3,448 research outputs found

    A Review on Energy Consumption Optimization Techniques in IoT Based Smart Building Environments

    Get PDF
    In recent years, due to the unnecessary wastage of electrical energy in residential buildings, the requirement of energy optimization and user comfort has gained vital importance. In the literature, various techniques have been proposed addressing the energy optimization problem. The goal of each technique was to maintain a balance between user comfort and energy requirements such that the user can achieve the desired comfort level with the minimum amount of energy consumption. Researchers have addressed the issue with the help of different optimization algorithms and variations in the parameters to reduce energy consumption. To the best of our knowledge, this problem is not solved yet due to its challenging nature. The gap in the literature is due to the advancements in the technology and drawbacks of the optimization algorithms and the introduction of different new optimization algorithms. Further, many newly proposed optimization algorithms which have produced better accuracy on the benchmark instances but have not been applied yet for the optimization of energy consumption in smart homes. In this paper, we have carried out a detailed literature review of the techniques used for the optimization of energy consumption and scheduling in smart homes. The detailed discussion has been carried out on different factors contributing towards thermal comfort, visual comfort, and air quality comfort. We have also reviewed the fog and edge computing techniques used in smart homes

    Bacterial foraging-optimized PID control of a two-wheeled machine with a two-directional handling mechanism

    Get PDF
    This paper presents the performance of utilizing a bacterial foraging optimization algorithm on a PID control scheme for controlling a five DOF two-wheeled robotic machine with two-directional handling mechanism. The system under investigation provides solutions for industrial robotic applications that require a limited-space working environment. The system nonlinear mathematical model, derived using Lagrangian modeling approach, is simulated in MATLAB/Simulink(®) environment. Bacterial foraging-optimized PID control with decoupled nature is designed and implemented. Various working scenarios with multiple initial conditions are used to test the robustness and the system performance. Simulation results revealed the effectiveness of the bacterial foraging-optimized PID control method in improving the system performance compared to the PID control scheme

    A hybrid bacterial foraging and modified particle swarm optimization for model order reduction

    Get PDF
    This paper study the model reduction procedures used for the reduction of large-scale dynamic models into a smaller one through some sort of differential and algebraic equations. A confirmed relevance between these two models exists, and it shows same characteristics under study. These reduction procedures are generally utilized for mitigating computational complexity, facilitating system analysis, and thence reducing time and costs. This paper comes out with a study showing the impact of the consolidation between the Bacterial-Foraging (BF) and Modified particle swarm optimization (MPSO) for the reduced order model (ROM). The proposed hybrid algorithm (BF-MPSO) is comprehensively compared with the BF and MPSO algorithms; a comparison is also made with selected existing techniques

    A Hybrid Bacterial Swarming Methodology for Job Shop Scheduling Environment

    Get PDF
    Optimized utilization of resources is the need of the hour in any manufacturing system. A properly planned schedule is often required to facilitate optimization. This makes scheduling a significant phase in any manufacturing scenario. The Job Shop Scheduling Problem is an operation sequencing problem on multiple machines with some operation and machine precedence constraints, aimed to find the best sequence of operations on each machine in order to optimize a set of objectives. Bacterial Foraging algorithm is a relatively new biologically inspired optimization technique proposed based on the foraging behaviour of E.coli bacteria. Harmony Search is a phenomenon mimicking algorithm devised by the improvisation process of musicians. In this research paper, Harmony Search is hybridized with bacterial foraging to improve its scheduling strategies. A proposed Harmony Bacterial Swarming Algorithm is developed and tested with benchmark Job Shop instances. Computational results have clearly shown the competence of our method in obtaining the best schedule

    Metaheuristic design of feedforward neural networks: a review of two decades of research

    Get PDF
    Over the past two decades, the feedforward neural network (FNN) optimization has been a key interest among the researchers and practitioners of multiple disciplines. The FNN optimization is often viewed from the various perspectives: the optimization of weights, network architecture, activation nodes, learning parameters, learning environment, etc. Researchers adopted such different viewpoints mainly to improve the FNN's generalization ability. The gradient-descent algorithm such as backpropagation has been widely applied to optimize the FNNs. Its success is evident from the FNN's application to numerous real-world problems. However, due to the limitations of the gradient-based optimization methods, the metaheuristic algorithms including the evolutionary algorithms, swarm intelligence, etc., are still being widely explored by the researchers aiming to obtain generalized FNN for a given problem. This article attempts to summarize a broad spectrum of FNN optimization methodologies including conventional and metaheuristic approaches. This article also tries to connect various research directions emerged out of the FNN optimization practices, such as evolving neural network (NN), cooperative coevolution NN, complex-valued NN, deep learning, extreme learning machine, quantum NN, etc. Additionally, it provides interesting research challenges for future research to cope-up with the present information processing era

    Hybrid spiral-dynamic bacteria-chemotaxis algorithm with application to control two-wheeled machines

    Get PDF
    This paper presents the implementation of the hybrid spiral-dynamic bacteria-chemotaxis (HSDBC) approach to control two different configurations of a two-wheeled vehicle. The HSDBC is a combination of bacterial chemotaxis used in bacterial forging algorithm (BFA) and the spiral-dynamic algorithm (SDA). BFA provides a good exploration strategy due to the chemotaxis approach. However, it endures an oscillation problem near the end of the search process when using a large step size. Conversely; for a small step size, it affords better exploitation and accuracy with slower convergence. SDA provides better stability when approaching an optimum point and has faster convergence speed. This may cause the search agents to get trapped into local optima which results in low accurate solution. HSDBC exploits the chemotactic strategy of BFA and fitness accuracy and convergence speed of SDA so as to overcome the problems associated with both the SDA and BFA algorithms alone. The HSDBC thus developed is evaluated in optimizing the performance and energy consumption of two highly nonlinear platforms, namely single and double inverted pendulum-like vehicles with an extended rod. Comparative results with BFA and SDA show that the proposed algorithm is able to result in better performance of the highly nonlinear systems

    Multiple robot co-ordination using particle swarm optimisation and bacteria foraging algorithm

    Get PDF
    The use of multiple robots to accomplish a task is certainly preferable over the use of specialised individual robots. A major problem with individual specialized robots is the idle-time, which can be reduced by the use of multiple general robots, therefore making the process economical. In case of infrequent tasks, unlike the ones like assembly line, the use of dedicated robots is not cost-effective. In such cases, multiple robots become essential. This work involves path-planning and co-ordination between multiple mobile agents in a static-obstacle environment. Multiple small robots (swarms) can work together to accomplish the designated tasks that are difficult or impossible for a single robot to accomplish. Here Particle Swarm Optimization (PSO) and Bacteria Foraging Algorithm (BFA) have been used for coordination and path-planning of the robots. PSO is used for global path planning of all the robotic agents in the workspace. The calculated paths of the robots are further optimized using a localised BFA optimization technique. The problem considered in this project is coordination of multiple mobile agents in a predefined environment using multiple small mobile robots. This work demonstrates the use of a combinatorial PSO algorithm with a novel local search enhanced by the use of BFA to help in efficient path planning limiting the chances of PSO getting trapped in the local optima. The approach has been simulated on a graphical interface

    Swarm Optmization Algorithms for Face Recognition

    Get PDF
    In this thesis, a face recognition system based on swarm intelligence is developed. Swarm intelligence can be defined as the collective intelligence that emerges from a group of simple entities; these agents enter into interactions, sense and change their environment locally. A typical system for face recognition consists of three stages: feature extraction, feature selection and classification. Two approaches are explored. First, Bacterial Foraging Optimization(BFO), in which the features extracted from Principal Component Analysis(PCA) and Linear Discriminant Analysis(LDA) are optimized. Second, Particle Swarm Optimization(PSO), which optimizes the transform coefficients obtained from the Discrete Cosine Transform(DCT) of the images. PCA, LDA and DCT are all appearance-based methods of feature extraction. PCA and LDA are based on global appearance whereas DCT is performed on a block by block basis exploring the local appearance-based features. Finally, for classification Euclidean distance metric is used. The algorithms that have been applied are tested on Yale Face Database

    Improved bacterial foraging optimization for structural damage identification of bridge erecting machine

    Get PDF
    Aiming at structure damage characteristics of bridge erecting machine, a vibration-based identification model of structural damage acted as a constrained problem is established. In view of the crack damage, the natural frequency of vibration signal and modal assurance criterion is as the index of damage detection, and then an improved bacterial foraging optimization (NBFO) based on the chemotaxis strategy with normal distribution is proposed, meanwhile it is applied to optimizing the identification model of structural damage. Finally using the girder of TLJ900 bridge erecting machine as an example, the simulation results show that the proposed method can more accurately judge the damage position and degree of structure than its counterparts
    corecore