665 research outputs found

    Design and Testing of a Multi-Sensor Pedestrian Location and Navigation Platform

    Get PDF
    Navigation and location technologies are continually advancing, allowing ever higher accuracies and operation under ever more challenging conditions. The development of such technologies requires the rapid evaluation of a large number of sensors and related utilization strategies. The integration of Global Navigation Satellite Systems (GNSSs) such as the Global Positioning System (GPS) with accelerometers, gyros, barometers, magnetometers and other sensors is allowing for novel applications, but is hindered by the difficulties to test and compare integrated solutions using multiple sensor sets. In order to achieve compatibility and flexibility in terms of multiple sensors, an advanced adaptable platform is required. This paper describes the design and testing of the NavCube, a multi-sensor navigation, location and timing platform. The system provides a research tool for pedestrian navigation, location and body motion analysis in an unobtrusive form factor that enables in situ data collections with minimal gait and posture impact. Testing and examples of applications of the NavCube are provided

    A pedestrian navigation system based on low cost IMU

    Full text link
    © 2014 The Royal Institute of Navigation. For indoor pedestrian navigation with a shoe-mounted inertial measurement unit (IMU, the zero velocity update (ZUPT technique is implemented to constrain the sensors' error. ZUPT uses the fact that a stance phase appears in each step at zero velocity to correct IMU errors periodically. This paper introduces three main contributions we have achieved based on ZUPT. Since correct stance phase detection is critical for the success of applying ZUPT, we have developed a new approach to detect the stance phase of different gait styles, including walking, running and stair climbing. As the extension of ZUPT, we have proposed a new concept called constant velocity update (CUPT to correct IMU errors on a moving platform with constant velocity, such as elevators or escalators where ZUPT is infeasible. A closed-loop step-wise smoothing algorithm has also been developed to eliminate discontinuities in the trajectory caused by sharp corrections. Experimental results demonstrate the effectiveness of the proposed algorithms

    Adaptive Indoor Pedestrian Tracking Using Foot-Mounted Miniature Inertial Sensor

    Get PDF
    This dissertation introduces a positioning system for measuring and tracking the momentary location of a pedestrian, regardless of the environmental variations. This report proposed a 6-DOF (degrees of freedom) foot-mounted miniature inertial sensor for indoor localization which has been tested with simulated and real-world data. To estimate the orientation, velocity and position of a pedestrian we describe and implement a Kalman filter (KF) based framework, a zero-velocity updates (ZUPTs) methodology, as well as, a zero-velocity (ZV) detection algorithm. The novel approach presented in this dissertation uses the interactive multiple model (IMM) filter in order to determine the exact state of pedestrian with changing dynamics. This work evaluates the performance of the proposed method in two different ways: At first a vehicle traveling in a straight line is simulated using commonly used kinematic motion models in the area of tracking (constant velocity (CV), constant acceleration (CA) and coordinated turn (CT) models) which demonstrates accurate state estimation of targets with changing dynamics is achieved through the use of multiple model filter models. We conclude by proposing an interactive multiple model estimator based adaptive indoor pedestrian tracking system for handling dynamic motion which can incorporate different motion types (walking, running, sprinting and ladder climbing) whose threshold is determined individually and IMM adjusts itself adaptively to correct the change in motion models. Results indicate that the overall IMM performance will at all times be similar to the best individual filter model within the IMM

    Solar-Powered Deep Learning-Based Recognition System of Daily Used Objects and Human Faces for Assistance of the Visually Impaired

    Get PDF
    This paper introduces a novel low-cost solar-powered wearable assistive technology (AT) device, whose aim is to provide continuous, real-time object recognition to ease the finding of the objects for visually impaired (VI) people in daily life. The system consists of three major components: a miniature low-cost camera, a system on module (SoM) computing unit, and an ultrasonic sensor. The first is worn on the user’s eyeglasses and acquires real-time video of the nearby space. The second is worn as a belt and runs deep learning-based methods and spatial algorithms which process the video coming from the camera performing objects’ detection and recognition. The third assists on positioning the objects found in the surrounding space. The developed device provides audible descriptive sentences as feedback to the user involving the objects recognized and their position referenced to the user gaze. After a proper power consumption analysis, a wearable solar harvesting system, integrated with the developed AT device, has been designed and tested to extend the energy autonomy in the dierent operating modes and scenarios. Experimental results obtained with the developed low-cost AT device have demonstrated an accurate and reliable real-time object identification with an 86% correct recognition rate and 215 ms average time interval (in case of high-speed SoM operating mode) for the image processing. The proposed system is capable of recognizing the 91 objects oered by the Microsoft Common Objects in Context (COCO) dataset plus several custom objects and human faces. In addition, a simple and scalable methodology for using image datasets and training of Convolutional Neural Networks (CNNs) is introduced to add objects to the system and increase its repertory. It is also demonstrated that comprehensive trainings involving 100 images per targeted object achieve 89% recognition rates, while fast trainings with only 12 images achieve acceptable recognition rates of 55%

    Gait Analysis Using Wearable Sensors

    Get PDF
    Gait analysis using wearable sensors is an inexpensive, convenient, and efficient manner of providing useful information for multiple health-related applications. As a clinical tool applied in the rehabilitation and diagnosis of medical conditions and sport activities, gait analysis using wearable sensors shows great prospects. The current paper reviews available wearable sensors and ambulatory gait analysis methods based on the various wearable sensors. After an introduction of the gait phases, the principles and features of wearable sensors used in gait analysis are provided. The gait analysis methods based on wearable sensors is divided into gait kinematics, gait kinetics, and electromyography. Studies on the current methods are reviewed, and applications in sports, rehabilitation, and clinical diagnosis are summarized separately. With the development of sensor technology and the analysis method, gait analysis using wearable sensors is expected to play an increasingly important role in clinical applications

    Pseudo-Zero Velocity Re-Detection Double Threshold Zero-Velocity Update Method for Inertial Sensor-Based Pedestrian

    Get PDF
    Zero-velocity update method is widely used in inertial measurement unit based pedestrian navigation systems for mitigating sensor drifting error. In the basic pedestrian dead reckoning system, especially in a foot-tie PDR system, zero-velocity update method and a Kalman filter are two core algorithms. In the basic PDR system, ZUPT usually uses a single threshold to judge the gait of pedestrians. A single threshold, however, makes ZUPT unable to accurately judge the gait of pedestrians in different road conditions. In this thesis paper, we propose a new, redesigned zero-velocity update method without using additional equipment and filter algorithms to further improve the accuracy of the correction results. The method uses a sliding detection algorithm to help re-detect the zero-velocity intervals, aiming to remove the pseudo-zero velocity interval and the pseudo-motion interval, as well as improving the performance of the ZUPT method. The method was implemented in a shoe-mounted IMU-based navigation system. For 3-6 km/h walking speed step detection tests, the accuracy of the proposed ZUPT method has an average 23.7% higher than the conventional methods. In a long-distance walking path tracking test, the mean error of the estimated path for our method is 0.61 m, which is an 81.69% reduction compared to the conventional ZUPT methods. The details of the improved ZUPT method presented in this paper not only enables the tracking technology to better track a pedestrian\u27s step changes during walking, but also provides better calculation conditions for subsequent filter operations

    A practical design and implementation of a low cost platform for remote monitoring of lower limb health of amputees in the developing world

    Get PDF
    In many areas of the world accessing professional physicians ‘when needed/as needed’ might not be always possible for a variety of reasons. Therefore, in such cases a targeted e-Health solution to safeguard patient long-term health could be a meaningful approach. Today’s modern healthcare technologies, often built around electronic and computer-based equipment, require an access to a reliable electricity supply. Many healthcare technologies and products also presume access to the high speed internet is available, making them unsuitable for use in areas where there is no fixed-line internet connectivity, access is slow, unreliable and expensive, yet where the most benefit to patients may be gained. In this paper a full mobile sensor platform is presented, based around readily-purchased consumer components, to facilitate a low cost and efficient means of monitoring the health of patients with prosthetic lower limbs. This platform is designed such that it can also be operated in a standalone mode i.e. in the absence of internet connectivity, thereby making it suitable to the developing world. Also, to counter the challenge of power supply issues in e-Health monitoring, a self-contained rechargeable solution to the platform is proposed and demonstrated. The platform works with an Android mobile device, in order to allow for the capture of data from a wireless sensor unit, and to give the clinician access to results from the sensors. The results from the analysis, carried out within the platform’s Raspberry Pi Zero, are demonstrated to be of use for remote monitoring. This is specifically targeted for monitoring the tissue health of lower limb amputees. The monitoring of residual limb temperature and gait can be a useful indicator of tissue viability in lower limb amputees especially those suffering from diabetes. We describe a route wherein non-invasive monitoring of tissue health is achievable using the Gaussian process technique. This knowledge will be useful in establishing biomarkers related to a possible deterioration in a patient’s health or for assessing the impact of clinical interventions

    Applications of MEMS Gyroscope for Human Gait Analysis

    Get PDF
    After decades of development, quantitative instruments for human gait analysis have become an important tool for revealing underlying pathologies manifested by gait abnormalities. However, the gold standard instruments (e.g., optical motion capture systems) are commonly expensive and complex while needing expert operation and maintenance and thereby be limited to a small number of specialized gait laboratories. Therefore, in current clinical settings, gait analysis still mainly relies on visual observation and assessment. Due to recent developments in microelectromechanical systems (MEMS) technology, the cost and size of gyroscopes are decreasing, while the accuracy is being improved, which provides an effective way for qualifying gait features. This chapter aims to give a close examination of human gait patterns (normal and abnormal) using gyroscope-based wearable technology. Both healthy subjects and hemiparesis patients participated in the experiment, and experimental results show that foot-mounted gyroscopes could assess gait abnormalities in both temporal and spatial domains. Gait analysis systems constructed of wearable gyroscopes can be more easily used in both clinical and home environments than their gold standard counterparts, which have few requirements for operation, maintenance, and working environment, thereby suggesting a promising future for gait analysis

    Estimating Epipolar Geometry With The Use of a Camera Mounted Orientation Sensor

    Get PDF
    Context: Image processing and computer vision are rapidly becoming more and more commonplace, and the amount of information about a scene, such as 3D geometry, that can be obtained from an image, or multiple images of the scene is steadily increasing due to increasing resolutions and availability of imaging sensors, and an active research community. In parallel, advances in hardware design and manufacturing are allowing for devices such as gyroscopes, accelerometers and magnetometers and GPS receivers to be included alongside imaging devices at a consumer level. Aims: This work aims to investigate the use of orientation sensors in the field of computer vision as sources of data to aid with image processing and the determination of a scene’s geometry, in particular, the epipolar geometry of a pair of images - and devises a hybrid methodology from two sets of previous works in order to exploit the information available from orientation sensors alongside data gathered from image processing techniques. Method: A readily available consumer-level orientation sensor was used alongside a digital camera to capture images of a set of scenes and record the orientation of the camera. The fundamental matrix of these pairs of images was calculated using a variety of techniques - both incorporating data from the orientation sensor and excluding its use Results: Some methodologies could not produce an acceptable result for the Fundamental Matrix on certain image pairs, however, a method described in the literature that used an orientation sensor always produced a result - however in cases where the hybrid or purely computer vision methods also produced a result - this was found to be the least accurate. Conclusion: Results from this work show that the use of an orientation sensor to capture information alongside an imaging device can be used to improve both the accuracy and reliability of calculations of the scene’s geometry - however noise from the orientation sensor can limit this accuracy and further research would be needed to determine the magnitude of this problem and methods of mitigation
    corecore