refined which requires
an adjustment of the partitioning to balance the computational load. Even if the grid has been
partitioned beforehand and Dune-ALUGrid’s parallel grid factory is used, it is still sometimes
of practical interest to repartition the grid after creation, e.g., if a larger number of processes are
available for the computation. To this end the Dune-Grid interface provides the method

C++ code

1 bool loadBalance();

Even if the initial grid is optimally distributed, the load can become unbalanced during the
computation for example if local adaptivity is used. In this case the method mentioned above is
not sufficient as it does not allow to migrate user data together with elements from one process
to another. To manage data migration the Dune-Grid interface provides a second method

C++ code

1 template< class DataHandleImpl , class Data >
2 bool loadBalance( CommDataHandleIF< DataHandleImpl , Data > &dataHandle );

The handling of user data is achieved by a callback mechanism using the same interface used for
communication during the computation. Basically, for each element to be removed on the given
process a method gather is called (to collect data to be shipped with the element) and when a
new element is added to the grid on the process then a method scatter is called (to deliver the
data that was shipped with the element ) on the dataHandle instance.

The main shortcomming of these two methods is that there is no mechanism for the user to
intervene with the details of partitioning computed by the grid manager. the Dune-ALUGrid
module now provides two mechanisms for the user to improve the internal load balancing to
suit the need of the application at hand. Before presenting these improvements, we give a brief
description of how Dune-ALUGrid’s internal load balancing strategy works.
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Dune-ALUGrid only allows for horizontal load balancing, i.e., partitioning of the elements on the
macro level, migrating the whole tree below a given macro element from one process to another.
Each macro element E is assigned a weight equal to the number of leaf elements below E. Using
these weights either a space filling curve approach is used or a graph partitioning algorithm is
used. In ALUGrid 1.52 only serial graph partitioning using the Metis library [Karypis and Kumar,
1999] could be used. The serial graph partitioning requires the communication of the whole
assembled graph to all processes which does not scale in terms of memory and communication
time. While this method can still be used in Dune-ALUGrid, additional bindings to Zoltan
[Boman et al., 2012] have been added (providing space filling curve and graph partitioning
methods). Via the Zoltan interface ParMetis [Schloegel et al., 2002] is available as well. The
graph is constructed using the weighted macro elements as nodes and connecting neighboring
macro elements E1,E2 with an edge in the graph. These edges are assigned weights according
to the number of leafs below E1,E2 which are neighbors. The node weights are to represent
the computational cost, while the edge weights represent the communication size in the case
that these elements or moved onto different processors. The newly implemented partitioning
algorithm for space filling curves makes Dune-ALUGrid more self contained. As a default we
are using the Hilbert space filling curve provided by Zoltan [Boman et al., 2012]. If Zoltan
is not present Dune-ALUGrid provides a Z curve ordering (also called Morton ordering). An
overview on space filling curves is, for example, given in [Bader, 2013]. The element weights
described above are used to determine the optimal partitioning of the space filling curve. Besides
the space filling curve based approach provided by Zoltan called HSFC (id 13) Dune-ALUGrid
also provides its own load distribution algorithm. In this case it is assumed that the elements
of the macro mesh are sorted along a space filling curve. Then the distribution of the load boils
down to the distribution of ordered nodes with attached weights. If Zoltan is available and no
pre-ordered mesh is provided, the Hilbert space filling curve from the Zoltan package is used to
sort the elements. As a fallback Dune-ALUGrid also provides it’s on implementation based on
the Z-curve (aka Morton curve) approach. The algorithm to partition the 1d graph is based on
the one described in [Burstedde et al., 2011, Algorithm 16] with some slight modifications such as
avoiding empty partitions in any case if the number of macro elements is larger than the number
of cores used. Dune-ALUGrid’s internal space filling curve with linkage (id 4) algorithm comes
with a further advantage: The communication after a redistribution to identify master-slave node
relations can be done without communication. In all other cases listed in Table 3 an all-to-all
communication is needed to compute the master-slave relation of vertices that are present on
multiple cores.

The internal load balancing algorithm is invoked by calling on of the two versions of the Dunegrid
interface method loadbalance . Three parameters can be used to adjust the the algorithm. These
parameters are read from a file called alugrid.cfg , which is searched for in the current working
directory. This file has to contain three values. The first two numbers ( lbUnder , lbOver ) in
the alugrid.cfg file allow to specify a certain amount of load inbalance which has to be exceeded
before the partitioning is adjusted. A new partitioning is computed only if the maximum number
of leaf elements in a partition exceeds lbOver times the mean number of elements or the minimum
number is smaller than lbUnder times the mean number of elements in all partitions. The third
value is an integer between 0 and 15 determining the partitioning method to use. Table 3 gives
an overview of available methods and their numbering.

A second option to influence the outcome of the load balancing algorithm is to provide other
weights for the elements (i.e., the graph nodes). This can improve the overall effciency of a
scheme if the number of leaves does not directly represent the computational cost associated with
a given macro element. An example for this are reactive flow problems where substepping in
time is used to resolve stiff sources locally on each element [Geßner and Kröner, 2001]. Further
examples are the solution of PDEs in a moving domain [Klöfkorn and Nolte, 2014] or a multi-
domain approach where partial differential equations with different complexity are solved in
different domains represented on the same underlying grid [Müthing and Bastian, 2012]. The
corresponding additional methods are
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method name id method name id

NONE 0 COLLECT (to rank 0) 1
Space Filling Curve (linkage) 4 Space Filling Curve 9
METIS (PartGraphKway) 11 METIS (PartGraphRecursive) 12
ZOLTAN (HSFC) 13 ZOLTAN (GRAPH) 14
ZOLTAN (PARMETIS) 15

Table 3: Internal partitioning methods and corresponding id.

C++ code

1 template< class LBWeights >
2 bool loadBalance ( LBWeights &weights );
3 template< class LBWeights , class DataHandleImpl , class Data >
4 bool loadBalance ( LBWeights &weights,
5 CommDataHandleIF< DataHandleImpl , Data > &dataHandle );

LBWeights must implement int operator()(const Grid::Codim<0>::Entity &) which will be called
for each macro element to provide the weight, here an integer value. An example usage is shown
in examples/loadbalancing/loadbalance_simple.hh . Each leaf element is assumed to carry a
computational cost of 2l where l is the level of the leaf element. The weight for a macro element
is then simply the sum of the weights over all underlying leaf elements.

In Figure 8, 9, 10, and 11 we present a comparison of the different load balancing algorithms
available in Dune-ALUGrid. The results show a strong scaling study using the ball example
with refinement as described in (1). The scaling studies have been carried out on Yellowstone
[NCAR/CISL, 2012].

In Figure 8 we present a comparison of run times for ALUGrid’s 1.52 version and the new
Dune-ALUGridmodule. Since in version 1.52 only Metiswas available for partitioning we only
compare the run times using the Metis partitioning. We discover that both the tetrahedral and
the hexahedral version perform better in the new Dune-ALUGrid implementation.

For the comparison of load balancing methods in Figure 9, 10, and 11 we can see that the
space filling curve approaches, either Dune-ALUGrid’s internal methods or the HSFC method
from Zoltan, perform best even if the macro grid does not allow a good partitioning anymore
because the average element per core ratio is very small. The graph partitioning methods are in
general more expensive even though the created partitions seem to be more efficient in terms of
communications effort resulting in faster run times for the adaptation step (see Figure 9b, 10b, and
11b). As a drawback all tested graph partitioning methods fail when the number of elements per
core becomes very small. We have to point out that this example is heavily communication based
and especially the load balancing step, which is done in every time step, is very communication
intensive. So it seems even more impressive that the run times still drop when using 2048 or 4096
cores. This is confirmed by a comparable study in [Witkowski et al., 2015] where a stagnation in
strong scaling was observed when adaptivity and load balancing was done every time step. As
a conclusion the space filling curve approaches seem more suitable for problems with frequent
redistribution of the mesh whereas the graph partitioning methods seem more favorable for
productions runs on a fixed non-adaptive grid.

3.8 User Defined Partitioning

A more general approach in comparison to the loadBalance methods is provided by the methods
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Figure 8: Comparison of ALUGrid 1.52 and Dune-ALUGrid using the ball example with a macro
mesh of 32 768 hexahedrons or 196 608 tetrahedrons. The grid is refined uniformly once and the
maximal refinement level is 4 (parameter 3 1 4 for example main_ball ). Here, we only use the
METIS PartGraphKway (partition method id 11) method for domain decomposition.
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Figure 9: Strong scaling of the ball example from equation (1) using a conforming simplex grid
with a macro mesh containing 196 608 tetrahedrons. The grid is refined uniformly once and the
maximal allowed refinement level is 4 (parameter 3 1 4 for example main_ball ). The graphs show
the average run time per time step of different parts of the algorithm.
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Figure 10: Strong scaling of the ball example from equation (1) using a non-conforming cube grid
with a macro mesh containing 32 768 hexahedrons. The grid is refined uniformly once and the
maximal allowed refinement level is 4 (parameter 3 1 4 for example main_ball ). The graphs show
the average run time per time step of different parts of the algorithm.

C++ code

1 template< class LBDestinations >
2 bool repartition ( LBDestinations &destinations );
3 template< class LBDestinations , class DataHandleImpl , class Data >
4 bool repartition ( LBDestinations &destinations ,
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Figure 11: Strong scaling of the ball example from equation (1) using a non-conforming cube grid
with a macro mesh containing 262 144 hexahedrons. The maximal allowed refinement level is 3
(parameter 4 0 3 for example main_ball ). The graphs show the average run time per time step of
different parts of the algorithm.

5 CommDataHandleIF< DataHandleImpl , Data > &dataHandle);

performing load balancing either without or with migrating user data using callback on the
dataHandle instance. Otherwise, the whole load balancing is taken care of by the user. The class
LBDestinations has to fulfill the following interface

C++ code

1 struct LBDestinations
2 {
3 // Return process number the given macro element should be assigned to.
4 int operator()(const Grid::Codim<0>::Entity &);
5 // Fill set of ranks the current process will receive elements from and

return true
6 // in this case. If false is returned , then ALUGrid will compute this

information
7 // via a global communication.
8 bool importRanks( std::set<int>& ranks ) const;
9 };

where the int operator()(const Grid::Codim<0>::Entity &) returns the process number an element
is to be moved to. In Dune-ALUGrid this method will be called for each macro element on the
given rank and that macro element together with all its children will be moved to the desired
partition. The method importRanks can simply return false and then does not need to fill
the set ranks . However, this decreases performance due to the global communication required
to find out from which ranks to expect data. Some partitioning tools like Zoltan provide this
information, so that the user only needs to copy it to ranks vector and return true to improve
parallel efficiency.

An example usage is shown in examples/loadbalancing/loadbalance_simple.hh . The partition-
ing is computed by keeping the center on process zero and distributing the rest of the grid in
equal slices to the other processors. The only changes required to the algorithm are in main.cc
and adaptation.hh where the calls of the loadbalance(...) method on the grid are replaced with
the new repartition (...) methods In each step of the scheme before calling grid.repartition (...)
the method repartition() is called on the loadbalance handle. This causes an internal variable to
be increased, leading each time to a new partitioning:

C++ code

1 template< class Grid >
2 struct SimpleLoadBalanceHandle

c© by the authors, 2016 Archive of Numerical Software 4(1), 2016



24 Alkämper, Dedner, Klöfkorn, Nolte

3 {
4 typedef SimpleLoadBalanceHandle This;
5 typedef typename Grid :: Traits :: template Codim<0> :: Entity Element;
6 SimpleLoadBalanceHandle ( const Grid &grid )
7 : angle_( 0 )
8 , maxRank_( grid.comm().size() )
9 {}

10
11 /** this method is called before invoking the repartition
12 method on the grid, to check if the user-defined
13 partitioning needs to be readjusted */
14 bool repartition ()
15 {
16 angle_ += 2.*M_PI/50.;
17 return true;
18 }
19
20 /** This is the method, called from the grid for each macro element.
21 It returns the rank to which the element is to be moved. */
22 int operator()( const Element &element ) const
23 {
24 typedef typename Element::Geometry::GlobalCoordinate Coordinate;
25 Coordinate w = element.geometry().center();
26 w -= Coordinate(0.5);
27 if (w[0]*w[0]+w[1]*w[1] > 0.1 && maxRank_>0)
28 { // distribute everything away from the center in equal slices
29 double phi=arg(std::complex<double>(w[0],w[1]));
30 if (w[1]<0) phi+=2.*M_PI;
31 phi += angle_;
32 phi *= double(maxRank_-1)/(2.*M_PI);
33 int p = int(phi) % (maxRank_-1);
34 return p+1;
35 }
36 else // keep the center on proc 0
37 return 0;
38 }
39
40 /** This method can simply return false, in which case ALUGrid
41 will internally compute the required information through
42 some global communication. To avoid this overhead the user
43 can provide the ranks of partitions from which elements will
44 be moved to the calling repartition. */
45 bool importRanks( std::set<int> &ranks) const { return false; }
46 private:
47 double angle_;
48 int maxRank_;
49 };

A more useful example is given in examples/loadbalancing/loadbalance_zoltan.hh , where
the algorithm in Dune-ALUGrid relying on the Zoltan’s graph partitioner is replicated using
the Dune interface. Note that the results will not be identical since the order of the edges
within the graph will differ slightly when using the Dune interface to build it. Nevertheless, the
algorithm and parameter settings for Zoltan are identical. Based on this implementation it is
easy to experiment with the wide range of options Zoltan provides to optimize the partitioning
algorithm for a given application. Note also that the class again contains a repartitioning method
using the same lbOver , lbUnder values provided in the alugrid.cfg file.
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Constructing the graph relying only on the available Dune interface would be quite cumbersome
and involve quite a bit of overhead. There is no direct way to compute the edge weights and the
master rank for each ghost element has to be passed on to Zoltan, information requiring an extra
communication step within Dune. To simplify constructing the graph Dune-ALUGrid provides
a new method on the grid.

C++ code

1 template<PartitionIteratorType pitype>
2 typename Partition<pitype>::MacroGridView macroView() const;

This method returns a view of the macro grid level of the grid. The MacroGridView contains
the usual method to iterate over the macro grid and obtain an index set but in addition includes
some useful methods to construct the dual weighted graph:

C++ code

1 // return the master process of the given element
2 int master ( const typename Codim< 0 > :: Entity &entity ) const;
3 // return a globally uniqe integer id for this element
4 int macroId ( const typename Codim< 0 > :: Entity &entity ) const;
5 // return the weight (number of leaf elements) for the given elements
6 int weight ( const typename Codim< 0 > :: Entity &entity ) const;
7 // return the weight for this intersection
8 int weight ( const Intersection &intersection ) const;

The Zoltan example demonstrates a practical usage of the new load balancing interface and also
an extension not directly available using the internal bindings: The hypergraph algorithm of
Zoltan can be used to fix a set of elements to a given processor. By changing the variable fix_bnd_
to true the partitioning is computed such that all elements adjacent to left boundary face are kept
on process zero throughout the simulation. A practical example of this possibility is discussed in
[Jehl et al., 2015]. It should be noted that, although the algorithm used in this example mirrors the
one used in the Dune-ALUGrid internal bindings to Zoltan, the results might not be the same.
The reason is that iteration order over the macro elements can differ and this results in slightly
different dual graphs.

Note: As pointed out above, Dune-ALUGrid only allows to partition the macro level of the grid.
Depending on the problem the macro grid might not contain enough elements or the adaptivity
might be too localized to allow for a balanced load if only macro elements are distributed. On
manycore systems a possible solution is to use fewer processes to distribute the macro grid and use
threading to partition directly on the leaf level. This approach has been evaluated in [Klöfkorn,
2012].

4 Conclusions

In this paper we briefly described the main new features available in the overhaul of Dune-
ALUGrid. The main improvements concern the parallel feature set of the library, including
now user-defined load balancing and parallel grid construction as well as a decreased memory
footprint. Since ALUGrid is and was widely used within the Dune community we expect that
numerous Dune users will benefit from work presented here. We also presented a number of
extensions to the Dune grid interface that prove useful and will be integrated into the Dune grid
interface in the near future.

The increased feature set also includes newest vertex bisection for tetrahedral grids in 3d, making
it the only parallel grid manager within Dune with this feature. This will enable the usage
of conforming adaptive discretization methods, such as conforming adaptive Finite Elements,
in parallel. In addition, the 2d code has been parallelized by reformulating it as an extension
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to the 3d code and it thus also inherited all the major features. Nevertheless, there are some
shortcomings that still have to be resolved in the future.

Shortcomings and Outlook

A major drawback of the current implementation is that load balancing is performed solely based
on the coarsest grid (macro grid). This works fine for many problems where the refinement zones
are not too restricted to one area of the domain, but will completely fail for very local refinement
regions. As already mentioned the situation can be improved by using a hybrid paralleliza-
tion approach. But the next major improvement will be the implementation of a more flexible
partitioning of elements allowing for partitioning of various sets of elements. Furthermore, the
current implementation lacks support for ghost elements when bisection refinement is used. This
is hopefully fixed in the near future.
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