2,229 research outputs found

    Error Modeling and Design Optimization of Parallel Manipulators

    Get PDF

    Error Modelling and Experimental Validation of a Planar 3-PPR Parallel Manipulator with Joint Clearances

    Get PDF
    International audienceThis paper deals with the error modelling and analysis of a 3-\underline{P}PR planar parallel manipulator with joint clearances. The kinematics and the Cartesian workspace of the manipulator are analyzed. An error model is established with considerations of both configuration errors and joint clearances. Using this model, the upper bounds and distributions of the pose errors for this manipulator are established. The results are compared with experimental measurements and show the effectiveness of the error prediction model

    Design and analysis of a parallel mechanism for kinematically redundant hybrid planar laser cutting machine

    Get PDF
    Conventional planar laser cutting machines cannot achieve high accelerations, because the required precision values cannot be achieved due to the high inertial loads. Machines configured as kinematically redundant mechanisms are able to reach 5-6 g acceleration levels since they include a parallel mechanism with a smaller workspace which is exposed to smaller inertial loads. The study presented in this paper focuses on the design of a parallel planar mechanism to be integrated to the main axes of conventional planar laser cutting machines to achieve higher accelerations of the laser head up to 6 g. Parallel mechanism’s conceptual design and dynamic balancing studies are provided along with the joint clearance effect on precision due to having more joint structures.Republic of Turkey Ministry of Science, Industry and Technology & Coşkunöz Metal Form (Project code: 01668.STZ.2012-2

    Kinematic Modeling, Linearization and First-Order Error Analysis

    Get PDF
    This chapter deals with a modular method for the kinematic analysis of parallel kinematic machines (PKM) at discrete points within their workspace. Firstly, a modular approach is presented for calculating the forward kinematic transmission function of some widely used parallel kinematic machines. This includes the well-known Stewart-Gough-platforms of general geometry, the Delta-robots, and parallel machines with legs of constant length. The kinematic analysis is based on the kinetostatic method and permits to calculate the position, velocity, and acceleration transmission from the articulated joints towards the moveable platform of the machine. Furthermore, a force transmission is defined based on kinetostatic duality. By means of a simple numerical calculation schema, a comprehensive first-order sensitivity analysis is performed. Finally, it is shown how to set up the stiffness matrix for the aforementioned robots. Computational examples of the proposed algorithms are presented

    Paralleelmehhanismide kinetostaatiliste jõudlusindeksite uuring ning võrdlus

    Get PDF
    Nii kaua, kui on kasutusel olnud robotid, on käinud teadusuuringud nende kasutamiseks ning töö optimeerimiseks meie igapäevases elus. Samal ajal, kui meie teadmised robotite teemal on suuresti arenenud, on kasvanud ka vastavate struktuuride keerukus. Seega on arendatud mitmeid meetodeid ja indekseid, aitamaks disaneritel ning inseneridel välja selgitada parimad seadmed vastavate ülesannete lahendamiseks. Lisaks on huvi paralleelmehhanismide suunas viimaste aastate jooksul märgatavalt kasvanud. Peamiseks põhjuseks on paljudes valdkondades märgatavalt parem sooritusvõime võrreldes seriaalmanipulaatoritega. Ometi pole arendatud veel ühtegi globaalset jõudlusindeksit, mis võimaldaks täpsuse perspektiivis paralleelmanipulaatorite omavahelise võrdluse. Käesoleva lõputöö fookuseks on kintestaatilise jõuldusindeksi arendustööst ülevaate pakkumine. Uuritav indeks peab robustselt suutma hinnata läbi vastava indeksi paralleelmanipulaatorite täpsust.For as long as we have used robots there has also been ongoing research to allow us to use and improve efficiency of automation in our daily lives. As our knowledge about robots has largely improved, so has the complexity of their structures. Thus, various methods and indices have been developed to help designers and engineers determine the best manipulator for a specific task. In addition, the interest towards parallel manipulators has seen growth in the last couple of years due to significantly better performance in various areas in comparison to serial mechanisms. However, no global performance index to evaluate accuracy and allow comparison in that perspective between parallel mechanisms has been developed. This thesis focuses on giving an overview on the developments towards finding a robust kinematic sensitivity index to measure accuracy performance of parallel manipulators

    Structural dynamics branch research and accomplishments for fiscal year 1987

    Get PDF
    This publication contains a collection of fiscal year 1987 research highlights from the Structural Dynamics Branch at NASA Lewis Research Center. Highlights from the branch's four major work areas, Aeroelasticity, Vibration Control, Dynamic Systems, and Computational Structural Methods, are included in the report as well as a complete listing of the FY87 branch publications

    A review of friction models in interacting joints for durability design.

    Get PDF
    This paper presents a comprehensive review of friction modelling to provide an understanding of design for durability within interacting systems. Friction is a complex phenomenon and occurs at the interface of two components in relative motion. Over the last several decades, the effects of friction and its modelling techniques have been of significant interests in terms of industrial applications. There is however a need to develop a unified mathematical model for friction to inform design for durability within the context of varying operational conditions. Classical dynamic mechanisms model for the design of control systems has not incorporated friction phenomena due to non-linearity behaviour. Therefore, the tribological performance concurrently with the joint dynamics of a manipulator joint applied in hazardous environments needs to be fully analysed. Previously the dynamics and impact models used in mechanical joints with clearance have also been examined. The inclusion of reliability and durability during the design phase is very important for manipulators which are deployed in harsh environmental and operational conditions. The revolute joint is susceptible to failures such as in heavy manipulators these revolute joints can be represented by lubricated conformal sliding surfaces. The presence of pollutants such as debris and corrosive constituents has the potential to alter the contacting surfaces, would in turn affect the performance of revolute joints, and puts both reliability and durability of the systems at greater risks of failure. Key literature is identified and a review on the latest developments of the science of friction modelling is presented here. This review is based on a large volume of knowledge. Gaps in the relevant field have been identified to capitalise on for future developments. Therefore, this review will bring significant benefits to researchers, academics and industrial professionals

    Modularity in robotic systems

    Get PDF
    Most robotic systems today are designed one at a time, at a high cost of time and money. This wasteful approach has been necessary because the industry has not established a foundation for the continued evolution of intelligent machines. The next generation of robots will have to be generic, versatile machines capable of absorbing new technology rapidly and economically. This approach is demonstrated in the success of the personal computer, which can be upgraded or expanded with new software and hardware at virtually every level. Modularity is perceived as a major opportunity to reduce the 6 to 7 year design cycle time now required for new robotic manipulators, greatly increasing the breadth and speed of diffusion of robotic systems in manufacturing. Modularity and its crucial role in the next generation of intelligent machines are the focus of interest. The main advantages that modularity provides are examined; types of modules needed to create a generic robot are discussed. Structural modules designed by the robotics group at the University of Texas at Austin are examined to demonstrate the advantages of modular design

    A comprehensive survey of the analytical, numerical and experimental methodologies for dynamics of multibody mechanical systems with clearance or imperfect joints

    Get PDF
    "Available online 19 December 2017"A comprehensive survey of the literature of the most relevant analytical, numerical, and experimental approaches for the kinematic and dynamic analyses of multibody mechanical systems with clearance joints is presented in this review. Both dry and lubricated clearance joints are addressed here, and an effort is made to include a large number of research works in this particular field, which have been published since the 1960′s. First, the most frequently utilized methods for modeling planar and spatial multibody mechanical systems with clearance joints are analyzed, and compared. Other important phenomena commonly associated with clearance joint models, such as wear, non-smooth behavior, optimization and control, chaos, and uncertainty and links’ flexibility, are then discussed. The main assumptions procedures and conclusions for the different methodologies are also examined and compared. Finally, future developments and new applications of clearance joint modeling and analysis are highlighted.This research was supported in part by the China 111 Project (B16003) and the National Natural Science Foundation of China under Grants 11290151, 11472042 and 11221202. The work was also supported by the Portuguese Foundation for Science and Technology with the reference project UID/EEA/04436/2013, by FEDER funds through the COMPETE 2020 – Programa Operacional Competitividade e Internacionalização (POCI) with the reference project POCI-01-0145-FEDER-006941.info:eu-repo/semantics/publishedVersio
    corecore