research

Finding High-Dimensional D-OptimalDesigns for Logistic Models via Differential Evolution

Abstract

D-optimal designs are frequently used in controlled experiments to obtain the most accurateestimate of model parameters at minimal cost. Finding them can be a challenging task, especially whenthere are many factors in a nonlinear model. As the number of factors becomes large and interact withone another, there are many more variables to optimize and the D-optimal design problem becomes highdimensionaland non-separable. Consequently, premature convergence issues arise. Candidate solutions gettrapped in local optima and the classical gradient-based optimization approaches to search for the D-optimaldesigns rarely succeed. We propose a specially designed version of differential evolution (DE) which is arepresentative gradient-free optimization approach to solve such high-dimensional optimization problems.The proposed specially designed DE uses a new novelty-based mutation strategy to explore the variousregions in the search space. The exploration of the regions will be carried out differently from the previouslyexplored regions and the diversity of the population can be preserved. The proposed novelty-based mutationstrategy is collaborated with two common DE mutation strategies to balance exploration and exploitationat the early or medium stage of the evolution. Additionally, we adapt the control parameters of DE as theevolution proceeds. Using logistic models with several factors on various design spaces as examples, oursimulation results show our algorithm can find D-optimal designs efficiently and the algorithm outperformsits competitors. As an application, we apply our algorithm and re-design a 10-factor car refueling experimentwith discrete and continuous factors and selected pairwise interactions. Our proposed algorithm was able toconsistently outperform the other algorithms and find a more efficient D-optimal design for the problem

    Similar works