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Kinematic Modeling, Linearization 
 and First-Order Error Analysis 

Andreas Pott† and Manfred Hiller‡ 
† Fraunhofer Institute for Manufacturing Engineering and Automation, Stuttgart 

 ‡ Chair of Mechatronics, University of Duisburg-Essen, 
 Germany 

1. Introduction 

The kinematic analysis of parallel kinematic machines (PKM) is a challenging field, since 
PKM are complex multi-body systems involving a couple of closed kinematic loops. It is 
well-known that the forward kinematic function has in general no closed-form solution, and 
that up to 40 different real solutions may exist for general geometry (Husty, 1996; Dietmaier, 
1998). Therefore, an efficient and handy method is needed in practise, e.g. for design, 
simulation, control, and calibration.  
The analysis of manufacturing and assembly errors of manipulators is a topic that is highly 
relevant for practical applications because the magnitude of these errors is directly coupled 
to the total cost of production of the manipulator. In this setting, there exist intensive studies 
on how to estimate the error of certain moving points, e.g. the tool center point, in terms of 
the errors in the components of the mechanism (Brisan et al., 2002; Jelenkovic & Budin, 2002; 
Kim & Choi, 2000; Song et al., 1999; Zhao et al., 2002), as well as how to allocate cost-optimal 
tolerances to a mechanism (Chase et al., 1990; Ji et al., 2000). In this paper, an approach to 
estimate the first-order influence of geometric errors on target quantities is suggested in 
which linearization is performed by considering the force transmission of the manipulator. 
This enables one to obtain a comprehensive model of linearized geometric sensitivities at a 
low computational cost. 
Error analysis for serial manipulators is relatively easy because one can establish an 
analytical expression for the forward kinematics which maps the generalized joint and link 
coordinates to the spatial displacements of the end-effector. There are numerous methods to 
parameterize the forward kinematics, where the approach of Denavit and Hartenberg (1955) 
is the most popular one. Once one has a closed-form expression for the forward kinematics, 
one can take derivatives of it (with respect to the geometric parameters one is interested in) 
and use these as sensitivity coefficients. In general, one introduces the sensitivity parameters 
in such a way that they vanish at the nominal configuration. This is always possible by 
introducing corresponding constant offsets where necessary.  
For example, consider a robot involving a universal joint, and assume that the sensitivity to 
errors in the fulfilment of the intersection property of the axes is to be analyzed. This can be 
done by adding a parameter for the normal distance between the joint axes which is zero in 
the nominal design, and with respect to which the partial derivative will yield the sought 
sensitivity. However, such a method for sensitivity analysis results in a model with a 

Source: Parallel Manipulators, Towards New Applications, Book edited by: Huapeng Wu, ISBN 978-3-902613-40-0, pp. 506, April 2008, 
I-Tech Education and Publishing, Vienna, Austria
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significant overhead. Examples of such models for joints are presented (Brisan et al., 2002; 
Song et al., 1999). Some force-based methods for clearance analysis were introduced, which 
are similar to the approach in this paper (Innocenti, 1999; Innocenti, 2002; Parenti-Castelli & 
Venanzi, 2002 ; Parenti-Castelli & Venanzi, 2005). 
A linearization method for complex mechanisms using the kinetostatic dualism and the 
concept of kinematical differentials to efficiently set up the equations of motion of multi-body 
systems has been proposed (Kecskeméthy & Hiller, 1994). Using this method, all required 
partial derivatives can be described solely by using the kinematic transmission functions for 
position and velocity, as well as the force transmission function of the system. Based on 
these transmission functions, an algorithm is formulated for generating the Jacobian matrix 
and the equations of motion through multiple evaluations of the kinematic transmission 
functions for certain pseudo input velocities and accelerations. The corresponding 
algorithms are denoted as kinematical differentials for the case of the pure kinematic 
transmission function (Hiller & Kecskeméthy, 1989) and kinetostatic approach for the case of 
use of force transmission (Kecskeméthy, 1994). Later, Lenord et al. (2003) showed that 
kinematical differentials may be applied also to more general interdisciplinary systems 
which also involve hydraulic components by using an exact linearization through the 
kinematical differentials for the determination of the velocity linearization and numerical 
differentiation for the calculation of the stiffness matrix of the hybrid system. Other authors 
studied the determination of the stiffness matrix for complex multi-body systems using 
explicit symbolic derivatives (El-Khasawneh & Ferreira, 1998; Rebeck & Zhang, 1999), taking 
into account the stiffness of the actuators and the stiffness of special components. These 
approaches however require numerous computational steps when many sensitivity 
parameters are involved. 

2. Kinematic modeling of parallel kinematic machines 

2.1 Kinematic delimitation and geometry  
In order to study a wide range of machine types, a generic approach for the modeling of 
PKM is proposed (Pott, 2007). Since PKMs tend to be symmetric and different types of PKM 
have similar components a modular design is used. In a first step the machine is divided 
into three types of components: frames, platforms and legs (Fig. 1), which form the modules 
of the kinetostatic code.  
 

Fig. 1. Platform, legs, and machine frame modules of a generic six-degree-of-freedom 
parallel kinematic machine  
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The machine frame defines the position and orientation of six pivot points Ai. The mobile 
platform introduces the position of six pivot point Bi. Furthermore, the platform defines the 
parameterization of the six-degrees-of-freedom (dof) of spatial motion at the tool center 
point (TCP). Finally, different types of legs are introduced which mainly determine the 
kinematic behaviour. The most common legs for PKMs are PUS, UPS and RUS structures 
each consisting of an actuated prismatic (P) or revolute (R) joint as well as a pair of a 
universal (U) and a spherical (S) joints. Each of these structures can be described by one 
scalar constraint, as it is shown hereafter. 
 

 

Fig. 2. Generic model of a spatial six-degree-of-freedom parallel kinematic machine 

Each legs considered in this paper possess a pair of joints formed by a universal joint and a 
spherical joint. For the analysis of the closed-kinematic chains, these joints are known as 
characteristic pair of joints (Woernle, 1988). One can remove both of these joints and replace 
this partial chain by one nonlinear scalar constraint. This constraint describes the 
geometrical distance between the center of the universal joint and the center of the spherical 
joint for the i-th leg as  

 ai + li = r + Rbi  ,  (1) 

where ai denotes the position vector of the pivot point on the base and bi is the relative 
position of the pivot point with respect to the coordinate system fixed to the platform. The 
Cartesian position and orientation of the platform frame KTCP is given by the vector r and 
the orthogonal matrix R, respectively. The vector li denotes the length of the leg. Solving 
Eq. (1) for the magnitude li² of the vector li yields the system of six nonlinear constraints 

 (ai - r - Rbi )² - li = 0     i=1,…,6.   (2) 

The world coordinates y consist of a parameterization of the position r and the orientation 
matrix R. The geometry of the machine is expressed by the vectors ai, bi and li. In the 
following sections the definition of these vectors is introduced depending on the generalized 
coordinate qi of the six actuators and the kinematic structure of the basic types of legs for 
parallel kinematic machines. 
The UPS legs are used in the Stewart-Gough-platforms which are often applied for motion 
simulators of cars and aircrafts. The prismatic joint is actuated as linear actuator, e.g. by a 
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linear direct drive, ball bearing screw, hydraulic/pneumatic cylinder. For these mechanisms 
the pivot points Ai on the base 

 ai = ci  (3) 

are determined by the machine frame and fixed to a given position ci. The length of the strut 
can be controlled by the drive through 

 li = qi + qo   (4) 

where qo is a constant offset.  
The PUS leg results from changing the order of the joints within the UPS leg. The universal-
spherical pair encloses a leg of constant length while the proximal pivot point is actuated 
along a line. PUS legs are the basic leg components for Hexaglide, Linaglide and Linapod 
PKM. They are described by the position vector ci and the direction ui. Thus, the position of 
the proximal pivot point Ai is defined as 

 ai = ci + qi ui  ,  (5) 

where qi is the generalized coordinate of the drive. The length li=const of the strut is given 
by design.  
Finally, the kinematics of the RUS leg is considered which is the basis of the Delta-robot 
(Clavel, 1988). In contrast to the PUS leg, the proximal pivot points Ai of RUS legs move a 
circle defined by its center ci, an axis of rotation ui, and a lever vi which is given in its initial 
position. Thus, it holds for the point Ai  

 ai = ci + T(ui, qi) vi   (6) 

where T(u, q) is the rotation matrix for the axis u and the angle q as it can be calculated by 
Rodrigues formula. Again, for RUS legs the length of the strut li=const is given by design. 
 

 

Fig. 3. Geometric parameters of the leg-types under consideration  
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2.2 Review of the kinetostatic method 

In the sequel, a short introduction to the kinetostatic method (Kecskeméthy, 1993; 
Kecskeméthy, 1994) is given as a basis for the herewith presented linearization procedure. 
Below, the basic equations of the kinetostatic transmission element are reviewed for better 
reference in this paper. Details can be found in the cited papers. In the kinetostatic 
formalism, mechanical components are modeled as transmission elements (Fig. 4) that map 

the kinematic state q , q$ , q$$  at the input to the kinematic state 'q , 'q$ , 'q$$  at the output and 

the associated generalized forces Q’ at the output to generalized forces Q at the input. The 
kinetostatic state is composed of position, velocity, acceleration, and force. A mechanism is 
divided into joints and links which transmit the state from one set of coordinate frames Ki 
and scalar variables ǃi to another set {Ki',ǃi'}. This concept allows one to model serial 
manipulators as chains of transmission elements. 
 

 

Fig. 4. General kinetostatic transmission element  

Interestingly, the motion of closed kinematic loops can also be represented with the help of 

transmission functions. For simple kinematic loops with one dof, this may be done in an 

explicit form. In general, however, one has to employ iterative methods to solve the loops. 

Nevertheless, in both cases one is able to compute the transmission function for position, 

velocity, acceleration, and force. 

Assuming that the position transmission function is given as y=Ǘ(q), where q=[q1, …, qn]T is 

a set of independent joint variables of the mechanism, the velocity transmission takes the 

form 

 q

( )
J ( )

∂
= =

ϕ
Ǘ q

y q q q
q
$ $$   (7) 

For a given set of joint coordinates q, the twist y$  of the end-effector frame (EEF) is a linear 

combination of the joint rates q$  with the columns of the Jacobian Jq acting as coefficient 

vectors. Assuming ideal transmission behaviour within the transmission element, power is 

neither generated nor consumed. Thus, virtual work at the input and the output can be set 

equal, and one obtains 

 T T' 'δ = δq Q q Q   (8) 

where the virtual displacements fulfil q'δ = δq J q . This yields T T T

q 'δ = δq Q q J Q  and since this 

holds for any δq , the force transmission takes the form 

 T

q '=Q J Q .  (9) 
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The relations (7) and (9) for velocity transmission and force transmission is called kinetostatic 
duality. The basic idea of the kinematical differentials is to evaluate the velocity transmission 

function Ǘ$  for pseudo unit velocities T

iq̂ [0,...,1,...,0]=$  with zeros everywhere up to the i-th 

component in order to identify the i-th column of the Jacobian Jq. Thus, the Jacobian Jq can 
be determined with n passes of velocity transmission. This method is called velocity-based 
Jacobian algorithm. By exploiting kinetostatic duality, this algorithm can be analogously 
applied to force transmission yielding the force-based Jacobian algorithm. Here the Jacobian Jq 

is computed row-wise by setting unit pseudo forces T

i
ˆ [0,...,1,...,0]=Q  with zeros 

everywhere besides the i-th component, performing the force mapping (9), and storing the 

resulting vector of generalized forces iQ̂  at the input as the i-th row of Jq. Thus, the Jacobian 

can be computed row-wise by six force transmissions for a general manipulator 
independently of the number of input parameters. This Jacobian evaluation procedure shall 
be further exploited here. 
The complete kinetostatic formalism is implemented in the object-oriented programming 
library Mobile that uses the C++ programming language (Kecskeméthy, 1994), and a 
differential geometric interpretation of the kinetostatics has been given in (Kecskeméthy, 
1993). 

2.3 Modular modeling of parallel kinematic machines 

As already mentioned before, the PKM is subdivided into the modules platform, frame, and 
legs. These components are the foundation of a modular kinetostatic model, which 
automatically assembles and solves the system of nonlinear constraints. The expressions 
introduced for the different legs in section 2.1 can be used to calculate the relative 
kinematics of the different types of PKM. By means of the kinetostatic method, C++ classes 
for the elementary components of multi-body systems, i.e. prismatic joints, revolute joints, 
and rigid bodies as well as the constraint solvers for kinematic loops are used for the 
modeling. These elements defined the required transmission functions for position, velocity, 
acceleration, and force. Thus, if the machine can be automatically assembled from these 
classes, one receives a comprehensive tool for the kinematic analysis of parallel robots.  
A class called generic machine assembles a kinetostatic model from the components 
introduced above. Firstly, the legs is attached to the platform and to the frame. For the 
forward kinematics the legs provide constraints that characterize which motions can be 
transmitted. The generic machine assembly module collects the constraints from the legs 
and the generalized coordinates from the platform in order to combine them to a nonlinear 
system of equations. Then a numerical procedure like a Newton-Raphson-algorithm is 
applied to solve the forward kinematics. Once the position of the platform is determined 
one can use local methods from the legs to calculate the complementary variables of the 
passive joints in each kinematic loop. 
The module frame defines the geometry of the base of the PKM by providing the position 

and orientation of the coordinate frame KCi, i=1,…,6. These coordinate frames are connected 

to the world coordinate system by rigid links. On the other hand, the coordinate frames KCi 

are the interface for the legs to be attached to it. The module platform firstly defines the end-

effectors frame KP by means of the world coordinates y=[x,y,z,ψ,θ,ξ]T with respect to the 

world coordinate frame K0 , where x,y,z define the Cartesian position of the end-effector and 
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ψ,θ,ξ are a parameterization of the special orthogonal group SO(3), e.g. by use of Bryant 

angles. The position of the platform pivot points KBi, i=1,…,6 can be defined with respect to 

the frame KP giving the geometry of the moveable platform. This presents a kinetostatic 

transmission function Ǎ(y) mapping the world coordinates y to the pivot points KBi. The 

modules for the legs present the governing properties for the kinematic transmission of the 

PKM, i.e. by presenting the kinetostatic transmission elements for the joints and the rigid 

links. The frames KBi and KCi act as interfaces to attach the legs to the platform and the base. 

To solve the forward kinematics each type of leg presents a specific constraint υi(KBi,KCi,qi) 

which will be used by a central solver for forward kinematics. The constraint υi for the 

different types of legs basically implements equations (3) – (6). Finally, the legs implement 

functions to solve for the angles in the passive joints, i.e. computes the orientation of the 

universal and spherical joints. This can be done in an explicit way by projection techniques 

that are well-known from solving four-link bar mechanisms.  

For the forward kinematic problem one has to determine the platform world coordinates y 
from given generalized coordinates q. Based on the aforementioned modules the following 
algorithm can be used for all parallel robots treated in this work: 

1. The module frame calculates the pivot points KCi. 
2. A central constraint solver collects the constraint υi(KBi,KCi,qi) from each leg 

module. Furthermore, the constraint solver receives the function Ǎ(y) from the 
module platform. The constraint solver uses these equations to set up the nonlinear 
system Γ(q, y)=0. 

3. The constraint solver calculates the solution y* for the system Γ(q, y)=0 with a 
Newton-Raphson-algorithm. 

4. The platform updatest the KBi with Ǎ(y*). 
5. Each leg determines the dependent angles of the passive joints from the known 

values of (KBi,KCi,qi). 
Thus, a comprehensive algorithm for forward kinematics for the Stewart-Gough-platform, 
the Delta-robot, and Linapod like machines is presented. Note, that by using the kinetostatic 
methods one also receives these relations in terms of velocity, acceleration, and force. The 
resulting kinetostatic model can be used for a wide range of functions for kinematic analysis 
e.g. forward kinematics, calculation of the Jacobian matrix, and dexterity indexes, and 
equations of motion. The discussion of all these algorithms is out of the scope of the paper. 
In the following section, the determination of a geometrical linearization will be highlighted. 

2.4 Linearization and sensitivity analysis 

In this study, the function of the forward kinematics of a multi-body system is denoted by Ǘ 

(q,g), where q are the generalized independent joint coordinates, and g collects all geometric 

parameters of the manipulator. The evaluation of the forward kinematics yields the world 

coordinates y of a particular point of the end-effector of a manipulator together with the 

orientation of the end-effector, which shall be denoted here as end-effector frame (EEF). For 

most of the non-serial mechanisms, the function of the forward kinematics Ǘ is not unique, 

since there may be multiple positions for the EEF that correspond to a given set of 

generalized joint coordinates q due to different assembly modes. Here, it is assumed that it 

is possible to choose the solution that corresponds to the actual assembly mode, e.g. by 
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giving appropriate initial conditions. The linearization of the mechanism is formally 

achieved by taking the derivative with respect to the variables q and g, respectively, i.e. as  

 q g

( , ) ( , ) ( , )
( , )

( , )

∂ϕ ∂ϕ ∂ϕ
δ = δ = δ + δ = δ + δ

∂ ∂ ∂
q g q g q g

y q g q g J q J g
q g q g

.   (10) 

Here, quantities δy , δq , δg  denote infinitesimal variations of the aforementioned 

coordinates, while Jq denotes the well-known Jacobian matrix that is related to the kinematic 
dexterity of the manipulator. The matrix Jg is also a Jacobian matrix which characterizes the 
sensitivity of the position y of the EEF with respect to small changes, e.g. errors, in 
geometric parameters and which is used for sensitivity analysis. 
For serial manipulators with n dof, the function Ǘ can be written analytically in terms of the 
Denavit-Hartenberg-parameters (ǂ,θ,d,a)i (Denavit & Hartenberg, 1955) and the vector of 
the geometric parameters becomes 

 g= [ǂ 1,θ1,d1,a1,…, ǂ n,θn,dn,an]T.  (11) 

Thus, the Jacobian matrices Jq and Jg can be calculated symbolically for serial manipulators. 
For nontrivial robots, however, the expressions are usually so extensive that they only can 
be handled by means of computer algebra. 
Complex manipulator systems are characterized by the occurrence of closed kinematic 
loops. Such mechanisms have more joints than degrees-of-freedom, and the joint 
coordinates are coupled through closure conditions. This implies that the expressions for Ǘ 
are either complicated, or that Ǘ can only be computed point-wise by the iterative solution 
of an implicit system of nonlinear constraints the latter being the general case which occurs 
especially for parallel kinematic mechanisms that involve multiple coupled loops. Closed 
kinematic loops also occur in transmission mechanisms that can be found for instance in 
hydraulically driven manipulators like excavators or large scale manipulators, since they 
support the force transmission. 
To overcome the lack of an analytical forward kinematic function for complex manipulators, 
the loop closure conditions f(y,g)=0 can be utilized for sensitivity analysis; by applying 
implicit differentiation (see e.g. Wittwer et al., 2004), one obtains 

 
( , ) ( , )∂ ∂

δ + δ = δ + δ =
∂ ∂

f y g f y g
y g A y B g 0

y g
.  (12) 

where y=[xT, θT]T are the world coordinates of the end-effector frame, e.g. in form of a 
position vector x in R³ and the orientation θ holding e.g. Bryant angles, and g are the 
geometric parameters. Then, one immediately obtains for the variation of the EEF world 
coordinates ǅy=A-1Bǅg, where the matrix A-1B maps the errors ǅg in the components to the 
displacements ǅy of the EEF (Wittwer et al., 2004). 
There are certain drawbacks to this approach: First, for mechanisms with more than three 
dof, an analytical form of matrix A-1 can hardly be handled due to the length of the 
corresponding expressions. Second, if sensitivity analysis is established on the closure 
condition, one cannot access geometric parameters that are canceled ad-hoc through the 
formulation of the closure conditions. For example, the normal distance between the joint 
axes in universal joints is often eliminated because the number of closure constraints can be 
significantly reduced by assuming it to be exactly zero. 

www.intechopen.com



Kinematic Modeling, Linearization and First-Order Error Analysis 

 

163 

2.5 Linearization of manipulator systems 
 

 

Fig. 5. Velocity and force transmission in a chain of kinetostatic transmission elements  

Applying the kinetostatic formalism provides a procedure to calculate position, velocity, 
acceleration, and force transmission for an arbitrary manipulator. In general, this results in a 
chain of transmission elements as depicted in Fig. 5, where the individual mapping can also 
correspond to closed kinematic loops since such loops are also represented by transmission 

elements. In this figure, a twist T T T

i i i,⎡ ⎤= ⎣ ⎦t ω v  denotes the combination of an angular velocity 

ωi of a frame Ki and its corresponding velocity vi of its origin, both decomposed in some 

frame. A wrench T T T

i i i,⎡ ⎤= ⎣ ⎦w m f  is composed of an applied moment mi at the frame Ki and 

an applied force fi at its origin, again decomposed in some frame. Given a certain set of joint 

coordinates q, one can introduce a virtual twist displacement T T T

i i i,⎡ ⎤δ = δ δ⎣ ⎦t Ǘ r  at the frame 

Ki, where ǅri is a virtual translational displacement and ǅǗi is an infinitesimal rotational 
increment in the space of rigid-body rotations, and study the corresponding virtual twist 
displacement ǅtN at the EEF KN. This linear relation is given by 

 ( )N i 1 i 2 N i i 1 i
ˆ...+ + +δ = δ = δt J J J t J t ,  (13) 

where Ji denotes the Jacobian of the velocity transmission from frame Ki-1 to the frame Ki. 

Using kinematical differentials (Sec. 2.2) one calculates the Jacobian i 1
ˆ
+J , which contains the 

sensitivity of the frame KN with respect to displacements in Ki, and then concatenates the 

matrices T

iĴ  for the sought matrix T T T T

g 1 2 N
ˆ ˆ ˆ, ,...,⎡ ⎤= ⎣ ⎦J J J J . Thus, for a comprehensive 

linearization, one needs six passes of the velocity transmission function for each T

iĴ  and 

hence 6N passes for the whole manipulator. 
In contrast, one can evaluate the force transmission function, relating the wrench wN at the 

EEF to the internal wrenches T T T

i i i,⎡ ⎤= ⎣ ⎦w m f  at the intermediate frames Ki, where mi 

represents the moment being applied to the frame Ki from the base-distal subchain to the 
base-proximal subchain, and fi is the corresponding force with respect to the origin. Due to 
kinetostatic duality, one obtains  

 ( )T T

i i 1 i 2 N N i 1 N
ˆ...+ + += =w J J J w J w .   (14) 

The force transmission presents the major advantage that one can use wi+1 to determine iĴ . 

Therefore, only 6 passes of the force transmission are needed to calculate the complete 
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Jacobian Jg. This leads to the following simple algorithm to determine the sensitivity 
Jacobian Jg: 

1. Solve the forward kinematics for the desired set of joint coordinates q of the 
manipulator 

2. Choose unit forces Fx, Fy ,Fz and unit torques Mx, My, Mz with 
|Fx|=|Fy|=…=|Mz|=1 along the axes x, y, z of the EEF, respectively. 

3. For each of the unit loads described above, perform the following steps: 
a) Apply the load to the EEF and compute the internal forces/torques wi for each 

internal frame Ki one is interested in. 
b) Store the internal forces/torques wi in the respective row of the Jacobian Jg. 

 

 
         a)              b) 

Fig. 6. Planar four-bar mechanism a) with nominal geometry b) with virtual error joint for 
changes ǅl2 in length l2 of the coupler  

2.6 Virtual error joints 

The relations in the previous section can be intuitively illustrated by virtual error joints which 
were introduced by Woernle (1988) and extended by Pott and Hiller (2004). The basic idea is 
to insert additional independent joints which allow motion in the direction of the expected 
errors. Fig. 6a presents a mechanism that involves a kinematic loop. For this planar four-bar 
mechanism, one might wish to investigate the influence of changes in length of the coupler. 
One introduces an additional prismatic joint in which the variation of the length of the 
coupler is embodied (Fig. 6b) and the influence of changes in length of the coupler can be 
calculated by using the velocity transmission. The algorithm in Sec. 2.5 can also be derived 
using this model (Pott & Hiller, 2004), where the virtual error joints are used to measure the 
back-propagated forces. 
Based on the linearization algorithm described above, a number of applications can be 
investigated, as described next. 

3. Applications 

3.1 Manufacturing error analysis 
The Jacobian matrix Jg permits to study the influence of geometric errors on the accuracy of 
the EEF. These errors may arise from the manufacturing and assembly process of the 
manipulator. They cannot be avoided, but may be controlled through more precise, but at 
the same time more expensive manufacturing techniques. Consequently, a comprehensive 
analysis of the influence of changes in parameters is useful for optimal system design. This 
analysis is basically done evaluating the Jacobian Jg mapping parameter variations ǅg to the 
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displacement ǅy of the EEF. The magnitude of geometric errors ǅgi is normally small 
compared to the nominal parameter ǅgi. Therefore, the error estimated by the linear model 
is very close to the error calculated with the generally nonlinear model (Sec. 4.2).  
For different manipulators of the same type, the actual kinematic parameters may vary 
within the tolerance intervals defined by the manufacturing and assembly process. Here, it 
is assumed that the actual errors are Gaussian variables with a standard deviation 
proportional to the tolerance. The changes in parameters are assumed to be small and 
independent. Thus, the square of the total error is equal to the sum of squares of the single 
errors obtained by propagation of the manufacturing, clearance, and assembly errors. 
For the addition of two Gaussian variables, the standard variation of the sum becomes 

2 2

1 2σ = σ + σ , where σ1, σ2 denote the standard deviations of each summand. In the case of a 

three-dimensional vector, the total error becomes 2 2 2 2

x y ze e e eΔ = + + , where ex,ey,ez are the 

errors in the three components. For the columns of the Jacobian, one has to mix rotational 
and translational components. This requires the introduction of metric coefficients that 
relate rotations to translations and vice versa. Such metric coefficients can be regarded as 
virtual levers that map rotations at one end to translations at the other and thus generate 
sensitivities such as “long and slender” (orientations over-emphasized) or “short and thick” 
(rotations under-emphasized). Assuming that standard deviations σi are known for all 
geometric parameters, the error of the EEF becomes 

 2

k g ik i

i k

( [ ] )Δ = ρ σ∑∑e J .   (15) 

where [Jg]ik denote the entries of the Jacobian and ρk are the aforementioned metric 
coefficients. For the case of an identical standard deviation σ for all components σi one 
obtains 

 2

g ik

i k

ˆ[ ]Δ = σ = σσ∑∑e J .   (16) 

Here, σ̂  is referred to as the overall error amplification index since it estimates the sensitivity of 
the whole manipulator at a given configuration with respect to geometric errors. This index 
is similar to the statistical approach to error analysis of Wittwer et al.  (2004). 
If a certain accuracy is required for a specific task, the maximal error Δemax of the EEF is 

known and one can estimate the average standard deviation σ= Δemax/ σ̂  that is needed for 
the geometric parameters. This is illustrated in example Sec. 4.2. 

3.2 Stiffness analysis 
The linearization of a manipulator with respect to its geometric parameters provides a linear 
mapping between infinitesimal changes in the geometry and infinitesimal variations of the 
EEF. Assume Jg to be the Jacobian transmitting infinitesimal twists ǅti at each of the frames 
Ki to infinitesimal twists ǅtEEF at the end-effector frame KEEF. Moreover, denote by ǅwEEF a 
small wrench being applied to the end-effector frame KEEF and by ǅwi the corresponding 
wrenches at the frames Ki ensuring static equilibrium. The Jacobian Jg can be used to set up 
the stiffness matrix of the mechanism as follows. As pointed out in section 2.2, by 
equivalence of virtual work it holds 

 T T

g g EEF EEFδ δ = δ δw t w t .   (17) 
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where ǅtg=[ǅt1,1, ǅt1,2,…,ǅtN,6]T collects all virtual variations of the geometric parameters and 
ǅwg =[ǅw1,1, ǅw1,2,…,ǅwN,6]T are the respective internal forces. Here, each ǅti is decomposed 
in its six elementary components ǅti,1,…,ǅti,6, where ǅti,1, ǅti,2, ǅti,3 are elementary 
infinitesimal rotations and ǅti,4, ǅti,5, ǅti,6 are elementary translations with respect to the 
coordinate frame axis (Fig. 7). Similarly, the wrench ǅwi =[ǅwi,1,…,ǅwi,6]T is set up. 
Assuming that each elementary infinitesimal twist component ǅti,j produces a 
corresponding infinitesimal wrench component ǅwi,1 by means of an associated linear 
spring with stiffness coefficient ki,j, one obtains 

 1 T

g g g

− δ = δK w t  with 1

g

1,1 1,2 N,6

1 1 1
diag , ,...,

k k k

−
⎧ ⎫⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

K .  (18) 

 

 

Fig. 7. Decomposition of the unit twist ǅti at frame Ki 

Note that this assumption is a simplification of the structural properties of a general 
mechanical component that applies to many technical applications (slender bars, joints, etc.). 
The generalization to a full generic model is accomplished by a stiffness matrix in which all 
coefficients may be non-zero and which may be obtained from finite element analysis. This 
generalization is not further pursued here as is bears no new insight and is not required for 
the examples treated in this paper. A generalization is conceivable as a later step. On the 
other hand, it holds 

 1

EEF EEF EEF

− δ = δK w t .  (19) 

where KEEF is the sought stiffness matrix at the EEF. Substituting Eq. (18) and Eq. (19) into 

Eq. (17) and using the global force transmission T

g g EEFδ = = δw J w  gives 

 T 1 T T 1

EEF g g g EEF EEF EEF EEF

− −δ δ = δ δw J K J w w K w .   (20) 

Since this equation holds for any ǅwEEF, it follows 

 1 1 T

EEF g g g

− −=K J K J .  (21) 

Thus, the Jacobian Jg can be used to transform the stiffness coefficients ki,j of the geometric 
parameters contained in the stiffness matrix Kg to the global stiffness matrix KEEF. 
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4. Examples 

In this section, the proposed linearization technique is applied to analyze a six-dof parallel 
kinematic machine where no closed-form solution for the forward kinematics is possible. 

4.1 Error analysis for a parallel kinematic manipulator  

This example considers the six-dof parallel kinematic machine tool Linapod (Pritschow et al. 
2004; Wurst, 1998) installed at the Institute for Control Engineering of Machine Tools and 
Manufacturing Units at the University Stuttgart (Germany), see Fig. 8. Six rigid links 
connect the mobile platform to the fixed frame with spherical/universal joints. The pivot 
points on the frame are actuated by linear drives moving parallel to the z-axis. The nominal 
position lies in the center of the workspace. Errors in the length of every leg are assumed to 
be small. Applying the algorithm from section 2.5, the sensitivity matrix Jg for errors in the 
length of the bar can be established. To this end, the forward kinematic problem is solved to 
obtain the position ri and the direction ui of each of the six legs with respect to the EEF 
(Fig. 3b). The calculation of the internal forces in the bars from force equilibrium conditions 
is carried out by applying unit forces and torques (Fig. 8) to the EEF resulting in the matrix 
equation 

 

6

x y z1 6

1 6

x y z1 6

...
...

...

⎡ ⎤⎡ ⎤
=⎡ ⎤ ⎢ ⎥⎢ ⎥⎣ ⎦

⎣ ⎦ ⎣ ⎦
H

A I

F F F 0 0 0u u
f f

0 0 0 M M Mǘ ǘ '*(*)
'**(**) '******(******)

.  (22) 

where fi=fiui are the leg forces, respectively, and i i i= ×ǘ u r . The resulting Jacobian becomes 
T 1

g

−=J A . With the geometric parameters of Linapod (see Tab.1) the Jacobian Jg becomes  

 

 

Fig. 8. Six-dof parallel kinematic machine Linapod with fixed length legs. Unit forces and 
torques are applied to the platform.  
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 g

0.058 0.617 0.558 0.010 0.557 0.567

0.678 0.289 0.390 0.649 0.333 0.316

0.154 0.154 0.154 0.230 0.230 0.230

0.905 2.130 1.220 0.103 2.520 2.410

1.930 0.181 1.750 2.840 1.330 1.510

2.230 2.230 2.230 2.020 2.020 2.

− − −
− −
− − − − − −

=
− − −
− − −

− − −

J

020

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

.  (23) 

 

leg i ai bi ui li qi 

1 [ 0.250, 0.886, 0.0] [-0.126,  0.180, 0.2] [0,0,1] 1.25 1.221 

2 [-0.780, -0.421, 0.0] [-0.093, -0.199, 0.2] [0,0,1] 1.25 1.221 

3 [ 0.755, -0.465, 0.0] [ 0.219,  0.019, 0.2] [0,0,1] 1.25 1.221 

4 [-0.250,   0.886,  0.0] [ 0.115,  0.164, 0.4] [0,0,1] 1.70 1.933 

5 [-0.755,  -0.465,  0.0] [-0.199,  0.017, 0.4] [0,0,1] 1.70 1.933 

6 [ 0.780,  -0.421,  0.0] [ 0.085,  -0.181,  0.4] [0,0,1] 1.70 1.933 

Table 1. Geometrical Parameters for the PKM Linapod at its home position. 

 

 

Fig. 9. Difference between discrete error calculation (exact) and linearization. 

Assuming that the length error for all bars is Δe=ǆ[1,1,1,1,1,1]T with ǆ =10µm, the total 

position error is |ΔeEEF|=11.528µm. This matches the exact solution using the nonlinear 

forward kinematics up to nine digits. In Fig. 9, the effect of variations of the scaling factor on 
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the difference Δe between linearized and exact model is illustrated. As it can be verified, the 

approximation is accurate up to a geometric error of about ǆ =1mm. Still, for ǆ=10mm the 

relative error is only about 1%, which is still enough for most applications. This shows that 

the linearization procedure described in this paper is sufficient for most practical 

applications. 

4.2 Accuracy of the Linapod 

In this section, the geometric accuracy of the PKM Linapod is analyzed with the force-based 

method. Assuming errors in every component of the mechanism, the sensitivity matrix Jg 

contains 126 columns corresponding to the individual geometric parameters. Orientation 

errors are ignored as these errors are negligible with respect to the translational errors. In 

Fig. 10 the overall error amplification index according to Eq. (16) is plotted over the 

workspace. It is recognized from the diagram that the error amplification has its minimum 

in the center of the workspace, and that the error distribution is roughly circular. It is 

interesting to observe that changes in the overall error amplification are relatively small 

from about σ̂ =4.485 in the center to σ̂ =5 on the border. 
 

 

Fig. 10. Overall error-amplification σ̂  for equally distributed errors in all components. The 

lines mark the used workspace for Linapod.  

Presuming a required accuracy of Δemax=10µm which is typical for machine tools, this 

results in an average standard deviation of σ =2µm which is essential to reach the given 

accuracy. One can conclude that it is not possible to manufacture and assemble the machine 
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with state-of-the-art techniques and reasonable effort at this tolerance level. Therefore, 

additional steps like calibration are required to ensure the fulfilment of manufacturing 

requirements. 

4.3 Calculation of the stiffness matrix of the parallel robot Linapod 

As shown is Sec. 3.2, the Jacobian Jg can be used for the calculation of the geometric error 

stiffness matrix. The stiffness coefficients related to elementary geometric variations of a 

frame are set as kl = 8.8e7 Nm-1 for the lower and ku=6.0e7 Nm-1 for the upper leg. 

Furthermore, elasticity in the linear drives is taken into account with a spring constant 

kd=8.13e8 Nm-1. For the calculations, only the translational part of the stiffness matrix is 

taken into account in order to avoid mixing translational and rotational parts. The resulting 

stiffness behavior of the Linapod is depicted in Fig. 11 by plotting the minimal eigenvalue of 

the stiffness matrix over the workspace. As it can be seen, the maximum stiffness property is 

achieved at the home configuration, with softer values farer away of the home 

configuration. 
 
 

 
 

Fig. 11. Minimal eigenvalue ǌmin [107 Nm-1] of the stiffness matrix of the Linapod.  
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Algorithm All parameters Optimized for Linapod 

 Time (ms) Relative Time Time (ms) Relative Time 

numerical differentiation 163.92 68.87 12.31 5.17 

velocity-based Jacobian 52.13 21.90 4.33 1.82 

force-based Jacobian 2.38 1.00 2.38 1.00 

 

Table 2. Performance of different algorithms implemented in Mobile on an AMD Athlon 
1GHz for the error analysis of all 252 parameters for Linapod. Relative times compared to 
force-based Jacobian. 

4.4 Computational considerations 

In this section, the computational effort of different algorithms to calculate the sensitivity 

matrix Jg is compared. The total cost of an algorithm for the error analysis depends on the 

number of kinematic evaluations, while the administrative overhead e.g. copying and 

storing the results can be neglected. For the numerical differentiation approach, one needs 

one evaluation to solve the nominal forward kinematics and one evaluation of the position 

forward kinematics for each geometric parameter that is considered. The total numerical 

effort depends on the number of targeted geometric parameters. The velocity-based method 

(Pott et al., 2007) needs one evaluation of the velocity forward kinematics for each 

parameter. The force-based approach needs six evaluations of the force transmission. In 

Tab.2 the computational times of Mobile (Kecskeméthy, 1994) are listed. It can be seen that 

the numerical differentiation approach needs more time than the velocity-based method, 

although both need the same number of forward kinematic evaluations. The force-based 

method needs even less time than the velocity-based method. 

5. Conclusions  

The contribution describes a general method for kinematic modeling of many wide-spread 

parallel kinematic machines, i.e. for the Stewart-Gough-platform, the Delta-robot, and 

Linaglide machines. The kinetostatic method is applied for a comprehensive kinematic 

analysis of these machines. Based on that model, a general method is proposed to compute 

the linearization of the transmission behaviour from geometric parameters to the end-

effector motion of these machines. By applying the force transmission method, one can 

perform a linearization with respect to all geometric parameters, for parallel kinematic 

machines. Especially in cases where no closed-form solution for the forward kinematics is 

available, the force-based approach provides an efficient procedure for obtaining the linear 

equations. The method can be directly applied to the presented kinetostatic models of the 

manipulator and permits also to study parameters that are canceled in the closure 

conditions. The linear model is used for error analysis and calculation of the stiffness matrix. 

The algorithm provides a good numerical performance and can be applied to practical 

examples. 
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