16,906 research outputs found

    Who Replaces Whom? Local versus Non-local Replacement in Social and Evolutionary Dynamics

    Get PDF
    In this paper, we inspect well-known population genetics and social dynamics models. In these models, interacting individuals, while participating in a self-organizing process, give rise to the emergence of complex behaviors and patterns. While one main focus in population genetics is on the adaptive behavior of a population, social dynamics is more often concerned with the splitting of a connected array of individuals into a state of global polarization, that is, the emergence of speciation. Applying computational and mathematical tools we show that the way the mechanisms of selection, interaction and replacement are constrained and combined in the modeling have an important bearing on both adaptation and the emergence of speciation. Differently (un)constraining the mechanism of individual replacement provides the conditions required for either speciation or adaptation, since these features appear as two opposing phenomena, not achieved by one and the same model. Even though natural selection, operating as an external, environmental mechanism, is neither necessary nor sufficient for the creation of speciation, our modeling exercises highlight the important role played by natural selection in the interplay of the evolutionary and the self-organization modeling methodologies.Comment: 14 pages, 11 figure

    Evolutionary games on graphs

    Full text link
    Game theory is one of the key paradigms behind many scientific disciplines from biology to behavioral sciences to economics. In its evolutionary form and especially when the interacting agents are linked in a specific social network the underlying solution concepts and methods are very similar to those applied in non-equilibrium statistical physics. This review gives a tutorial-type overview of the field for physicists. The first three sections introduce the necessary background in classical and evolutionary game theory from the basic definitions to the most important results. The fourth section surveys the topological complications implied by non-mean-field-type social network structures in general. The last three sections discuss in detail the dynamic behavior of three prominent classes of models: the Prisoner's Dilemma, the Rock-Scissors-Paper game, and Competing Associations. The major theme of the review is in what sense and how the graph structure of interactions can modify and enrich the picture of long term behavioral patterns emerging in evolutionary games.Comment: Review, final version, 133 pages, 65 figure

    Evolutionary modeling in economics : recent history and immediate prospects

    Get PDF
    Abstract not availablemathematical economics and econometrics ;

    Prisoner's Dilemma cellular automata revisited: evolution of cooperation under environmental pressure

    Full text link
    We propose an extension of the evolutionary Prisoner's Dilemma cellular automata, introduced by Nowak and May \cite{nm92}, in which the pressure of the environment is taken into account. This is implemented by requiring that individuals need to collect a minimum score UminU_{min}, representing indispensable resources (nutrients, energy, money, etc.) to prosper in this environment. So the agents, instead of evolving just by adopting the behaviour of the most successful neighbour (who got UmsnU^{msn}), also take into account if UmsnU^{msn} is above or below the threshold UminU_{min}. If Umsn<UminU^{msn}<U_{min} an individual has a probability of adopting the opposite behaviour from the one used by its most successful neighbour. This modification allows the evolution of cooperation for payoffs for which defection was the rule (as it happens, for example, when the sucker's payoff is much worse than the punishment for mutual defection). We also analyse a more sophisticated version of this model in which the selective rule is supplemented with a "win-stay, lose-shift" criterion. The cluster structure is analyzed and, for this more complex version we found power-law scaling for a restricted region in the parameter space.Comment: 15 pages, 8 figures; added figures and revised tex
    • 

    corecore