
MULTIPLE ROBOT CO-ORDINATION
USING

PARTICLE SWARM OPTIMISATION AND BACTERIA
FORAGING ALGORITHM

A Project Report Submitted in Partial Fulfillment of the Requirements for the Degree of

B. Tech.

(Mechanical Engineering)

By

PRASANNA K.

 Roll. No. 10603056

 and

 SAIKISHAN DAS

Roll No. 10603062

Under the supervision of

DR. DAYAL R. PARHI

Professor

Department of Mechanical Engineering, NIT, Rourkela

DEPARTMENT OF MECHANICAL ENGINEERING

NATIONAL INSTITUTE OF TECHNOLOGY

ROURKELA

 MAY,2010

MULTIPLE ROBOT CO-ORDINATION

USING

PARTICLE SWARM OPTIMISATION AND BACTERIA FORAGING

ALGORITHM

A Project Report Submitted in Partial Fulfillment of the Requirements for the Degree of

B. Tech.

(Mechanical Engineering)

By

PRASANNA K.

 Roll. No. 10603056

 and

 SAIKISHAN DAS

Roll No. 10603062

Under the supervision of

Dr. Dayal R. Parhi

Professor

Department of Mechanical Engineering, NIT, Rourkela

Department of Mechanical Engineering

National Institute of Technology

Rourkela
MAY, 2010

National Institute of Technology

Rourkela

C E R T I F I C A T E

This is to certify that the work in this thesis entitled MULTIPLE

ROBOT CO-ORDINATION USING PARTICLE SWARM

OPTIMISATION AND BACTERIA FORAGING ALGORITHM by

Saikishan Das (Roll No. 10603062) has been carried out under my

supervision in partial fulfillment of the requirements for the degree of Bachelor

of Technology in Mechanical Engineering during session 2009- 2010 in the

Department of Mechanical Engineering, National Institute of Technology,

Rourkela.

To the best of my knowledge, this work has not been submitted to any

other University/Institute for the award of any degree or diploma.

Dr. Dayal R. Parhi

(Supervisor)

Professor

Dept. of Mechanical Engineering

National Institute of Technology

Rourkela - 769008

A C K N O W L E D G E M E N T

I would like to express my deep sense of gratitude and respect to

my supervisor Prof. Dayal R. Parhi for his excellent guidance,

suggestions and support. I consider myself extremely lucky to be able

to work under the guidance of such a dynamic personality.

Last, but not the least I extend my sincere thanks to other faculty

members of the Department of Mechanical Engineering, NIT

Rourkela, for their valuable advice in every stage for successful

completion of this project report.

DATE: SAIKISHAN DAS

PLACE: N.I.T. ROURKELA Roll No. - 10603062

 Mechanical Engineering Department

C O N T E N T S

ABSTRACT

LIST OF FIGURES AND TABLES

1. INTRODUCTION

1.1. Objective

1.2. Path Planning

1.3. Particle Swarm Optimisation

1.4. Bacteria Foraging Algorithm

1.5. C++ Compiler And Graphics

2. LITERATURE REVIEW

2.1. Robot Co-ordination

2.2. Path Planning

2.2.1. Centralised path Planning

2.2.2. Decoupled Planning

2.3. Particle Swarm Optimisation

2.4. Bacteria Foraging Algorithm

2.5. Hybrid and Combinatorial Approach

3. ANALYSIS

3.1. Problem Formulation

3.2. Particle Swarm Optimisation

3.2.1. Basic Steps In PSO

3.2.2. Problem Implementation

3.3. Bacteria Foraging Algorithm

3.3.1. General Steps of BFA

3.3.2. Problem Implementation

4. RESULTS AND DISCUSSION

5. CONCLUSION

REFERENCE

APPENDIX

i

ii

1

2

2

3

4

5

6

7

9

10

10

11

13

13

15

16

17

18

19

20

22

24

27

32

35

38

A B S T R A C T

The use of multiple robots to accomplish a task is certainly preferable over the use of

specialised individual robots. A major problem with individual specialized robots is

the idle-time, which can be reduced by the use of multiple general robots, therefore

making the process economical. In case of infrequent tasks, unlike the ones like

assembly line, the use of dedicated robots is not cost-effective. In such cases, multiple

robots become essential. This work involves path-planning and co-ordination between

multiple mobile agents in a static-obstacle environment. Multiple small robots

(swarms) can work together to accomplish the designated tasks that are difficult or

impossible for a single robot to accomplish. Here Particle Swarm Optimization (PSO)

and Bacteria Foraging Algorithm (BFA) have been used for coordination and path-

planning of the robots. PSO is used for global path planning of all the robotic agents

in the workspace. The calculated paths of the robots are further optimized using a

localised BFA optimization technique. The problem considered in this project is

coordination of multiple mobile agents in a predefined environment using multiple

small mobile robots. This work demonstrates the use of a combinatorial PSO

algorithm with a novel local search enhanced by the use of BFA to help in efficient

path planning limiting the chances of PSO getting trapped in the local optima. The

approach has been simulated on a graphical interface.

(i)

LIST OF FIGURES AND TABLES

List of Figures.

Fig. No. Description Page

Fig.1 Path planning by using BFA 4

Fig.2 Sample Environment with stationary obstacles 16

Fig.3 Graphical representation of separation, alignment and

cohesion

17

Fig.4 Graphical representation of Kennedy and Eberhart model 18

Fig.5 Possible Directions 25

Fig.6 Sample Environment 28

Fig.7 PSO calculated path 29

Fig.8 BFA calculated path 29

Fig.9 PSO and BFA path comparison 30

 .

List of Tables

Table. No. Description Page

Table 1 PSO particle structure 19

Table 2 BFA particle structure 25

Table 3 Optimum Path Length comparision between PSO and

PSO+BFA

31

.

.

.

(ii)

B.Tech. Project Report 2010

Mechanical Engineering Department, N.I.T. Rourkela Page 1

CHAPTER 1

B.Tech. Project Report 2010

Mechanical Engineering Department, N.I.T. Rourkela Page 2

Chapter 1

INTRODUCTION

Use of a team of robots can help in monitoring, surveillance, and search and

rescue operations, thus removing the need for human intervention in dangerous

areas[1]. A simple example is exploration and search of an earthquake-hit building

where each robot has a sensor(s) that can detect heat, light, sound, or other, and

communicate wirelessly with other robots. Material handling and bomb detections are

several other such aspects where multiple robots can co-ordinate among themselves to

achieve required goal. Because of several desirable and undesirable constraints,

resources must be distributed across multiple robots which must work in unison to

accomplish a mission. Specialization of robot functions and collaboration amongst the

deployed robots is employed to deal with these constraints.

In a static environment, use of multiple robots to accomplish a task with several

complexities involves two important aspects- path planning and efficient robot co-

ordination [2]

1.1. OBJECTIVE

The main objective of the work is to accomplish co-ordination between

multiple robots in a known environment with static obstacles. This has to be achieved

by doing path-planning for the robots using two very common swarm intelligence

optimization techniques – PSO (for global search) and BFA (for local search).

1.2. PATH PLANNING

Path planning [3] is one of the fundamental problems in mobile robotics.

According to Latombe [4], the capability of effectively planning its motions is

―eminently necessary since, by definition, a robot accomplishes tasks by moving in

the real world.‖

B.Tech. Project Report 2010

Mechanical Engineering Department, N.I.T. Rourkela Page 3

Trajectory for each robot has to be computed in order to avoid collisions

between the robots. Several undesirable situations like congestions and deadlocks may

obstruct the progress of the robots. In such cases use of particle swarm optimization

techniques can be used for efficient path planning and avoiding such undesirable

situations. Particle Swarm Optimization (PSO) and Bacteria Foraging Algorithm

(BFA) can be used in path planning and robot co-ordination.

1.3. PARTICLE SWARM OPTIMIZATION

PSO techniques are algorithms used to find a solution to an optimization

problem in some search space [5-6]. PSO has been used for hazardous target search

applications, such as landmine detection, fire fighting, and military surveillance, and

is an effective technique for collective robotic search problems. When PSO is used for

exploration, this algorithm enables robots to travel on trajectories that lead to total

swarm convergence on some target. Two basic approaches to controlling multiple

robots to achieve collective tasks are centralized control and distributed control. The

PSO algorithm [5] can work in both centralized control and distributed control

scenarios. In centralized control the robots are organized in a hierarchical fashion

similar to the military; e.g. teams of robots are controlled by designated robot leaders

which are controlled by the head robot for the entire swarm. The robots send pose

information to the head robot which executes the PSO algorithm and returns new

directional information to each robot. In decentralized control, each robot operates on

local information but works toward accomplishing a global goal.

A decentralized PSO algorithm is used in this project for robots to find targets

at known locations in an area of interest. Some issues in design and implementation of

an unsupervised distributed PSO algorithm for target location include robot dispersion

and deployment, localization, obstacle avoidance, overshooting targets, effect of

particle neighbourhood sizes on performance and scalability.

B.Tech. Project Report 2010

Mechanical Engineering Department, N.I.T. Rourkela Page 4

1.4. BACTERIA FORAGING ALGORITHM

BFA is based on the foraging behaviour of Escherichia Coli (E. Coli) bacteria

present in the human intestine and already been in use to many engineering problems.

Studies by A. Stevens show that BFA is better than PSO algorithm in terms of

convergence, robustness and precision. BFA is the latest trend that is efficient in

optimizing parameters of the structures.

 In this work, BFA has been used in the program developed using PSO in

order to overcome the drawbacks and to help in efficient path planning limiting the

chances of PSO getting trapped in the local optima.

Creation of complex virtual worlds and simulation of the robots in such

environments can be done using C++ compiler [7]. A complete programming library

is provided to allow users to program the robots C++ compiler. From the controller

programs, it is possible to read input values and show the required simulation in a

graphic window.

Fig.1. Path planning by using BFA

B.Tech. Project Report 2010

Mechanical Engineering Department, N.I.T. Rourkela Page 5

1.5. C++ COMPILER AND GRAPHICS

The compiler provides an environment for programing. The simulation of the

co-ordination can be done using Windows MFC and graphics can be incorporated in

order to graphically visualise the animation and simulation. It is crucial for the display

of the output on the window screen.

B.Tech. Project Report 2010

Mechanical Engineering Department, N.I.T. Rourkela Page 6

CHAPTER 2

B.Tech. Project Report 2010

Mechanical Engineering Department, N.I.T. Rourkela Page 7

Chapter 2

LITERATURE REVIEW

This section provides an insight and literature review to the current

methodologies applied for co-ordination of multiple robot systems. It also highlights

various methods used by researchers and their outcomes related to such problems.

2.1. ROBOT CO-ORDINATION

Several works have been done in the past and is going on in the field of

multiple-robot co-ordination. Yamauchi [8] developed a distributed, asynchronous

multi-robot exploration algorithm which introduces the concept of frontier cells.

Frontier cells are the border areas between known and unknown environments. Their

basic idea is to let each robot move to the closest frontier cell independently. This

brings the fault tolerance capability. However, the multiple robots may move towards

the same frontier cell, thus rendering the process ineffective. Therefore their algorithm

lacks sufficient co-ordination.

Parhi et al. [9] proposed a control technique for navigation of intelligent mobile

robots. Cooperative behaviours using a colony of robots are becoming more and more

significant in industrial, commercial and scientific application. Problems such as co-

ordination of multiple robots, motion planning and co-ordination of multiple robotic

systems are generally approached having a central (hierarchical) controller in mind.

Here by using Rule base technique and petri net modelling to avoid collision among

robots one model of collision free path planning has been proposed. The second model

incorporates rule based fuzzy-logic technique and both the models are compared. It

has been found that the rule-based technique has a set of rules obtained through rule

induction and subsequently with manually derived heuristics. This technique employs

rules and takes into account the distances of the obstacles around the robots and the

bearing of the targets in order to compute the change required in steering angle. With

B.Tech. Project Report 2010

Mechanical Engineering Department, N.I.T. Rourkela Page 8

the use of Petri net model the robots are capable of negotiate with each other. It has

been seen that, by using rule-based-neuro-fuzzy technique the robots are able to avoid

any obstacles (static and moving obstacles), escape from dead ends, and find targets in

a highly cluttered environments. Using these techniques as many as 1000 mobile

robots can navigate successfully neither colliding with each other nor colliding with

obstacles present in the environment. It was observed that the rule-based-neuro-fuzzy

technique is the best compared to the rule-based technique for navigation of multiple

mobile robots.

Grabowski et al. [10] investigated the coordination of a team of miniature

robots that exchange mapping and sensor information. In their system, a robot plays as

a team leader that integrates the information gathered by the other robots. This team

leader directs the movement of other robots to unknown areas. They developed a

novel localization system that uses sonar-based distance measurements to determine

the positions of all the robots in the group. With their positions known, an occupancy

grid Bayesian mapping algorithm can be used to combine the sensor data from

multiple robots with different sensing modalities.

Simmons et al. [11] developed a semi-distributed multi-robot exploration

algorithm which requires a central agent to evaluate the bidding from all the other

robots to obtain the most information gain while reducing the cost, or the travelling

distance. However, there are a few limitations to this approach. The work has been

done assuming that the robots begin in view of one another and are told their initial

(approximate) relative location. But once the robots need to merge maps with initial

co-ordinates unknown and with the aim to find out where they are relative to one

another, more sophisticated techniques are needed for mapping and localization.

Gerkey and Mataric proposed an auction method for multi-robot coordination

in their MURDOCH system [12]. A variant of the Contract Net Protocol, MURDOCH

produces a distributed approximation to a global optimum of resource usage. The use

B.Tech. Project Report 2010

Mechanical Engineering Department, N.I.T. Rourkela Page 9

of an ―auctioneer‖ agent is similar to the central agent method used in Simmons

et al.‘s work. The work basically shows the effectiveness of distributed negotiation

mechanisms such as MURDOCH for coordinating physical multi-robot systems. In

most of the previous work, the communication between robots is assumed to be

perfect, which makes their algorithms unable to handle unexpected, occasional

communication link breakdowns.

2.2. PATH PLANNING

Path planning for multiple robots [13] has been studied extensively over the

past ten years. The path planning problem in robotics is to generate a continuous path

for a given robot between an initial and a goal configuration (or placement) of the

robot. Along this path, the robot must not intersect given forbidden regions (usually,

obstacles) [4,14]. There are two basic approaches to the multi-robot path planning

problem - centralised and decoupled. In case of centralised approach, each robot is

treated as one composite system, and the planning is done in a composite

configuration space, formed by combining the configuration spaces of the individual

robots. Whereas, in case of decoupled approach, paths are first generated for the

separate robots independently, and then their interactions are considered (with respect

to the generated paths).

The advantage in case of centralised approaches is that they always find a

solution when one exists. However, the practical difficulty is that, if completeness is

to be obtained, it yields methods whose time complexity is exponential in the

dimension of the composite configuration space. But decoupled planners inherently

are incomplete and can lead to deadlock situations. Even the apparently simple

problem of motion planning for arbitrarily many rectangular robots in an empty

rectangular workspace is still PSPACE-complete [14].

B.Tech. Project Report 2010

Mechanical Engineering Department, N.I.T. Rourkela Page 10

2.2.1. Centralised planning: Ardema and Skowronski [15] described a method for

generating collision-free motion control for two specific, constrained manipulators, by

modelling the problem as a non-cooperative game.

 Bennewitz et al. [3] presented a method for finding and optimizing priority

schemes for such prioritized and decoupled planning techniques. The existing

approaches apply a single priority scheme making them overly prone to failure in

cases where valid solutions exist. By searching in the space of prioritization schemes,

their approach overcomes this limitation. It performs a randomized search with hill-

climbing to find solutions and to minimize the overall path length. To focus the

search, algorithm is guided by constraints generated from the task specification. The

experiments conducted not only resulted in significant reduction of the number of

failures in which no solution can be found, they also showed a significant reduction of

the overall path length.

Other centralised approaches for tackling multi-robot planning problems

include various Potential Field Techniques. These techniques apply different

approaches to deal with the problem of local minima in the potential function. Other

methods restrict the motions of the robots to reduce the size of the search space.

Tournassoud [16] proposed a potential field approach where the motion coordination

is expressed as a local optimisation problem.

In [17] Barraquand et al. present a potential field technique for many discs in

environments with narrow corridors. To escape local minima, so-called constrained

motions are executed which force one configuration coordinate to increase or decrease

until a saddle point of the potential function is attained. This potential field planner

has been successfully experimented with for up to ten robots.

2.2.2. Decoupled planning: Decoupled planners help in finding the paths of the

individual robots independently before employing different strategies to resolve

possible conflicts. They may fail to find a solution even if there is one. A popular

decoupled approach is planning in the configuration time-space by Erdmann and

B.Tech. Project Report 2010

Mechanical Engineering Department, N.I.T. Rourkela Page 11

Lozano-Perez [18], which can be constructed for each robot given the positions and

orientations of all other robots at every point in time. Techniques of this type assign

priorities to the individual robots and compute the paths of the robots based on the

order implied by these priorities.

Ferrari et al. [19] uses a fixed priority scheme and chooses random detours for

the robots with lower priority. Variations of initial solutions for collision-free robot

paths are obtained with respect to quality parameters that give heuristic rules for

evaluating plan robustness. While collision impact factors (CIF and CAF) are

considered for evaluating the quality of a single path, performance indices (RT, ME

and VE), are used for evaluating the overall quality of a plan.

 Erdmann and Lozano-Perez [18] proposed the scheme of prioritised planning.

The foremost task is to assign priorities to robots which is followed by picking up of

the robots in order of decreasing priority. For each picked robot a path is planned,

avoiding collisions with the static obstacles as well as the previously picked robots,

which are considered as moving obstacles.

Another approach to decoupled planning is the path coordination method. The

key idea of this technique is to keep the robots on their individual paths and let the

robots stop, move forward, or even move backward on their trajectories in order to

avoid collisions. Bien and Lee [16] proposed a method to achieve a path-constrained

minimum time trajectory pair for both the robots with limited actuator torques and

velocities. A two-dimensional coordination space is constructed to identify a collision

region along the paths which is transformed into one in time-versus-travelled-length

space with the velocity profile of one of the two robots.

2.3. PARTICLE SWARM OPTIMISATION

PSO is relatively a new concept reported by Kennedy and Eberhart (2001) [31],

in 1995 and is often applied for tracing the targets by autonomous communicating

bodies (Gesu et al., 2000). PSO is a population based stochastic optimization

B.Tech. Project Report 2010

Mechanical Engineering Department, N.I.T. Rourkela Page 12

technique inspired by social behaviour of bird flocking or fish schooling. A problem

space is initialized with a population of random solutions in which it searches for the

optimum over a number of generations/iterations and reproduction is based on prior

generations. The concept of PSO is that each particle randomly searches through the

problem space by updating itself with its own memory and the social information

gathered from other particles. In this work, the PSO particles are referred to as robots

and the local version of the PSO algorithm is considered in the context of this

application (Kennedy, 1999). An extensive search on Particle Swarm Optimisation has

been carried out by Polli (2007) [21]. PSO has been used by researchers all over the

world from various fields of research for different types of optimisation.

In the work done by Ray et al.(2010) [22], selected lower order harmonics of

multilevel inverter are eliminated while the overall voltage THD (Total Harmonic

Distortion) is optimized by computing the switching angles using Particle Swarm

Optimization (PSO) technique.

In [23], N.M. Kwok et al. (2009) proposed an improved PSO model for solving

the optimal formation reconfiguration control problem for multiple UCAVs. The

proposed strategy can produce a large speed value dynamically according to the

variation of the speed, which makes the algorithm explore the local and global minima

thoroughly at the same time. Series experimental results demonstrate the feasibility

and effectiveness of the proposed method in solving the optimal formation

reconfiguration control problem for multiple UCAVs.

Most recently, A. Atyabi et al. (2010) [24] employed two enhanced versions of

PSO - area extension PSO (AEPSO) and cooperative AEPSO (CAEPSO) as decision

makers and movement controllers of simulated . The study examines the feasibility of

AEPSO and CAEPSO on uncertain and time-dependent simulated environments.

B.Tech. Project Report 2010

Mechanical Engineering Department, N.I.T. Rourkela Page 13

2.4. BACTERIA FORAGING ALGORITHM

In 2002, K. M. Passino proposed Bacterial Foraging Optimization Algorithm

(BFOA) for distributed optimization and control. BFA is based on the foraging

behaviour of Escherichia Coli (E. Coli) bacteria present in the human intestine [25]

and already been in use to many engineering problems including multiple robot co-

ordination. According to paper [26], BFA is better than Particle Swarm Optimisation

in terms of convergence, robustness and precision.

T.Datta et al.(2008) [26] proposed an improved adaptive approach involving

Bacterial Foraging Algorithm (BFA) to optimize both the amplitude and phase of the

weights of a linear array of antennas for maximum array factor at any desired

direction and nulls in specific directions.

Tang W.J. et al. (2008) [27] presented a new algorithm, dynamic bacterial

foraging algorithm (DBFA),based originally on the BFA for solving an OPF(Optimal

Power Flow) problem in a dynamic environment in which system loads are changing.

He concluded that DBFA can more rapidly adapt to load changes, and more closely

traces the global optimum of the system fuel cost, in comparison with BFA and

particle swarm optimizer.

A.Dhariwal et al. (2004) [28] presented an approach, inspired by bacterial

chemotaxis, for robots to navigate to sources using gradient measurements and a

simple actuation strategy (biasing a random walk). They have showed the efficacy of

the approach in varied conditions including multiple sources, dissipative sources, and

noisy sensors and actuators through extensive simulations.

2.5. HYBDRID AND COMBINATORIAL APPROACH

Several works have been done in the field of path planning for multiple robots

using the PSO and BFA algorithms. But recently, researchers are focussing on hybrid

or combinatorial optimisation techniques [23][29][30], which incorporate two or more

B.Tech. Project Report 2010

Mechanical Engineering Department, N.I.T. Rourkela Page 14

optimisation techniques together in order to avoid several undesirable problems faced

by previous researchers.

 For example PSO is used for global path planning of all the robotic agents in

the workspace. The calculated paths of the robots are further optimized using a

localised BFA optimization technique. This helps in better convergence of results.

 Recently, superior results have been obtained in proportional integral

derivative controller tuning application by using a new algorithm BFOA oriented by

PSO termed BF-PSO. This study conducted by Hai Shen et al. (2009) [29] shows that

BFPSO performs much better than BFOA for almost all test functions.

 A.Biswas et al. [30] has presented an improved variant of the BFOA

algorithm by combining the PSO based mutation operator with bacterial chemotaxis.

The work judiciously uses the exploration and exploitation abilities of the search

space, hence, avoiding undesirable and false convergence. The proposed algorithm

has far better performance than a standalone BFOA at least on the numerical

benchmarks tested.

 Due to robot localization, the system is partially dynamic and information

for fitness evaluation is incomplete and corrupted by noise. Kwok et al. (2006) [23]

applied three evolutionary computing techniques, including genetic algorithms (GA),

particle swarm optimization (PSO) and ants system (AS) to the localization problem.

Their performances are compared based on simulation and experiment results and the

feasibility of the proposed approach to mobile robot localization is demonstrated.

 Our objective is the co-ordination of several robots in a predetermined static

environment. We have applied both PSO for global search and BFA for local optima.

BFA has been used to help in efficient path planning limiting the chances of PSO

getting trapped in the local optima.

B.Tech. Project Report 2010

Mechanical Engineering Department, N.I.T. Rourkela Page 15

CHAPTER 3

B.Tech. Project Report 2010

Mechanical Engineering Department, N.I.T. Rourkela Page 16

Chapter 3

ANALYSIS

3.1.PROBLEM FORMULATION

The sample environment consists of a rectangular space comprising stationary

obstacles about which we have priori knowledge. The environment information

includes the limits of the rectangular workspace and the shape, location and

orientation of all the stationary obstacles in the given workspace. The workspace is

assumed to have no mobile obstacles.

Fig.2. Sample Environment with stationary obstacles

Here the large rectangular unfilled boundary (Fig.2) represents the limits of the

workspace. The solid polygons inside the workspace are the stationary obstacles.

Each robot has a source and a goal point which is given at the start of the problem.

Both the source and goal points lie within the limits of the workspace.

B.Tech. Project Report 2010

Mechanical Engineering Department, N.I.T. Rourkela Page 17

3.2. PARTICLE SWARM OPTIMISATION (PSO)

Particle swarm optimization (PSO) is a method for performing numerical

optimization without explicit knowledge of the gradient of the problem to be

optimized. Developed by Kennedy and Eberhart in 1995 [31], PSO is a population

based stochastic optimization technique inspired by the social behaviour of bird flock

and fish schools As a relatively new evolutionary paradigm, it has grown in the past

decade and many studies related to PSO have been published.

The algorithmic flow in PSO starts with a population of particles whose

positions, that represent the potential solutions for the studied problem, and velocities

are randomly initialized in the search space. The search for optimal position (solution)

is performed by updating the particle velocities, hence positions, in each

iteration/generation in a specific manner follows.

Reynolds in 1987 [32] proposed a behavioural model in which each agent

follows three rules below.

 Separation- Each agent tries to move away from its neighbours if they are too

close.

 Alignment- Each agent steers towards the average heading of its neighbours.

 Cohesion- Each agent tries to go towards the average position of its

neighbours.

Fig.3.Graphical representation of separation, alignment and cohesion.

Kennedy and Eberhart [37] included a ‗roost‘ in a simplified Reynolds-like simulation

http://en.wikipedia.org/wiki/Optimization_%28mathematics%29
http://en.wikipedia.org/wiki/Gradient

B.Tech. Project Report 2010

Mechanical Engineering Department, N.I.T. Rourkela Page 18

so that:

 Each agent was attracted towards the location of the roost.

 Each agent ‗remembered‘ where it was closer to the roost.

 Each agent shared information with its neighbours (originally, all other agents)

about its closest location to the roost.

Fig.4. Graphical representation of Kennedy and Eberhart model.

Eventually, all agents ‗landed‘ on the roost. If the notion of distance to the roost is

changed by an unknown function, the agents will ‗land‘ in the minimum.

3.2.1. Basic Steps in PSO

Step 1. Create a ‗population‘ of agents (called particles) uniformly distributed over X.

Step 2. Evaluate each particle‘s position according to the objective function.

Step 3. If a particle‘s current position is better than its previous best position, update

it.

Step 4. Determine the best particle (according to the particle‘s previous best

positions).

Step 5. Update particles‘ velocities according to

 vij
t
 = wvij

t-1
+ c1r1(pij

t-1
- xij

t-1
) + c2r2(gj

t-1
- xij

t-1
) ……………………………….(1)

Step 6. Move particles to their new positions according to

 xij
t
= xij

t-1
+ vij

t
 ……………………………….(2)

Step 7. Go to step 2 until stopping criteria are satisfied.

B.Tech. Project Report 2010

Mechanical Engineering Department, N.I.T. Rourkela Page 19

The main variants in PSO are inertia (w), personal influence (c1) and social influence

(c2) which refer to the corresponding terms in velocity update equation respectively.

Many improvements have been incorporated into this basic algorithm. One of the

example of such a modification can be seen in [30].

3.2.2. Problem Implementation

Step 1: Link generation takes place i.e. all feasible links from each vertex point,

source and goal to the other vertex points, source and goal are generated.

Step 2: The particles Pi are generated all of particle length zero starting from source

point with no intermediate vertex points. Each particle has a set of intermediate vertex

points given by Cj. The number of intermediate points keeps increasing as the particle

propagates and grows. The length of particle Pi is specified in the variable Li.

Particle Pi C1,C2,...,Ck

Length Li K

Table 1. PSO particle structure

Step 3: The intermediate points are chosen from the set of linked points available to

the source point. The linked point with the lowest objective value is chosen.

2 2() ()g gobjective x x y y   

Where (x,y) it the coordinates of the linked point and (xg,yg) is the coordinates of the

goal.

Step 4: The particle length of each particle increases as intermediate vertex points are

included after the source point of the particle.

Step 5: New intermediate vertex points are added in the same way and the particle

length increases with every addition.

B.Tech. Project Report 2010

Mechanical Engineering Department, N.I.T. Rourkela Page 20

Step 6: When a newly added intermediate point is linked to the goal, the goal point is

added to the path.

Step 7: The process ends.

3.3. BACTERIA FORAGING ALGORITHM

The details of BFA are given in [31]. This algorithm is modeled on the

foraging technique of a group of bacteria which move in search of food and away

from noxious elements — this method is known as foraging. All bacteria try to ascend

the food concentration gradient individually. The food concentration is measured at

the initial location and then a tumble takes place assigning a random direction and

swim for a given fixed distance and measure the concentration there. This tumble and

swim make one chemotactic step. If the concentration is greater at next location then

they take another step in that direction. When the concentration at next location is

lesser that of previous location they tumble to find another direction and swim in this

new direction. For a certain number of steps this process is carried out, which is

limited by the lifetime of the bacteria. At the end of its lifetime the bacteria that have

gathered good health that are in better concentration region divide into two cells. Thus

in the next reproductive step the next generation of bacteria start from a healthy

position. The better half reproduces to generate next generation where as the worse

half dies. This optimization technique enables us to take the variable we want to

optimize as the location of bacteria in the search plane (the plane where the bacteria

can move).

The specifications such as number of reproductive steps, number chemotactic

steps which are consisted of run (or swim) and tumble, swim length, maximum

allowable swims in a particular direction are given for a particular problem then the

variable can be optimized using this Bacteria Foraging Optimization technique.

B.Tech. Project Report 2010

Mechanical Engineering Department, N.I.T. Rourkela Page 21

Chemotaxis: Chemotaxis is achieved through swimming and tumbling. Depending on

the food concentration, it decides whether it should move in a predefined direction

(swimming) or an altogether different direction (tumbling), in the entire lifetime of the

bacterium. A tumble is represented by a unit length random direction, φ(j) say, is

generated; this will be used to define the direction of movement after a tumble. In

particular,

(1, ,) (, ,) () ()i ij k l j k l C i j    

where θ
i
(j, k, l) represents the i

th
 bacterium at j

th
 chemotactic k

th
 reproductive, and i

th

elimination and dispersal step. C(i) represents the size of the step taken in the random

direction. ―C‖ is termed as the ―run length unit‖.

Swarming: It is desired for the bacterium that has searched the optimum path of food

to attract other bacteria to itself so that they reach the desired place rapidly. Swarming

results in congregation of bacteria into groups and hence move as concentric patterns

of groups with high bacterial density. Mathematically, swarming can be represented as

Jcc = 


S

j

ii

cc lkjJ
1

)),,(,(

 =)])(exp([2

1 1

 
 


S

j

p

m

i

mmattractattractd  +)])(exp([2

1 1

 
 


S

j

p

m

i

mmrepellentrepellenth 

Where Jcc (θ, P(j, k, l)) is the cost function value to be added to the actual cost

function to be minimized to present a time varying cost function. ―S‖ is the total

number of bacteria. ―p‖ is the number of parameters to be optimized that are present in

each bacterium. dattract, ωattract, hrepellent, and ωrepellent are different coefficients that are to

be chosen judiciously.

B.Tech. Project Report 2010

Mechanical Engineering Department, N.I.T. Rourkela Page 22

Reproduction: The healthiest bacteria reproduces into two bacteria and the least

health ones die. Therefore the bacteria population remains constant.

Elimination and Dispersal: The life of a population of bacteria changes gradually by

consumption of nutrients or abruptly due to other influences. Such instances can kill or

disperse bacteria present in specific regions.

3.3.1. General Steps of BFA

Following shows the basic BF algorithm as proposed by Passino [31].

 For initialization, we must choose p, S, Nc , Ns , Nre , Ned , ped and the C(i), i = 1,2,K,

S. If we use swarming, we will also have to pick the parameters of the cell-to-cell

attractant functions; here we will use the parameters given above. Also, initial values

for the θ
i
, i = 1,2….,S, must be chosen. Choosing these to be in areas where an

optimum value is likely to exist is a good choice. Alternatively, we may want to

simply randomly distribute them across the domain of the optimization problem. The

algorithm that models bacterial population chemotaxis, swarming, reproduction,

elimination, and dispersal is given here (initially, j = k = l = 0). For

the algorithm, note that updates to the θ
i
 automatically result in updates to P. Clearly,

we could have added a more sophisticated termination test than simply specifying a

maximum number of iterations.

1) Elimination-dispersal loop Process: l = l + 1

2) Reproduction loop Process: k = k + 1

3) Chemotaxis loop Process: j = j + 1

a) For i = 1,2….,S, take a chemotactic step for bacterium

 i as follows.

b) Calculate J(i, j,k,l). Let J(i, j,k,l) = J(i, j,k,l)+ Jcc(θ
i
(j k l), P(j k l)) (i.e., sum up

the cell-to-cell attractant effect to the nutrient concentration).

B.Tech. Project Report 2010

Mechanical Engineering Department, N.I.T. Rourkela Page 23

c) Let Jlast = J(i,j,k,l) to save this value as we might find a better cost during a run.

d) Tumble Process: Generate a random vector Δ(i) ∈ A
p
 with each element Δm(i),m =

1,2...,p, a random number on [−1,1].

e) Move: Let

 θ
i
(j+1, k,l) =θ

i
 (j,k,l) + C (i)* { Δ(i)/ {Δ

T
(i) Δ (i)}

0.5
}

 This results in a step of size C(i) in the direction of the tumble for bacterium i.

f) Calculate J(i, j + 1,k,l), and then let J(i, j + 1,k,l) = J cc(θ
i
(j+1,k ,l), P (j+1,k,l)).

g) Swim (note that we use an approximation since we decide swimming behaviour of

each cell as if the bacteria numbered {1,2…i} have moved and {i + 1,i + 2…S}

have not; this is much simpler to simulate than simultaneous decisions about

swimming and tumbling by all bacteria at the same time):

 i) Let m = 0 (counter for swim length).

 ii) While m< Ns (if have not climbed down too long)

 • Let m = m+ 1.

 • If J(i, j + 1,k,l) < Jlast (if doing better), let

 Jlast = J (i,j+1, k,l) and let

 θ
i
(j+1,k,l)= θ

i
(j+1,k,l) + C (i)* { Δ(i)/ {Δ

T
(i) Δ (i)}

0.5
}

 and use this θ
i
(j+1,k,l) to compute the new J(i, j + 1,k,l) as we did in (f).

 • Else, let m= Ns

 This is the end of the while statement.

h) Move to next bacterium (i + 1) if i ≠ S (i.e., go to b) for processing the next

bacterium).

4) If j < Nc, go to step 3. In this case, chemotaxis continues, as the life of the bacteria

is not complete.

5) Reproduction phase:

a) For the given k and l, and for each i = 1,2…S, let

B.Tech. Project Report 2010

Mechanical Engineering Department, N.I.T. Rourkela Page 24

J
i
health = 



cN

j

lkjiJ
1

),,,(be the overall health of the bacterium i (a measure of the

content of nutrients it had got over its lifetime and how able it was at avoiding noxious

substances). Arrange bacteria and chemotactic parameters C(i) in ascending order of

cost Jhealth (higher cost means lower health).

b) The Sr bacteria with the highest Jhealth values die and the other Sr bacteria with the

best values reproduce (and the copies that are made are placed along side their parent).

6) If k < Nre , go to step 2. In this case, as we have not reached the specified number of

reproduction steps, we start the next generation in the chemotactic loop.

7) Elimination-dispersal Phase: For i = 1, 2…S, with probability ped , will eliminate

and disperse each bacterium (this keeps the the population of the bacteria constant).

On eliminating a bacterium, simply disperse a new one to a random location on the

problem domain.

8) If l < Ned , then go to step 1; otherwise end.

3.3.2. Problem Implementation

Step 1: The number of control points per PSO output path line segment v is pre-

determined by the user and are represented as Cijk.

Where C refers to the control point and the index i,j and k refer to the corresponding

particle, segment and control point respectively.

Step 2: v control points are included into the pso output line segment such that each

point is equally spaced and lies on the line segment.

Step 3: b number of bacteria Bj are generated are randomly generated each having the

whole set of control points. The particle structure is as shown below:-

B.Tech. Project Report 2010

Mechanical Engineering Department, N.I.T. Rourkela Page 25

 Segment 1 Segment 2 Segment n

Bacteria B1 C111,C112,...,C11v C121,C122,...,C12v C1n1,C1n2,...,C1nv

Bacteria B 2

..........

Bacteria B b Cb11,Cb12,...,Cb1v Cbn1,Cbn2,...,Cbnv

Table 2. BFA particle structure

Step 4: Each control point is allowed to move freely in eight possible directions

(north,south,east,west,north-east,south-east,north-west and south-west) which

correspond to the eight neighbourhood pixels of any point on screen respectively as

shown below. This phase is called swimming phase.

North-West North

 North- East

West
East

South-West South South-East

Fig.5. Possible Directions

Step 5: If the objective value of the particle decreases, the control points continue to

move in the same direction. If the objective value increases, the last movement of the

bacteria is retraced and a random direction from the available eight is chosen for the

bacteria to move.

Step 6: This repeats till the life-time of the bacteria gets completed. Each bacteria

movement constitutes one life-time unit. N life-time units comprise of a life-time of

the bacteria.

Step 7: Next to the swimming phase is the swarming phase. Here the best bacterium

among the lot is found out. All the other bacteria tend to move towards this best

B.Tech. Project Report 2010

Mechanical Engineering Department, N.I.T. Rourkela Page 26

bacterium. The corresponding control points between each bacterium and the best

bacteria are compared and the control point of each bacterium is forced to swim

towards the corresponding control point of the best bacterium. The number of swims

in this phase is determined by the swarming life of each bacterium which is given by

N‘.

Step 8: The next phase is the reproduction phase where all the bacteria are first

arranged in the ascending order of their objective values. The number of reproducing

bacteria and number of offsprings per reproducer is determined by the relations:-

_

_
/

reproducers reproducers ratio Population

offsprings ratio Population
offsprings reproducer

reproducers

 




The best bacteria on the top of the stack of bacterium are chosen as reproducers. Each

parent bacterium gives raise to the calculated number of offsprings. These offsprings

replace the worst bacteria from the bottom of the stack with high objective values.

Step 9: Termination conditions are checked in this step. If any of the conditions are

satisfied, the iteration terminates. If the program reaches the maximum number of

termination iterations specified, the program terminates. Otherwise if the objective

value of the global best bacterium does not vary for the specified number of repetition

iterations, the iterations terminate.

B.Tech. Project Report 2010

Mechanical Engineering Department, N.I.T. Rourkela Page 27

CHAPTER 4

B.Tech. Project Report 2010

Mechanical Engineering Department, N.I.T. Rourkela Page 28

 Chapter 4

RESULTS AND DISCUSSIONS

A hybrid PSO algorithm incorporating underlying procedures of potential field

method has been successfully implemented to act as a path planning algorithm for

coordinating multiple robots. The algorithm has been extensively tested on a variety

of sample environments taken from literature. A sample environment is shown here in

fig 6.

Fig.6. Sample Environment

Here the rectangular unfilled boundary signifies the limits of the workspace

within which the robots can move. The blue solid polygons are stationary obstacles in

the environment. The position, orientation and shape of the obstacle in the

environment are input to the robot prior to its working in the workspace. The green

points specify the starting points of robots. Since we are using two robots in this

example, we have two starting points labelled S1 and S2. The red point labelled G is

the specified destination for both the robots.

S1
S2

G

B.Tech. Project Report 2010

Mechanical Engineering Department, N.I.T. Rourkela Page 29

When modified PSO incorporating potential field is applied to solve this

illustrated problem in fig 6. The results given by the algorithm are shown in fig 7. The

solid black lines shown in fig 7 show the path given by the PSO algorithm. Here

clearly the path calculated by PSO in fig 7 is seen to be a string of line segments

between the source, goal and vertex points of the obstacles. When BFA is applied over

the path calculated by PSO as input to it, it gives a further optimized path which can

be seen in fig 8. Here the red line in fig 8 is the BFA‘s calculated path and the orange

dots are the BFA control points of the path. The path consists of line segments

connecting these control points.

 Fig.7. PSO calculated path Fig.8. BFA calculated path

The different PSO+BFA parameters used are:-

Number of Particles: 10

Number of Bacteria: 10

Step Length: 1

Number of Directions: 8

Life Time of Bacteria: 5

Swarming Life of Bacteria: 2

S1 S1
S2 S2

G G

B.Tech. Project Report 2010

Mechanical Engineering Department, N.I.T. Rourkela Page 30

Reproducers Ratio: 0.3

Offsprings Ratio: 0.4

Termination Iteration: 2000

Repetition Iteration: 500

Control Points/Segment: 12

It is clearly visible that the path obtained when BFA is applied over PSO is far

better than the path obtained only by PSO. Fig 9 clearly illustrates this fact. The PSO

path is shown by a black line and BFA by a red line. The BFA algorithm had

delocalised itself from the previous intermediate vertex points of the PSO path and

gives a close to smooth curve rather than straight lines. The increase in the number of

intermediate points between the PSO and PSO+BFA algorithm in turn raises the

degrees of freedom of the path contour which has been profitably exploited to give a

path of greater accuracy. The numerical values of the length of the path calculated by

PSO and PSO+BFA (in units) are shown in Table 3. The length of the path calculated

again as shown in Table 1 clearly shows the superiority of PSO+BFA over PSO alone.

Fig.9. PSO and BFA path comparison

S1
S2

G

B.Tech. Project Report 2010

Mechanical Engineering Department, N.I.T. Rourkela Page 31

 Robot 1 Robot 2

PSO 443.9 296.5

PSO+BFA 430.7 387.5

Table 3. Optimum Path Length comparision between PSO and PSO+BFA

Visual Studio 2008 was used to develop the simulation. The programming language

used was Visual C++. The simulation was run on a Pentium IV processor computer.

The algorithm can support any number of robots with each robot having its

own source and goal. The optimum path calculated by this PSO+BFA algorithm can

be profitable used for coordinating multiple robots in real-time industrial

environments where there are pre-determined known obstacles in the workspace. A

reduction in the length of the path travelled by robots directly translates into saving in

cost and time. An army of general purpose mobile robots can efficiently function by

coordinating among themselves to complete specialized tasks which would otherwise

require dedicated specialized robots. Furthermore coordination among these general

purpose robots will reduce the need of specialized robots leading to great savings in

cost to industry and efficient utilization of the resources of available in workspace.

B.Tech. Project Report 2010

Mechanical Engineering Department, N.I.T. Rourkela Page 32

CHAPTER 5

B.Tech. Project Report 2010

Mechanical Engineering Department, N.I.T. Rourkela Page 33

Chapter 5

CONCLUSION

This project illustrates that the PSO algorithm based on potential field

principles performs well in combinatorial optimization problems where a sequential

combination of vertex points of obstacles constitute the path. This method of using a

collection of vertex points as domain for the path restricts the solution space from the

whole non-obstacle free space containing uncountable points to a discrete set of

points. This drastic reduction in the problem domain points reduces the optimization

time and computational resources required. But the reduction in the number of domain

points compromises the optimum path calculated as the path generated by the PSO

algorithm is in most cases not an optimum path but a path of lesser accuracy. To

overcome this problem, BFA has been implemented over PSO and the results are

found to have improved by a considerable extent. Now the intermediate points which

were previously restricted to the vertices of the obstacles in the PSO algorithm are

delocalised by the BFA control points, a specific number of which are included

between each PSO path segment. The results of this PSO+BFA combine are shown to

perform better than PSO alone.

PSO has a high convergence speed but is found to suffer in terms of accuracy.

On the other hand BFA is a highly structured algorithm that has a poor convergence

speed but high accuracy. A combination of PSO+BFA is hence endowed with high

convergence speed and commendable accuracy. This can be otherwise stated as the

PSO performing a global search and providing a near optimal path very quickly which

is followed by a local search by BFA which fine-tunes the path and gives an optimum

path of high accuracy. PSO has an inherent disability of trapping in the local optima

but high convergence speed whereas BFA has the drawback of having a very poor

convergence speed but the ability to not trap in the local optima. The PSO+BFA

B.Tech. Project Report 2010

Mechanical Engineering Department, N.I.T. Rourkela Page 34

combine gets the best of the both individual algorithms by having a good convergence

speed and overcomes the disability of trapping in the local optima.

A mutation operator can be implemented with PSO to further enhance its

accuracy and avoid it from trapping in the local optima. A similar dispersal operator

when added to BFA will enhance its accuracy and efficiency. The same problem can

be further extended to an environment with mobile obstacles. In that case online path

planning has to be incorporated along with the offline algorithm with suitable sensors

mainly ultrasonic, LIDAR, camera, proximity sensors, etc. to detect the position and

location of the mobile obstacles. Localisation sensors will be required for both offline

and online path-planning. Localisation and online path planning together will

constitute Simultaneous Localisation and Mapping Algorithms (SLAM). Extensive

research work in SLAM and related algorithms can be developed while implementing

this code in robots in real-time. The robots will be capable of working in

environments with priori-knowledge like shop-floor and unknown environments like

open terrain.

B.Tech. Project Report 2010

Mechanical Engineering Department, N.I.T. Rourkela Page 35

REFERENCES

[1] Kurt Derr and Milos Manic, Multi-Robot, Multi-Target Particle Swarm
Optimization Search in Noisy Wireless Environments”, Catania, Italy, May 21-23,
2009.
[2] W. Sheng, QingyanYang, Jindong Tan, Ning Xid, “Distributed multi-robot
coordination in area exploration”, Robotics and Autonomous Systems 54 (2006) 945–
955.
[3] Maren Bennewitz, Wolfram Burgard, Sebastian Thrun, “Finding and optimizing

solvable priority schemes for decoupled path planning techniques for teams of mobile

robots”, Robotics and Autonomous Systems, Volume 41, Issues 2-3, 30 November

2002,Pages89-99.

[4] J. Latombe, ―Robot Motion Planning”, Kluwer Academic.

[5] J.Kennedy and Eberhart R.C., “Particle swarm optimization”, Proc. IEEE
International Conference on Neural Networks, IV, Piscataway, NJ, pp. 1942-
1948,1995.

[6] Craig W. Reynolds, “Flocks, herds, and schools: A distributed behavioral model‖,

ACM Computer Graphics, 21(4):25–34, 1987.

[7] Sanmay Satpathy, “Controling of mobile agents using intelligent strategy”, NIT
Rourkela 2009.

[8] Brian Yamauchi, “Frontier-Based Exploration Using Multiple Robots‖, Navy

Center for Applied Research in Artificial Intelligence.

[9] Dayal Ramakrushna Parhi, Saroj Kumar Pradhan, Anup Kumar Panda, Rabindra

Kumar Behera, “The stable and precise motion control for multiple mobile robots”,

Applied Soft Computing 9 (2009) 477–487.

[10] R. Grabowski, L. Navarro-Serment, C. Paredis and P. Khosla, “Heterogeneous

teams of modular robots for mapping and exploration‖, Journal of Autonomous

Robots 8 (2000) (3), pp. 293–308.

[11] R. Simmons, D. Apfelbaum, W. Burgard, D. Fox, S. Thrun, H. Younes,

“Coordination for multi-robot exploration and mapping”, Proceedings of the National

Conference on Artificial Intelligence, 2000.

[12] B.P. Gerkey, M.J. Mataric, “Sold Auction methods for multirobot coordination”,

IEEE Transactions on Robotics and Automation 18 (2002) (5), pp. 758–768

[13] P. Svestka, M.H. Overmars, “Coordinated path planning for multiple robots‖,

Robotics and Autonomous Systems 23 (1998) 125-152.

[14] J. Hopcroft, J.T. Schwartz, M. Sharir, “Complexity of motion planning for

multiple independent objects-PSPACE-hardness of the warehouseman's problem‖,

International Journal of Robotics Research 3 (4) (1984) 76--88.

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V16-4619MGR-1&_user=1657113&_coverDate=11%2F30%2F2002&_alid=1327749677&_rdoc=2&_fmt=high&_orig=search&_cdi=5666&_sort=r&_docanchor=&view=c&_ct=82293&_acct=C000053917&_version=1&_urlVersion=0&_userid=1657113&md5=141df476dd102fc6ecbc526c8522f71e
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V16-4619MGR-1&_user=1657113&_coverDate=11%2F30%2F2002&_alid=1327749677&_rdoc=2&_fmt=high&_orig=search&_cdi=5666&_sort=r&_docanchor=&view=c&_ct=82293&_acct=C000053917&_version=1&_urlVersion=0&_userid=1657113&md5=141df476dd102fc6ecbc526c8522f71e
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V16-4619MGR-1&_user=1657113&_coverDate=11%2F30%2F2002&_alid=1327749677&_rdoc=2&_fmt=high&_orig=search&_cdi=5666&_sort=r&_docanchor=&view=c&_ct=82293&_acct=C000053917&_version=1&_urlVersion=0&_userid=1657113&md5=141df476dd102fc6ecbc526c8522f71e

B.Tech. Project Report 2010

Mechanical Engineering Department, N.I.T. Rourkela Page 36

[15] M.D. Ardema, J.M. Skowronski, “Dynamic game applied to coordination control

of two arm robotic system”, R.P. Hamalainen. H.K. Ehtamo (Eds.), Differential

Games - Developments in Modelling and Computation, Springer, Berlin, 1991, pp.

118-130.

[16] P. Tournassoud, “A strategy for obstacle avoidance and its application to multi-

robot systems”, Proceedings of the IEEE International Conference on Robotics and

Automation, San Francisco, CA, USA, 1986, pp. 1224-1229.

 [17] J. Barraquand, B. Langois and J.C. Latombe, “Numerical potential field

techniques for robot path planning”, IEEE Transactions on Robotics and Automation,

Man and Cybernetics 22 2 (1992), pp. 224.

[18] M. Erdmann and T. Lozano-Perez, “On multiple moving objects‖, Algorithmica

2 (1987), pp. 477–521.

[19] C.Ferrari, E.Pagello, J. Ota and T.Arai , “Multirobot motion coordination in

space and time”, Robotics and Autonomous Systems 25 (1998), pp. 219–229.

[20] Z. Bien and J. Lee, “A minimum-time trajectory planning method for two robots”

IEEE Transactions on Robotics and Automation 8 3 (1992), pp. 414–418.

[21] Poli, R., "An analysis of publications on particle swarm optimisation

applications", Technical Report CSM-469 (Department of Computer Science,

University of Essex, UK). (2007).

[22] Ray, R.N., Chatterjee, D., Gowami, S.K., “A PSO based Optimal Switching

Technique for Voltage Harmonic Reduction of Multilevel Inverter”, Expert Systems

with Applications (2010)

[23] N.M. Kwok et al., “Evolutionary computing based mobile robot localization”,

Engineering Applications of Artificial Intelligence 19 (2006) 857–868

[24] A. Atyabi et al., “Navigating a robotic swarm in an uncharted 2D landscape”,

Applied Soft Computing 10 (2010) 149–169

[25] Passino, K. M., “Biomimicry of bacterial foraging for distributed optimization

and control,” , IEEE Control Systems Magazine, Vol. 22, No. 3, 52–67, June 2002.

[26] T. Datta et al. “Improved Adaptive Bacteria Foraging Algorithm In Optimization

Of Antenna Array For Faster Convergence”, Progress In Electromagnetics Research

C, Vol. 1, 143–157, 2008

[27] Tang W.J. et al. “Bacterial Foraging Algorithm for Optimal Power Flow in

Dynamic Environments”, IEEE Transactions On Circuits And Systems—I: Regular

Papers, Vol. 55, No. 8, September 2008.

[28] Dhariwal, Amit et al., “Bacterium-inspired Robots for Environmental

Monitoring”, lnterrnational Conference on Robotics and Automation New Orleans.

LA, 2004

http://cswww.essex.ac.uk/technical-reports/2007/tr-csm469.pdf
http://cswww.essex.ac.uk/technical-reports/2007/tr-csm469.pdf

B.Tech. Project Report 2010

Mechanical Engineering Department, N.I.T. Rourkela Page 37

[29] Hai Shen, Yunlong Zhu, Xiaoming Zhou, Haifeng Guo, Chunguang Chang;

“Bacterial Foraging Optimization Algorithm with Particle Swarm Optimization

Strategy for Global Numerical Optimization”; 2009, Shanghai, China.

 [30] Arijit Biswas, Sambarta Dasgupta, Swagatam Das, Ajith Abraham, ―Synergy of

PSO and Bacterial Foraging Optimization –A Comparative Study on Numerical

Benchmarks”, Innovations in Hybrid Intelligent Systems, ASC 44, pp. 255–263, 2007.

[31] J.Kennedy and Eberhart R.C., “Particle swarm optimization”, Proc. IEEE
International Conference on Neural Networks, IV, Piscataway, NJ, pp. 1942-
1948,1995.

[32]Craig W. Reynolds, “Flocks, herds, and schools: A distributed behavioral

model‖, ACM Computer Graphics, 21(4):25–34, 1987.

[33] Jeff Prosise, ―Programming Windows with MFC”, Microsoft Press.

B.Tech. Project Report 2010

Mechanical Engineering Department, N.I.T. Rourkela Page 38

APPENDIX

SOURCE CODE

A hybrid robot navigation application in Visual C++ has been which integrates PSO and BFA

for optimization and path planning. Microsoft Foundation Class (MFC) is used for creating

the graphics features of the application.

a. Data Structure(STRUCTURES.h)

b. MFC Classes(HELLO.h)

c. MFC Application Initialiser(HELLO.cpp)

d. Map class(MAP.h)

e. Map information(MAP.cpp)

f. PSO class(PSO.h)

g. PSO path optimization(PSO.cpp)

h. BFA Class(BFA.h)

i. BFA Path Optimisation(BFA.cpp)

j. Geometry class(GEOMETRY.h)

k. Geometry of obstacles(GEOMETRY.cpp)

l. Graphics Classes(DRAW.h)

m. Graphics Functions(DRAW.cpp)

n. Map Data(MAP.txt)

o. Source Goal Data(SOUCE GOAL.txt)

B.Tech. Project Report 2010

Mechanical Engineering Department, N.I.T. Rourkela Page 39

/**

Project:Multi-Robot Coordination using Swarm Intelligence and Bacteria Foraging

File: STRUCTURS.h

Intent: Data structures

**/

#ifndef _STRUCTURES_H

#define STRUCTURES_H

#pragma once

#define ZERO 0.01

#define TOTAL_OBSTACLES 100

#define TOTAL_VERTEX 6

#define TOTAL_CONTROL_PTS 12

#define TOTAL_PARTICLES 1

#define TOTAL_ROBOTS 2

#define TOTAL_BACTERIA 10

#define EDGES 10

#define X_OFFSET 100

#define Y_OFFSET 100

#define BOUNDING_CIRCLE_RADIUS 5

#define DOUBLE_WIDTH 2

#define STEP_LENGTH 1

#define LIFE_TIME 5

#define DIRECTIONS_NO 8

#define TERMINATE_ITER 2000

#define REPEAT_ITER 500

#define SWARMING_LIFE 2

#define REPRODUCERS_NO 0.3

#define OFFSPRINGS_NO 0.4

struct COORDINATE

{

 float x;

 float y;

};

struct LINE

{

 float a;

 float m;

 float c;

};

B.Tech. Project Report 2010

Mechanical Engineering Department, N.I.T. Rourkela Page 40

struct VERTEX

{

 float x;

 float y;

 bool link[TOTAL_OBSTACLES][TOTAL_VERTEX];

 COORDINATE cluster_centroid;

};

struct OBSTACLE

{

 int vertex_nos;

 VERTEX point[TOTAL_VERTEX];

 LINE line[TOTAL_VERTEX];

};

struct CPOSITION

{

 int obstacle;

 int vertex;

};

struct PARTICLE

{

 CPOSITION position[TOTAL_OBSTACLES*TOTAL_VERTEX];

 int length;

 double fitness;

};

enum DIRECTION

{

 N,NE,E,SE,S,SW,W,NW,NIL

};

struct BACTERIA_PTS

{

 float x;

 float y;

 DIRECTION dir;

};

struct PATH_SEGMENTS

{

B.Tech. Project Report 2010

Mechanical Engineering Department, N.I.T. Rourkela Page 41

 BACTERIA_PTS ctrl_pts[TOTAL_CONTROL_PTS];

};

struct BACTERIUM

{

 PATH_SEGMENTS segment[TOTAL_OBSTACLES*TOTAL_VERTEX];

 int segments_no;

 float fitness;

};

#endif

B.Tech. Project Report 2010

Mechanical Engineering Department, N.I.T. Rourkela Page 42

/**

Project:Multi-Robot Coordination using Swarm Intelligence and Bacteria Foraging

File: Hello.h

Intent: MFC Classes

**/

class CMyApp : public CWinApp

{

public:

 virtual BOOL InitInstance ();

};

class CMainWindow : public CFrameWnd

{

public:

 CMainWindow ();

protected:

 afx_msg void OnPaint ();

 DECLARE_MESSAGE_MAP ()

};

B.Tech. Project Report 2010

Mechanical Engineering Department, N.I.T. Rourkela Page 43

/**

Project:Multi-Robot Coordination using Swarm Intelligence and Bacteria Foraging

File: Hello.cpp

Intent: MFC Application Initializer

**/

#include <afxwin.h>

#include "Hello.h"

#include <iostream>

using namespace std;

#include "MAP.h"

#include "PSO.h"

#include "DRAW.h"

#include "BFA.h"

MAP map;

PSO pso;

BFA bfa;

CMyApp myApp;

BOOL CMyApp::InitInstance ()

{

 m_pMainWnd = new CMainWindow;

 m_pMainWnd->ShowWindow (SW_SHOWMAXIMIZED);

 m_pMainWnd->UpdateWindow ();

 return TRUE;

}

BEGIN_MESSAGE_MAP (CMainWindow, CFrameWnd)

 ON_WM_PAINT ()

END_MESSAGE_MAP ()

CMainWindow::CMainWindow ()

{

 Create (NULL, _T ("Robo

Navigator"),WS_OVERLAPPEDWINDOW|WS_VSCROLL);

}

void CMainWindow::OnPaint ()

{

 DRAW my_app;

B.Tech. Project Report 2010

Mechanical Engineering Department, N.I.T. Rourkela Page 44

 int k;

 CPaintDC dc (this);

 map.map_data();

 pso.pso_entry();

 pso.pso_start();

 bfa.bfa_initialize();

 bfa.bfa_life_cycle();

 my_app.draw_boundary(&dc);

 my_app.draw_obstacles(&dc);

 for(k=0;k<TOTAL_ROBOTS;k++)

 {

 my_app.draw_pso_path(&dc,k);

 my_app.draw_bfa_path(&dc,k);

 //my_app.draw_control_pts(&dc,k);

 my_app.draw_source_goal(&dc,k);

 }

 //CRect rect;

 //GetClientRect (&rect);

 //dc.DrawText (_T ("Hello, MFC"), -1, &rect,

 //DT_SINGLELINE | DT_CENTER | DT_VCENTER);

}

/*void CMainFrame::OnSysCommand(UINT nID, LPARAM lParam)

{

 UINT cmd = nID & 0xFFF0;

 if(cmd == SC_RESTORE || cmd == SC_MOVE)

 return;

 CFrameWnd::OnSysCommand(nID, lParam);

}*/

B.Tech. Project Report 2010

Mechanical Engineering Department, N.I.T. Rourkela Page 45

/**

Project:Multi-Robot Coordination using Swarm Intelligence and Bacteria Foraging

Intent: Map information Class

**/

#ifndef _MAP_H

#define _MAP_H

#pragma once

#include "STRUCTURES.h"

class MAP

{

public:

 MAP();

 void map_data();

 void map_entry();

 void map_cluster();

 void map_cluster_centroid();

 int obstacle_nos;

 OBSTACLE obstacle[TOTAL_OBSTACLES];

 COORDINATE limits[4];

};

#endif

B.Tech. Project Report 2010

Mechanical Engineering Department, N.I.T. Rourkela Page 46

/**

Project:Multi-Robot Coordination using Swarm Intelligence and Bacteria Foraging

File: MAP.cpp

Intent: Map information

**/

#include <iostream>

#include <fstream>

using namespace std;

#include "MAP.h"

#include "STRUCTURES.h"

#include "GEOMETRY.h"

extern MAP map;

MAP :: MAP()

{

 int i,j,m,n;

 obstacle_nos=0;

 for(i=0;i<TOTAL_OBSTACLES;i++)

 {

 obstacle[i].vertex_nos=0;

 for(j=0;j<TOTAL_VERTEX;j++)

 {

 obstacle[i].point[j].x=0;

 obstacle[i].point[j].y=0;

 for(m=0;m<TOTAL_OBSTACLES;m++)

 {

 for(n=0;n<TOTAL_VERTEX;n++)

 {

 obstacle[i].point[j].link[m][n]=false;

 }

 }

 obstacle[i].line[j].a=0;

 obstacle[i].line[j].m=0;

 obstacle[i].line[j].c=0;

 }

 }

 for(i=0;i<4;i++)

 {

B.Tech. Project Report 2010

Mechanical Engineering Department, N.I.T. Rourkela Page 47

 limits[i].x=0;

 limits[i].y=0;

 }

}

void MAP :: map_data()

{

 map.map_entry();

 map.map_cluster();

 map.map_cluster_centroid();

}

void MAP :: map_entry()

{

 ifstream fp;

 int i,j,k;

 cout<<"Reading map information from text file...\n";

 fp.open("map.txt",ios::in);

 if(!fp)

 {

 cout<<"FATAL ERROR : UNABLE TO READ FROM INPUT FILE

MAP.TXT";

 exit(0);

 }

 fp>>obstacle_nos;

 //fscanf(fp,"%d",&obstacle_nos);

 for(i=0;i<obstacle_nos;i++)

 {

 fp>>obstacle[i].vertex_nos;

 for(j=0;j<obstacle[i].vertex_nos;j++)

 {

 fp>>obstacle[i].point[j].x>>obstacle[i].point[j].y;

 }

 for(j=0;j<obstacle[i].vertex_nos;j++)

 {

 if(j+1==obstacle[i].vertex_nos)

 k=0;

 else

 k=j+1;

 obstacle[i].line[j]=line_eqn(i,j,i,k);

 }

 }

B.Tech. Project Report 2010

Mechanical Engineering Department, N.I.T. Rourkela Page 48

 for(i=0;i<4;i++)

 {

 fp>>limits[i].x>>limits[i].y;

 }

}

void MAP :: map_cluster()

{

 int i,j,m,n;

 for(i=0;i<obstacle_nos;i++)

 {

 for(j=0;j<obstacle[i].vertex_nos;j++)

 {

 if(j+1==obstacle[i].vertex_nos)

 obstacle[i].point[j].link[i][0]=true;

 else

 obstacle[i].point[j].link[i][j+1]=true;

 if(j-1<0)

 obstacle[i].point[j].link[i][obstacle[i].vertex_nos-1]=true;

 else

 obstacle[i].point[j].link[i][j-1]=true;

 for(m=0;m<obstacle_nos;m++)

 {

 if(m==i) continue;

 for(n=0;n<obstacle[m].vertex_nos;n++)

 {

 if(!intersect(i,j,m,n))

 obstacle[i].point[j].link[m][n]=true;

 }

 }

 }

 }

}

void MAP :: map_cluster_centroid()

{

 int i,j,m,n,no;

 float sum_x,sum_y;

 for(i=0;i<map.obstacle_nos;i++)

 {

 for(j=0;j<map.obstacle[i].vertex_nos;j++)

B.Tech. Project Report 2010

Mechanical Engineering Department, N.I.T. Rourkela Page 49

 {

 sum_x=0;

 sum_y=0;

 no=0;

 for(m=0;m<map.obstacle_nos;m++)

 {

 for(n=0;n<map.obstacle[m].vertex_nos;n++)

 {

 if(map.obstacle[i].point[j].link[m][n])

 {

 sum_x+=map.obstacle[m].point[n].x;

 sum_y+=map.obstacle[m].point[n].y;

 no++;

 }

 }

 }

 map.obstacle[i].point[j].cluster_centroid.x=sum_x/no;

 map.obstacle[i].point[j].cluster_centroid.y=sum_y/no;

 }

 }

}

B.Tech. Project Report 2010

Mechanical Engineering Department, N.I.T. Rourkela Page 50

/**

Project:Multi-Robot Coordination using Swarm Intelligence and Bacteria Foraging

File: PSO.h

Intent: Particle Swarm Optimization Class

**/

#ifndef _PSO_H

#define _PSO_H

#pragma once

#include "STRUCTURES.h"

class PSO

{

public:

 PSO();

 void pso_entry();

 void pso_start();

 void pso_mutate(PARTICLE&);

 bool pso_propagate(PARTICLE&,int);

 double pso_objective(VERTEX&,VERTEX&);

 bool pso_initialize(PARTICLE&,int);

 double pso_degenerate_obj(VERTEX&,VERTEX&,int);

 bool pso_repetition(PARTICLE&,int,int);

 void print_path(PARTICLE&);

 void pso_fitness_calc();

 PARTICLE particle[TOTAL_ROBOTS][TOTAL_PARTICLES];

 PARTICLE gbest[TOTAL_ROBOTS];

 bool path_complete[TOTAL_ROBOTS];

 VERTEX source[TOTAL_ROBOTS],goal[TOTAL_ROBOTS];

};

#endif

B.Tech. Project Report 2010

Mechanical Engineering Department, N.I.T. Rourkela Page 51

/**

Project:Multi-Robot Coordination using Swarm Intelligence and Bacteria Foraging

File: PSO.cpp

Intent: Particle Swarm Optimization

***/

#include <iostream>

#include <fstream>

#include <math.h>

#include<windows.h>

using namespace std;

//#using <mscorlib.dll>

//using namespace System;

//#include<msclr\marshal.h>

//using namespace msclr::interop;

#include "MAP.h"

#include "PSO.h"

#include "GEOMETRY.h"

//#include "STRUCTURES.h"

extern MAP map;

//DWORD lpdwProcessList,dwProcessCount;

PSO :: PSO()

{

 int i,j,k;

 for(k=0;k<TOTAL_ROBOTS;k++)

 {

 for(i=0;i<TOTAL_PARTICLES;i++)

 {

 for(j=0;j<TOTAL_OBSTACLES*TOTAL_VERTEX;j++)

 {

 particle[k][i].position[j].obstacle=-1;

 particle[k][i].position[j].vertex=-1;

 }

 particle[k][i].length=0;

 particle[k][i].fitness=0;

 }

 for(i=0;i<TOTAL_OBSTACLES*TOTAL_VERTEX;i++)

 {

 gbest[k].position[i].obstacle=-1;

B.Tech. Project Report 2010

Mechanical Engineering Department, N.I.T. Rourkela Page 52

 gbest[k].position[i].vertex=-1;

 }

 gbest[k].length=0;

 gbest[k].fitness=0;

 path_complete[k]=false;

 }

}

void PSO ::pso_entry()

{

 ifstream indata_source_goal;

 indata_source_goal.open("source goal.txt",ios::in);

 int i,j,k,robots_no=0;

 while(!indata_source_goal.eof())

 {

 indata_source_goal>>source[robots_no].x>>source[robots_no].y>>goal[robots

_no].x>>goal[robots_no].y;

 robots_no++;

 }

 if(robots_no!=TOTAL_ROBOTS)

 {

 cout<<"Number of Robots and Data mismatch"<<endl;

 getchar();

 }

 /*marshal_context console_read;

 AllocConsole();

 //GetConsoleProcessList(&lpdwProcessList,dwProcessCount);

 Console::Write("\nEnter the source and the goal point\n");

 Console::Write("Source x,y\n");

 source.x=(float)atof(console_read.marshal_as<const

char*>(Console::ReadLine()));

 source.y=(float)atof(console_read.marshal_as<const

char*>(Console::ReadLine()));

 Console::Write("Goal x,y\n");

 goal.x=(float)atof(console_read.marshal_as<const

char*>(Console::ReadLine()));

 goal.y=(float)atof(console_read.marshal_as<const

char*>(Console::ReadLine()));*/

 /*cout<<"\nEnter the source and the goal point\n";

 cout<<"Source x,y\n";

 cin>>source.x>>source.y;

B.Tech. Project Report 2010

Mechanical Engineering Department, N.I.T. Rourkela Page 53

 cout<<"Goal x,y\n";

 cin>>goal.x>>goal.y;*/

 for(k=0;k<robots_no;k++)

 {

 if(inside_polygon_check(source[k].x,source[k].y) ||

 inside_polygon_check(goal[k].x,goal[k].y))

 {

 cout<<"Invalid Source Goal point(inside obstacles)"<<endl;

 getchar();

 }

 }

 for(i=0;i<map.obstacle_nos;i++)

 {

 for(j=0;j<map.obstacle[i].vertex_nos;j++)

 {

 for(k=0;k<robots_no;k++)

 {

 source[k].link[i][j]=!intersect(source[k].x,source[k].y,i,j);

 goal[k].link[i][j]=!intersect(goal[k].x,goal[k].y,i,j);

 }

 }

 }

 //FreeConsole();

 indata_source_goal.close();

}

void PSO :: pso_start()

{

 int i,j,k,counter=0;

 //AllocConsole();

 //AttachConsole(lpdwProcessList);

 for(j=0;j<TOTAL_ROBOTS;j++)

 {

 if(!intersect(source[j].x,source[j].y,goal[j].x,goal[j].y))

 {

 path_complete[j]=true;

 //cout<<"\nSource Goal Straight Line\n";

 //getchar();

 //FreeConsole();

 //return;

 }

 }

B.Tech. Project Report 2010

Mechanical Engineering Department, N.I.T. Rourkela Page 54

 for(j=0;j<TOTAL_ROBOTS;j++)

 {

 for(i=0;i<TOTAL_PARTICLES;i++)

 {

 if(path_complete[j])

 continue;

 if(pso_initialize(particle[j][i],j))

 {

 //AllocConsole();

 //cout<<"\nPath found";

 //getchar();

 //FreeConsole();

 gbest[j]=particle[j][i];

 print_path(particle[j][i]);

 path_complete[j]=true;

 //return;

 }

 }

 }

 for(k=0;k<TOTAL_ROBOTS;k++)

 {

 if(path_complete[k])

 continue;

 while(1)

 {

 counter++;

 if(counter>TERMINATE_ITER)

 {

 //cout<<"\nUnable to find path";

 counter=0;

 //getchar();

 //FreeConsole();

 //return;

 break;

 }

 for(i=0;i<TOTAL_PARTICLES;i++)

 {

 if(pso_propagate(particle[k][i],k))

 {

 //cout<<"\nPath found";

B.Tech. Project Report 2010

Mechanical Engineering Department, N.I.T. Rourkela Page 55

 //getchar();

 //FreeConsole();

 gbest[k]=particle[k][i];

 print_path(particle[k][i]);

 path_complete[k]=true;

 //return;

 }

 }

 if(path_complete[k])

 break;

 }

 }

 pso_fitness_calc();

}

void PSO :: pso_mutate(PARTICLE& ptcle)

{

}

bool PSO :: pso_propagate(PARTICLE& ptcle, int k)

{

 int obs,vert,obs1,vert1,i,j,init=0;

 double obj,temp_obj;

 bool rep;

 CPOSITION temp;

 bool propagate=false;

 obs=ptcle.position[ptcle.length-1].obstacle;

 vert=ptcle.position[ptcle.length-1].vertex;

 for(i=0;i<map.obstacle_nos;i++)

 {

 for(j=0;j<map.obstacle[i].vertex_nos;j++)

 {

 if(map.obstacle[obs].point[vert].link[i][j])

 {

 temp_obj=pso_objective(map.obstacle[i].point[j],goal[k]);

 rep=pso_repetition(ptcle,i,j);

 if(rep) continue;

 if(init==0)

 {

 obj=temp_obj;

B.Tech. Project Report 2010

Mechanical Engineering Department, N.I.T. Rourkela Page 56

 temp.obstacle=i;

 temp.vertex=j;

 init=1;

 propagate=true;

 continue;

 }

 if(temp_obj<obj)

 {

 //rand_counter=rand()/RAND_MAX;

 //if(rand_counter<0.2) continue;

 obj=temp_obj;

 temp.obstacle=i;

 temp.vertex=j;

 }

 }

 }

 }

 if(!propagate)

 {

 for(i=0;i<map.obstacle_nos;i++)

 {

 for(j=0;j<map.obstacle[i].vertex_nos;j++)

 {

 if(map.obstacle[obs].point[vert].link[i][j])

 {

 temp_obj=pso_degenerate_obj(map.obstacle[obs].point[vert],map.obstacle[i].p

oint[j],k);

 if(temp_obj<0) continue;

 if(init==0)

 {

 obj=temp_obj;

 temp.obstacle=i;

 temp.vertex=j;

 init=1;

 propagate=true;

 continue;

 }

 if(temp_obj<obj)

 {

 //rand_counter=rand()/RAND_MAX;

 //if(rand_counter<0.7) continue;

 obj=temp_obj;

B.Tech. Project Report 2010

Mechanical Engineering Department, N.I.T. Rourkela Page 57

 temp.obstacle=i;

 temp.vertex=j;

 }

 }

 }

 }

 }

 if(!propagate)

 {

 ptcle.position[ptcle.length-1].obstacle=0;

 ptcle.position[ptcle.length-1].vertex=0;

 ptcle.length--;

 obs1=ptcle.position[ptcle.length-2].obstacle;

 vert1=ptcle.position[ptcle.length-2].vertex;

 map.obstacle[obs1].point[vert1].link[obs][vert]=false;

 return false;

 }

 ptcle.position[ptcle.length]=temp;

 ptcle.length++;

 if(goal[k].link[ptcle.position[ptcle.length-

1].obstacle][ptcle.position[ptcle.length-1].vertex])

 return true;

 else

 return false;

 /*if(obj==0)

 return true;

 else

 return false;*/

}

double PSO :: pso_objective(VERTEX& pt1,VERTEX& pt2)

{

 double x_diff,y_diff;

 x_diff=pt1.x-pt2.x;

 y_diff=pt1.y-pt2.y;

 return(pow((pow(x_diff,2)+pow(y_diff,2)),0.5));

}

double PSO :: pso_degenerate_obj(VERTEX& pt1,VERTEX& pt2,int k)

{

B.Tech. Project Report 2010

Mechanical Engineering Department, N.I.T. Rourkela Page 58

 if((fabs(pt1.x-goal[k].x)<=fabs(pt2.x-goal[k].x))^(fabs(pt1.y-

goal[k].y)<=fabs(pt2.y-goal[k].y)))

 {

 if(fabs(pt1.x-goal[k].x)<=fabs(pt2.x-goal[k].x)) return

(fabs(pt2.x-goal[k].x));

 if(fabs(pt1.y-goal[k].y)<=fabs(pt2.y-goal[k].y)) return

(fabs(pt2.y-goal[k].y));

 }

 return(-1);

}

bool PSO :: pso_initialize(PARTICLE& ptcle, int k)

{

 int i,j,init=0;

 double obj,temp_obj;

 CPOSITION temp;

 bool propagate=false;

 for(i=0;i<map.obstacle_nos;i++)

 {

 for(j=0;j<map.obstacle[i].vertex_nos;j++)

 {

 if(source[k].link[i][j])

 {

 temp_obj=pso_objective(map.obstacle[i].point[j],goal[k]);

 if(init==0)

 {

 obj=temp_obj;

 temp.obstacle=i;

 temp.vertex=j;

 init=1;

 propagate=true;

 continue;

 }

 if(temp_obj<obj)

 {

 //rand_counter=rand()/RAND_MAX;

 //if(rand_counter<0.2) continue;

 obj=temp_obj;

 temp.obstacle=i;

 temp.vertex=j;

 }

 }

B.Tech. Project Report 2010

Mechanical Engineering Department, N.I.T. Rourkela Page 59

 }

 }

 ptcle.position[ptcle.length]=temp;

 ptcle.length++;

 if(goal[k].link[ptcle.position[ptcle.length-

1].obstacle][ptcle.position[ptcle.length-1].vertex])

 return true;

 else

 return false;

}

bool PSO :: pso_repetition(PARTICLE& ptcle,int p, int q)

{

 int i;

 for(i=ptcle.length-1;i>=0;i--)

 {

 if(ptcle.position[i].obstacle==p && ptcle.position[i].vertex==q)

 return true;

 }

 return false;

}

void PSO :: pso_fitness_calc()

{

 int i,k;

 for(k=0;k<TOTAL_ROBOTS;k++)

 {

 gbest[k].fitness=0;

 if(gbest[k].length==0 && path_complete[k])

 {

 gbest[k].fitness+=pso_objective(source[k],goal[k]);

 }

 gbest[k].fitness+=pso_objective(source[k],map.obstacle[gbest[k].position[0].ob

stacle].point[gbest[k].position[0].vertex]);

 for(i=0;i<gbest[k].length-1;i++)

 {

 gbest[k].fitness+=pso_objective(map.obstacle[gbest[k].position[i].obstacle].poi

nt[gbest[k].position[i].vertex],

B.Tech. Project Report 2010

Mechanical Engineering Department, N.I.T. Rourkela Page 60

map.obstacle[gbest[k].position[i].obstacle].point[gbest[k].position[i].vertex]);

 }

 gbest[k].fitness+=pso_objective(map.obstacle[gbest[k].position[gbest[k].length

-1].obstacle].point[gbest[k].position[gbest[k].length-1].vertex],goal[k]);

 }

}

void PSO :: print_path(PARTICLE& ptcle)

{

 /*int i;

 AttachConsole(lpdwProcessList);

 AllocConsole();

 cout<<"\nPath"<<endl;

 for(i=0;i<gbest.length;i++)

 {

 cout<<gbest.position[i].obstacle<<"\t"<<gbest.position[i].vertex<<endl;

 }

 getchar();

 FreeConsole();*/

}

B.Tech. Project Report 2010

Mechanical Engineering Department, N.I.T. Rourkela Page 61

/**

Project:Multi-Robot Coordination using Swarm Intelligence and Bacteria Foraging

File: Geometry.h

Intent: Geometry of obstacles

**/

#ifndef _GEOMETRY_H

#define _GEOMETRY_H

#pragma once

#include "STRUCTURES.h"

LINE line_eqn(int obs1,int pt1,int obs2,int pt2);

LINE line_eqn(float ptx,float pty,int obs2,int pt2);

LINE line_eqn(float ptx1,float pty1,float ptx2,float pty2);

bool intersect(int obs1,int pt1,int obs2,int pt2);

bool intersect(float ptx,float pty,int obs2,int pt2);

bool intersect(float ptx1,float pty1,float ptx2,float pty2);

bool intersect_check(float x1,float y1,float x2,float y2,float x3, float y3, float x4,float

y4, float ix, float iy);

bool inside_polygon_check(float,float);

#endif

B.Tech. Project Report 2010

Mechanical Engineering Department, N.I.T. Rourkela Page 62

/**

Project:Multi-Robot Coordination using Swarm Intelligence and Bacteria Foraging

File: GEOMETRY.cpp

Intent: Geometry of obstacles

**/

#include <iostream>

#include <math.h>

using namespace std;

#include "GEOMETRY.h"

#include "STRUCTURES.h"

#include "MAP.h"

extern MAP map;

LINE line_eqn(int obs1,int pt1,int obs2,int pt2)

{

 LINE line;

 float x_diff,y_diff;

 x_diff=map.obstacle[obs1].point[pt1].x-map.obstacle[obs2].point[pt2].x;

 y_diff=map.obstacle[obs1].point[pt1].y-map.obstacle[obs2].point[pt2].y;

 if(fabs(x_diff)<ZERO)

 {

 line.a=0;

 line.m=1;

 line.c=-map.obstacle[obs1].point[pt1].x;

 }

 else

 {

 line.a=1;

 line.m=y_diff/x_diff;

 if(fabs(line.m)<ZERO)

 line.m=0;

 line.c=map.obstacle[obs1].point[pt1].y-

line.m*map.obstacle[obs1].point[pt1].x;

 }

 return(line);

}

B.Tech. Project Report 2010

Mechanical Engineering Department, N.I.T. Rourkela Page 63

LINE line_eqn(float ptx,float pty,int obs2,int pt2)

{

 LINE line;

 float x_diff,y_diff;

 x_diff=ptx-map.obstacle[obs2].point[pt2].x;

 y_diff=pty-map.obstacle[obs2].point[pt2].y;

 if(fabs(x_diff)<ZERO)

 {

 line.a=0;

 line.m=1;

 line.c=-ptx;

 }

 else

 {

 line.a=1;

 line.m=y_diff/x_diff;

 if(fabs(line.m)<ZERO)

 line.m=0;

 line.c=map.obstacle[obs2].point[pt2].y-

line.m*map.obstacle[obs2].point[pt2].x;

 }

 return(line);

}

LINE line_eqn(float ptx1,float pty1,float ptx2,float pty2)

{

 LINE line;

 float x_diff,y_diff;

 x_diff=ptx1-ptx2;

 y_diff=pty1-pty2;

 if(fabs(x_diff)<ZERO)

 {

 line.a=0;

 line.m=1;

 line.c=-ptx1;

 }

 else

 {

B.Tech. Project Report 2010

Mechanical Engineering Department, N.I.T. Rourkela Page 64

 line.a=1;

 line.m=y_diff/x_diff;

 if(fabs(line.m)<ZERO)

 line.m=0;

 line.c=pty2-line.m*ptx2;

 }

 return(line);

}

bool intersect(int obs1,int pt1,int obs2,int pt2)

{

 LINE line;

 int i,j,k,p,q;

 float delta,delta_x,delta_y;

 float intersect_x,intersect_y;

 line=line_eqn(obs1,pt1,obs2,pt2);

 for(i=0;i<map.obstacle_nos;i++)

 {

 for(j=0;j<map.obstacle[i].vertex_nos;j++)

 {

 delta=line.a*map.obstacle[i].line[j].m-

map.obstacle[i].line[j].a*line.m;

 delta_x=line.c*map.obstacle[i].line[j].a-

map.obstacle[i].line[j].c*line.a;

 delta_y=line.c*map.obstacle[i].line[j].m-

map.obstacle[i].line[j].c*line.m;

 if(fabs(delta)<ZERO) continue;

 if(j+1==map.obstacle[i].vertex_nos)

 k=0;

 else

 k=j+1;

 intersect_x=delta_x/delta;

 intersect_y=delta_y/delta;

 /*if(

 ((((map.obstacle[obs1].point[pt1].x-

intersect_x>zero) && (map.obstacle[obs2].point[pt2].x-intersect_x<zero))||

B.Tech. Project Report 2010

Mechanical Engineering Department, N.I.T. Rourkela Page 65

 ((map.obstacle[obs1].point[pt1].x-

intersect_x<zero) && (map.obstacle[obs2].point[pt2].x-intersect_x>zero)))&&

 (((map.obstacle[obs1].point[pt1].y-

intersect_y>zero) && (map.obstacle[obs2].point[pt2].y-intersect_y<zero))||

 ((map.obstacle[obs1].point[pt1].y-

intersect_y<zero) && (map.obstacle[obs2].point[pt2].y-intersect_y>zero))))

 ||

 ((((map.obstacle[i].point[j].x-intersect_x>zero) &&

(map.obstacle[i].point[k].x-intersect_x<zero))||

 ((map.obstacle[i].point[j].x-intersect_x<zero) &&

(map.obstacle[i].point[k].x-intersect_x>zero)))&&

 (((map.obstacle[i].point[j].y-intersect_y>zero) &&

(map.obstacle[i].point[k].y-intersect_y<zero))||

 ((map.obstacle[i].point[j].y-intersect_y<zero) &&

(map.obstacle[i].point[k].y-intersect_y>zero))))

)*/

 for(p=0;p<map.obstacle_nos;p++)

 {

 for(q=0;q<map.obstacle[p].vertex_nos;q++)

 {

 if((p==obs1 && q==pt1) || (p==obs2 &&

q==pt2))

 {

 if(fabs(intersect_x-

map.obstacle[p].point[q].x)<ZERO && fabs(intersect_y-

map.obstacle[p].point[q].y)<ZERO)

 goto chk_end;

 }

 if(fabs(intersect_x-

map.obstacle[p].point[q].x)<ZERO && fabs(intersect_y-

map.obstacle[p].point[q].y)<ZERO)

 {

 if(intersect_check(map.obstacle[obs1].point[pt1].x,map.obstacle[obs1].point[pt

1].y,

map.obstacle[obs2].point[pt2].x,map.obstacle[obs2].point[pt2].y,

map.obstacle[i].point[j].x,map.obstacle[i].point[j].y,

map.obstacle[i].point[k].x,map.obstacle[i].point[k].y,

B.Tech. Project Report 2010

Mechanical Engineering Department, N.I.T. Rourkela Page 66

 intersect_x,intersect_y))

 return(true);

 }

 }

 }

 if(intersect_check(map.obstacle[obs1].point[pt1].x,map.obstacle[obs1].point[pt

1].y,

map.obstacle[obs2].point[pt2].x,map.obstacle[obs2].point[pt2].y,

map.obstacle[i].point[j].x,map.obstacle[i].point[j].y,

map.obstacle[i].point[k].x,map.obstacle[i].point[k].y,

 intersect_x,intersect_y))

 return(true);

chk_end:;

 }

 }

 return(false);

}

bool intersect(float ptx,float pty,int obs2,int pt2)

{

 LINE line;

 int i,j,k,p,q;

 float delta,delta_x,delta_y;

 float intersect_x,intersect_y;

 line=line_eqn(ptx,pty,obs2,pt2);

 for(i=0;i<map.obstacle_nos;i++)

 {

 for(j=0;j<map.obstacle[i].vertex_nos;j++)

 {

 delta=line.a*map.obstacle[i].line[j].m-

map.obstacle[i].line[j].a*line.m;

 delta_x=line.c*map.obstacle[i].line[j].a-

map.obstacle[i].line[j].c*line.a;

 delta_y=line.c*map.obstacle[i].line[j].m-

map.obstacle[i].line[j].c*line.m;

B.Tech. Project Report 2010

Mechanical Engineering Department, N.I.T. Rourkela Page 67

 if(fabs(delta)<ZERO) continue;

 if(j+1==map.obstacle[i].vertex_nos)

 k=0;

 else

 k=j+1;

 intersect_x=delta_x/delta;

 intersect_y=delta_y/delta;

 /*if(

 ((((ptx-intersect_x>ZERO) &&

(map.obstacle[obs2].point[pt2].x-intersect_x<ZERO))||

 ((ptx-intersect_x<ZERO) &&

(map.obstacle[obs2].point[pt2].x-intersect_x>ZERO)))&&

 (((pty-intersect_y>ZERO) &&

(map.obstacle[obs2].point[pt2].y-intersect_y<ZERO))||

 ((pty-intersect_y<ZERO) &&

(map.obstacle[obs2].point[pt2].y-intersect_y>ZERO))))

 &&

 ((((map.obstacle[i].point[j].x-intersect_x>ZERO)

&& (map.obstacle[i].point[k].x-intersect_x<ZERO))||

 ((map.obstacle[i].point[j].x-intersect_x<ZERO)

&& (map.obstacle[i].point[k].x-intersect_x>ZERO)))&&

 (((map.obstacle[i].point[j].y-intersect_y>ZERO)

&& (map.obstacle[i].point[k].y-intersect_y<ZERO))||

 ((map.obstacle[i].point[j].y-intersect_y<ZERO)

&& (map.obstacle[i].point[k].y-intersect_y>ZERO))))

)*/

 for(p=0;p<map.obstacle_nos;p++)

 {

 for(q=0;q<map.obstacle[p].vertex_nos;q++)

 {

 if(p==obs2 && q==pt2)

 {

 if(fabs(intersect_x-

map.obstacle[p].point[q].x)<ZERO && fabs(intersect_y-

map.obstacle[p].point[q].y)<ZERO)

 goto chk_end;

 }

B.Tech. Project Report 2010

Mechanical Engineering Department, N.I.T. Rourkela Page 68

 if(intersect_x==map.obstacle[p].point[q].x

&& intersect_y==map.obstacle[p].point[q].y)

 {

 if(intersect_check(ptx,pty,

map.obstacle[obs2].point[pt2].x,map.obstacle[obs2].point[pt2].y,

map.obstacle[i].point[j].x,map.obstacle[i].point[j].y,

map.obstacle[i].point[k].x,map.obstacle[i].point[k].y,

 intersect_x,intersect_y))

 return(true);

 }

 }

 }

 if(intersect_check(ptx,pty,

map.obstacle[obs2].point[pt2].x,map.obstacle[obs2].point[pt2].y,

map.obstacle[i].point[j].x,map.obstacle[i].point[j].y,

map.obstacle[i].point[k].x,map.obstacle[i].point[k].y,

 intersect_x,intersect_y))

 return(true);

chk_end:;

 }

 }

 return(false);

}

bool intersect(float ptx1,float pty1,float ptx2,float pty2)

{

 LINE line;

 int i,j,k,p,q;

 float delta,delta_x,delta_y;

 float intersect_x,intersect_y;

 line=line_eqn(ptx1,pty1,ptx2,pty2);

 for(i=0;i<map.obstacle_nos;i++)

 {

 for(j=0;j<map.obstacle[i].vertex_nos;j++)

B.Tech. Project Report 2010

Mechanical Engineering Department, N.I.T. Rourkela Page 69

 {

 delta=line.a*map.obstacle[i].line[j].m-

map.obstacle[i].line[j].a*line.m;

 delta_x=line.c*map.obstacle[i].line[j].a-

map.obstacle[i].line[j].c*line.a;

 delta_y=line.c*map.obstacle[i].line[j].m-

map.obstacle[i].line[j].c*line.m;

 if(fabs(delta)<ZERO) continue;

 if(j+1==map.obstacle[i].vertex_nos)

 k=0;

 else

 k=j+1;

 intersect_x=delta_x/delta;

 intersect_y=delta_y/delta;

 /*if(

 ((((ptx1-intersect_x>ZERO) && (ptx2-

intersect_x<ZERO))||

 ((ptx1-intersect_x<ZERO) && (ptx2-

intersect_x>ZERO)))&&

 (((pty1-intersect_y>ZERO) && (pty2-

intersect_y<ZERO))||

 ((pty1-intersect_y<ZERO) && (pty2-

intersect_y>ZERO))))

 &&

 ((((map.obstacle[i].point[j].x-intersect_x>ZERO)

&& (map.obstacle[i].point[k].x-intersect_x<ZERO))||

 ((map.obstacle[i].point[j].x-intersect_x<ZERO)

&& (map.obstacle[i].point[k].x-intersect_x>ZERO)))&&

 (((map.obstacle[i].point[j].y-intersect_y>ZERO)

&& (map.obstacle[i].point[k].y-intersect_y<ZERO))||

 ((map.obstacle[i].point[j].y-intersect_y<ZERO)

&& (map.obstacle[i].point[k].y-intersect_y>ZERO))))

)*/

 for(p=0;p<map.obstacle_nos;p++)

 {

 for(q=0;q<map.obstacle[p].vertex_nos;q++)

 {

B.Tech. Project Report 2010

Mechanical Engineering Department, N.I.T. Rourkela Page 70

 if(intersect_x==map.obstacle[p].point[q].x

&& intersect_y==map.obstacle[p].point[q].y)

 {

 if(intersect_check(ptx1,pty1,

 ptx2,pty2,

map.obstacle[i].point[j].x,map.obstacle[i].point[j].y,

map.obstacle[i].point[k].x,map.obstacle[i].point[k].y,

 intersect_x,intersect_y))

 return(true);

 }

 }

 }

 if(intersect_check(ptx1,pty1,

 ptx2,pty2,

map.obstacle[i].point[j].x,map.obstacle[i].point[j].y,

map.obstacle[i].point[k].x,map.obstacle[i].point[k].y,

 intersect_x,intersect_y))

 return(true);

 }

 }

 return(false);

}

bool intersect_check(float x1,float y1,float x2,float y2,float x3, float y3, float x4,float

y4, float ix, float iy)

{

 float greater_x,greater_y,smaller_x,smaller_y;

 if(x1>x2)

 {

 greater_x=x1;

 smaller_x=x2;

 }

 else

 {

 greater_x=x2;

 smaller_x=x1;

 }

B.Tech. Project Report 2010

Mechanical Engineering Department, N.I.T. Rourkela Page 71

 if(y1>y2)

 {

 greater_y=y1;

 smaller_y=y2;

 }

 else

 {

 greater_y=y2;

 smaller_y=y1;

 }

 //if(!((greater_x-ix>-ZERO && ix-smaller_x>-ZERO)&&(greater_y-iy>-

ZERO && iy-smaller_y>-ZERO)))

 if(!((greater_x>=ix && ix>=smaller_x)&&(greater_y>=iy &&

iy>=smaller_y)))

 {

 return(false);

 }

 /*else

 {

 return(true);

 }*/

 if(x3>x4)

 {

 greater_x=x3;

 smaller_x=x4;

 }

 else

 {

 greater_x=x4;

 smaller_x=x3;

 }

 if(y3>y4)

 {

 greater_y=y3;

 smaller_y=y4;

 }

 else

 {

 greater_y=y4;

 smaller_y=y3;

 }

B.Tech. Project Report 2010

Mechanical Engineering Department, N.I.T. Rourkela Page 72

 //if(!(greater_x-ix>-ZERO && ix-smaller_x>-ZERO)&&(greater_y-iy>-ZERO

&& iy-smaller_y>-ZERO))

 if(!((greater_x>=ix && ix>=smaller_x)&&(greater_y>=iy &&

iy>=smaller_y)))

 {

 return(false);

 }

 /*else

 {

 return(true);

 }*/

 return(true);

}

bool inside_polygon_check(float x, float y)

{

 int i,j,k;

 float ptx1,pty1,ptx2,pty2;

 bool horizontal1,horizontal2;

 bool vertical1,vertical2;

 for(i=0;i<map.obstacle_nos;i++)

 {

 horizontal1=false;

 horizontal2=false;

 vertical1=false;

 vertical2=false;

 for(j=0;j<map.obstacle[i].vertex_nos;j++)

 {

 if(j+1==map.obstacle[i].vertex_nos)

 k=0;

 else

 k=j+1;

 if(map.obstacle[i].point[j].x>map.obstacle[i].point[k].x)

 {

 ptx1=map.obstacle[i].point[j].x;

 ptx2=map.obstacle[i].point[k].x;

 }

 else

 {

 ptx1=map.obstacle[i].point[k].x;

B.Tech. Project Report 2010

Mechanical Engineering Department, N.I.T. Rourkela Page 73

 ptx2=map.obstacle[i].point[j].x;

 }

 if(map.obstacle[i].point[j].y>map.obstacle[i].point[k].y)

 {

 pty1=map.obstacle[i].point[j].y;

 pty2=map.obstacle[i].point[k].y;

 }

 else

 {

 pty1=map.obstacle[i].point[k].y;

 pty2=map.obstacle[i].point[j].y;

 }

 if(!(map.obstacle[i].line[j].m==0))

 {

 if((y<pty1 && y>pty2) && (fabs(y-pty1)>ZERO &&

fabs(y-pty2)>ZERO))

 {

 if(horizontal1)

 horizontal2=true;

 else

 horizontal1=true;

 }

 }

 if(!(map.obstacle[i].line[j].a==0))

 {

 if((x<ptx1 && x>ptx2) && (fabs(x-ptx1)>ZERO &&

fabs(x-ptx2)>ZERO))

 {

 if(vertical1)

 vertical2=true;

 else

 vertical1=true;

 }

 }

 }

 if(horizontal1 && horizontal2 && vertical1 && vertical2)

 return(true);

 }

 return(false);

}

B.Tech. Project Report 2010

Mechanical Engineering Department, N.I.T. Rourkela Page 74

/**

Project:Multi-Robot Coordination using Swarm Intelligence and Bacteria Foraging

File: DRAW.h

Intent: Windows Graphics Classes

**/

#ifndef _DRAW_H

#define _DRAW_H

#pragma once

#include <windows.h>

#include "STRUCTURES.h"

class DRAW

{

public:

 void draw_boundary(CPaintDC*);

 void draw_obstacles(CPaintDC*);

 void draw_pso_path(CPaintDC*,int);

 void draw_bfa_path(CPaintDC*,int);

 void initialize_pts(CPoint&);

 void draw_source_goal(CPaintDC*,int);

 void draw_control_pts(CPaintDC*,int);

 void source_goal_pts(CPoint&,CPoint&,int);

 void ctrl_pts_init(CPoint*,int);

 CRect bounding_box(CPoint&);

 void initialize_rect(CRect*);

};

#endif

B.Tech. Project Report 2010

Mechanical Engineering Department, N.I.T. Rourkela Page 75

/**

Project:Multi-Robot Coordination using Swarm Intelligence and Bacteria Foraging

File: DRAW.cpp

Intent: Graphics Functions

**/

#include<iostream>

#include<math.h>

#include<afxwin.h>

using namespace std;

#include "DRAW.h"

#include "PSO.h"

#include "MAP.h"

#include "BFA.h"

#include "STRUCTURES.h"

extern MAP map;

extern PSO pso;

extern BFA bfa;

COLORREF BLACK=RGB(0,0,0);

COLORREF BLUE=RGB(0,0,192);

COLORREF GREEN=RGB(0,255,0);

COLORREF RED=RGB(255,0,0);

COLORREF ORANGE=RGB(255,140,0);

COLORREF INDIAN_RED=RGB(205,92,92);

CBrush BLUE_BRUSH(BLUE);

CBrush RED_BRUSH(RED);

CBrush GREEN_BRUSH(GREEN);

CBrush ORANGE_BRUSH(ORANGE);

CBrush INDIAN_RED_BRUSH(INDIAN_RED);

CPen BLUE_PEN(PS_SOLID,DOUBLE_WIDTH,BLUE);

CPen RED_PEN(PS_SOLID,DOUBLE_WIDTH,RED);

CPen GREEN_PEN(PS_SOLID,DOUBLE_WIDTH,GREEN);

CPen ORANGE_PEN(PS_SOLID,DOUBLE_WIDTH,ORANGE);

CPen INDIAN_RED_PEN(PS_SOLID,DOUBLE_WIDTH,INDIAN_RED);

CPen nBLACK_PEN(PS_SOLID,DOUBLE_WIDTH,BLACK);

CPen nBLACK_PEN_THICK(PS_SOLID,DOUBLE_WIDTH*2,BLACK);

CPen

INDIAN_RED_PEN_THICK(PS_SOLID,DOUBLE_WIDTH*2,INDIAN_RED);

B.Tech. Project Report 2010

Mechanical Engineering Department, N.I.T. Rourkela Page 76

void DRAW ::draw_boundary(CPaintDC* dc)

{

 int arr_size,i;

 CPoint pts[EDGES];

 arr_size=(sizeof(map.limits)/sizeof(float))/2;

 for(i=0;i<arr_size;i++)

 {

 pts[i].x=(long)map.limits[i].x;

 pts[i].y=(long)map.limits[i].y;

 pts[i].Offset(X_OFFSET,Y_OFFSET);

 }

 pts[arr_size].x=(long)map.limits[0].x;

 pts[arr_size].y=(long)map.limits[0].y;

 pts[arr_size].Offset(X_OFFSET,Y_OFFSET);

 Polyline(*dc,pts,arr_size+1);

}

void DRAW ::draw_obstacles(CPaintDC* dc)

{

 CPoint pts[EDGES];

 CRgn obs_poly;

 int i,j;

 for(i=0;i<EDGES;i++)

 {

 initialize_pts(pts[i]);

 }

 for(i=0;i<map.obstacle_nos;i++)

 {

 for(j=0;j<map.obstacle[i].vertex_nos;j++)

 {

 pts[j].x=(long)map.obstacle[i].point[j].x;

 pts[j].y=(long)map.obstacle[i].point[j].y;

 pts[j].Offset(X_OFFSET,Y_OFFSET);

 }

 dc->SelectObject(BLUE_PEN);

 dc->SelectObject(BLUE_BRUSH);

 Polygon(*dc,pts,map.obstacle[i].vertex_nos);

 /*obs_poly.CreatePolygonRgn(pts,map.obstacle[i].vertex_nos,ALTERNATE);

 obs_poly.OffsetRgn(X_OFFSET,Y_OFFSET);

 FillRgn(*dc,obs_poly,p_Solid_Brush);

 obs_poly.DeleteObject();*/

B.Tech. Project Report 2010

Mechanical Engineering Department, N.I.T. Rourkela Page 77

 }

}

void DRAW ::draw_pso_path(CPaintDC* dc,int robot)

{

 int i;

 dc->SelectObject(nBLACK_PEN_THICK);

 /*dc-

>MoveTo((int)map.obstacle[pso.gbest.position[0].obstacle].point[pso.gbest.position[0

].vertex].x,

(int)map.obstacle[pso.gbest.position[0].obstacle].point[pso.gbest.position[0].vertex].y

);*/

 dc-

>MoveTo((int)(pso.source[robot].x+X_OFFSET),(int)(pso.source[robot].y+Y_OFFS

ET));

 for(i=0;i<pso.gbest[robot].length;i++)

 {

 dc-

>LineTo((int)(map.obstacle[pso.gbest[robot].position[i].obstacle].point[pso.gbest[rob

ot].position[i].vertex].x+X_OFFSET),

(int)(map.obstacle[pso.gbest[robot].position[i].obstacle].point[pso.gbest[robot].positio

n[i].vertex].y+Y_OFFSET));

 }

 dc-

>LineTo((int)(pso.goal[robot].x+X_OFFSET),(int)(pso.goal[robot].y+Y_OFFSET));

}

void DRAW ::draw_bfa_path(CPaintDC* dc,int robot)

{

 int i,j;

 dc->SelectObject(INDIAN_RED_PEN_THICK);

 /*dc-

>MoveTo((int)map.obstacle[pso.gbest.position[0].obstacle].point[pso.gbest.position[0

].vertex].x,

B.Tech. Project Report 2010

Mechanical Engineering Department, N.I.T. Rourkela Page 78

(int)map.obstacle[pso.gbest.position[0].obstacle].point[pso.gbest.position[0].vertex].y

);*/

 dc-

>MoveTo((int)(pso.source[robot].x+X_OFFSET),(int)(pso.source[robot].y+Y_OFFS

ET));

 for(i=0;i<bfa.gbest[robot].segments_no;i++)

 {

 for(j=0;j<TOTAL_CONTROL_PTS;j++)

 {

 dc-

>LineTo((int)(bfa.gbest[robot].segment[i].ctrl_pts[j].x+X_OFFSET),

(int)(bfa.gbest[robot].segment[i].ctrl_pts[j].y+Y_OFFSET));

 }

 }

}

void DRAW::draw_source_goal(CPaintDC* dc,int robot)

{

 CPoint source,goal;

 source_goal_pts(source,goal,robot);

 //SetPixel(*dc,source.x,source.y,GREEN);

 dc->SelectObject(&GREEN_PEN);

 dc->SelectObject(&GREEN_BRUSH);

 dc->Ellipse(bounding_box(source));

 //SetPixel(*dc,goal.x,goal.y,RED);

 dc->SelectObject(&RED_PEN);

 dc->SelectObject(&RED_BRUSH);

 dc->Ellipse(bounding_box(goal));

}

void DRAW::draw_control_pts(CPaintDC* dc,int robot)

{

 CPoint

ctrl_pts[TOTAL_OBSTACLES*TOTAL_VERTEX][TOTAL_CONTROL_PTS];

 int j,k;

 dc->SelectObject(&ORANGE_PEN);

 dc->SelectObject(&ORANGE_BRUSH);

B.Tech. Project Report 2010

Mechanical Engineering Department, N.I.T. Rourkela Page 79

 for(j=0;j<TOTAL_OBSTACLES*TOTAL_VERTEX;j++)

 {

 for(k=0;k<TOTAL_CONTROL_PTS;k++)

 {

 ctrl_pts[j][k].x=0;

 ctrl_pts[j][k].y=0;

 }

 }

 for(j=0;j<bfa.gbest[robot].segments_no;j++)

 {

 for(k=0;k<TOTAL_CONTROL_PTS;k++)

 {

 ctrl_pts[j][k].x=(int)bfa.gbest[robot].segment[j].ctrl_pts[k].x;

 ctrl_pts[j][k].y=(int)bfa.gbest[robot].segment[j].ctrl_pts[k].y;

 dc->Ellipse(bounding_box(ctrl_pts[j][k]));

 }

 }

}

void DRAW::source_goal_pts(CPoint& source,CPoint& goal,int i)

{

 initialize_pts(source);

 initialize_pts(goal);

 source.x=(long)pso.source[i].x;

 source.y=(long)pso.source[i].y;

 goal.x=(long)pso.goal[i].x;

 goal.y=(long)pso.goal[i].y;

}

void DRAW ::ctrl_pts_init(CPoint* pts,int i)

{

 int j,k;

 for(j=0;j<TOTAL_OBSTACLES*TOTAL_VERTEX;j++)

 {

 for(k=0;k<TOTAL_CONTROL_PTS;k++)

 {

 (pts+k)->x=(int)bfa.gbest[i].segment[j].ctrl_pts[k].x;

 (pts+k)->y=(int)bfa.gbest[i].segment[j].ctrl_pts[k].y;

 }

 }

}

B.Tech. Project Report 2010

Mechanical Engineering Department, N.I.T. Rourkela Page 80

CRect DRAW ::bounding_box(CPoint& pt)

{

 CRect rect;

 initialize_rect(&rect);

 rect.left=pt.x-BOUNDING_CIRCLE_RADIUS;

 rect.top=pt.y-BOUNDING_CIRCLE_RADIUS;

 rect.right=pt.x+BOUNDING_CIRCLE_RADIUS;

 rect.bottom=pt.y+BOUNDING_CIRCLE_RADIUS;

 rect.OffsetRect(X_OFFSET,Y_OFFSET);

 return(rect);

}

void DRAW ::initialize_pts(CPoint& pts)

{

 pts.x=0;

 pts.y=0;

 //pts.Offset(X_OFFSET,Y_OFFSET);

}

void DRAW ::initialize_rect(CRect* rect)

{

 //rect->OffsetRect(X_OFFSET,Y_OFFSET);

 rect->left=0;

 rect->top=0;

 rect->right=0;

 rect->bottom=0;

}

B.Tech. Project Report 2010

Mechanical Engineering Department, N.I.T. Rourkela Page 81

/**

Project:Multi-Robot Coordination using Swarm Intelligence and Bacteria Foraging

File: map.txt

Intent: Map Data

**/

9

4

120.0 160.0

120.0 130.0

180.0 130.0

180.0 160.0

4

100.0 220.0

120.0 190.0

140.0 220.0

120.0 250.0

4

200.0 180.0

250.0 180.0

230.0 220.0

180.0 220.0

4

290.0 160.0

320.0 160.0

320.0 250.0

290.0 250.0

4

160.0 270.0

230.0 270.0

210.0 310.0

180.0 310.0

4

250.0 250.0

290.0 250.0

290.0 270.0

250.0 270.0

4

330.0 220.0

360.0 220.0

360.0 320.0

330.0 320.0

3

B.Tech. Project Report 2010

Mechanical Engineering Department, N.I.T. Rourkela Page 82

150.0 310.0

220.0 380.0

150.0 380.0

4

260.0 330.0

330.0 330.0

330.0 380.0

260.0 380.0

0.0 0.0

0.0 500.0

500.0 500.0

500.0 0.0

B.Tech. Project Report 2010

Mechanical Engineering Department, N.I.T. Rourkela Page 83

/**

Project:Multi-Robot Coordination using Swarm Intelligence and Bacteria Foraging

File: source goal.txt

Intent: Source Goal Data

**/

130 370

400 100

250 390

400 100

