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Abstract

After decades of development, quantitative instruments for human gait analysis 
have become an important tool for revealing underlying pathologies manifested by 
gait abnormalities. However, the gold standard instruments (e.g., optical motion cap-
ture systems) are commonly expensive and complex while needing expert operation 
and maintenance and thereby be limited to a small number of specialized gait labora-
tories. Therefore, in current clinical settings, gait analysis still mainly relies on visual 
observation and assessment. Due to recent developments in microelectromechanical 
systems (MEMS) technology, the cost and size of gyroscopes are decreasing, while the 
accuracy is being improved, which provides an effective way for qualifying gait fea-
tures. This chapter aims to give a close examination of human gait patterns (normal 
and abnormal) using gyroscope-based wearable technology. Both healthy subjects 
and hemiparesis patients participated in the experiment, and experimental results 
show that foot-mounted gyroscopes could assess gait abnormalities in both temporal 
and spatial domains. Gait analysis systems constructed of wearable gyroscopes can 
be more easily used in both clinical and home environments than their gold standard 
counterparts, which have few requirements for operation, maintenance, and working 
environment, thereby suggesting a promising future for gait analysis.

Keywords: inertial sensors, inertial measurement units (IMU), gait detection,  
gait features, gait abnormalities, gait disorders, wearable sensors, body sensor 
networks (BNS), medical applications

1. Introduction

Gait analysis is the analysis of various aspects of the patterns when we walk or 
run, which are the most common forms of human legged locomotion, as shown in 
Figure 1. Normal gait is achieved when the multiple body systems function properly 
and harmoniously, including visual, vestibular, proprioceptive, musculoskeletal, 
cardiopulmonary, nervous systems, etc. Injury or disease of any system may result 
in abnormal gait with symptoms and dysfunction of joints and muscles [3–5]. 
Therefore, gait performance is considered to be an indicator and predictor of 
overall health and functional status of individuals [6–8]. Gait analysis is an active 
research area for many medical, clinical, and healthcare applications. The validity 
and reliability of gait analysis depend strongly on the used measuring instruments. 
Generally, high-quality gait analysis requires accurate, detailed, and comprehensive 
spatiotemporal characterization of the actual locomotion pattern.
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At present, gait analysis in most clinics and health centers is still mainly achieved 
by patient self-reporting and clinician (physician, nurse, etc.) observation, as 
shown in Figure 2(a). These subjective and qualitative methods are only suitable 
for preliminary gait examination. Although some severe gait abnormalities can be 
visually observed by human eyes, subtle differences might be overlooked without 
quantitative measurements [11]. With the aid of simple tools like measuring tape, 
stopwatch, and goniometers, as well as methods allowing leaving footprints on 
the ground, basic quantitative measures can be derived, such as the number of 
walked strides/steps, gait cadence, gait speed, stride/step length, stride time, 
and distance covered. The advantages of the visual observation method and 
foot-printing method lie in several aspects: (1) they do not require any expensive 
measuring instruments and complex preparation procedures; (2) they have no 
special requirements for the working environment; and (3) they can achieve a 
preliminary gait analysis in a very short time. However, the obtained measures are 
too limited to assess human gait, as gait is complex and multifactorial in terms of its 
control mechanisms governed by the neuromuscular system. Besides, the quality 
of measures is dependent on the observer’s experience and the patient’s toler-
ance, especially the inter- and intra-observer variability, which has been shown to 
significantly influence the disease-specific severity assessment and the subsequent 
treatment planning.

To provide high-quality quantitative information and objective measurements 
(some of which might not be measurable with normal clinical examinations) 
needed for gait analysis, gold standard gait analysis tools have been applied in some 
specialized centers and clinics, such as optical motion capture systems and force 
plates. The commonly used such systems are illustrated in Figure 2(b) and (c), 
where the optoelectronic systems capture spatial gait information with infrared 
cameras tracking the body movement (defined by reflective markers placed on the 
body), while the force plates provide dynamic gait information by the measuring 

Figure 1. 
Human gait. (a) Walking gait [1] and (b) Running gait [2].

Figure 2. 
Commonly used gait analysis methods. (a) Visual gait analysis [9], (b) Vicon systems [10], and (c) BTS 
GAITLAB [1].
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ground reaction forces (GRFs) based on inverse dynamics. When synchronized 
with each other, these systems can provide both kinematic and dynamic gait 
information during walking and running. However, although such systems can 
achieve high-precision gait analysis, they also have many drawbacks, such as their 
relatively high cost, long setup time, and complicated operation. Furthermore, they 
are confined to the restricted area where the systems are deployed and hence affect 
normal movement of the subjects, which may make the derived information fail 
to reflect the gait patterns in real-world settings. Generally, people only show their 
natural gait when they are accustomed to the walking environments.

Electromyography (EMG) systems are another quantitative gait analysis tech-
nology commonly used in gait-related applications. Such systems can record the 
electrical signals generated by skeletal muscles and hence provide insights into the 
patterns of muscle recruitment and neuromuscular control during walking. They 
are particularly suitable for investigating gait abnormalities manifested by muscle 
weakness and spasticity. However, EMG measuring is inconvenient in daily usage, 
as it requires gel, skin treatment, or smart clothes with embedded textile electrodes, 
especially for the traditional EMG systems that have intricate wires connecting the 
electrodes and the signal processor.

For gait analysis, accuracy is not always the only or primary concern, and other 
relevant concerns include simplicity, accessibility, portability, etc. For example, it 
might be more meaningful to monitor gait patterns for patients or elders in their 
daily lives than just a brief examination in a clinic or a gait lab [12]. Therefore, 
although the optoelectronic, force platform, and EMG systems have been applied 
to gait analysis in the past decades, they are not pervasive enough, even in special-
ized centers and clinics, which makes the potential of gait analysis not been fully 
exploited thus far. In order to make gait analysis more accessible and usable, the use 
of alternative instruments has been investigated to address the limitations of the 
gold standard methods, such as inclinometers, goniometers, air pressure sensors, 
foot switches (or force-sensitive resistors), and inertial sensors. These instruments 
are more portable, convenient, cost-effective, and easy-to-use, among which 
inertial sensors are widely considered attractive alternatives. Recent advancements 
in microelectromechanical systems (MEMS) technology paved a way to develop 
wearable gait analysis systems constructed of inertial measurement units (IMUs), 
which have shown remarkable progress in the last two decades. MEMS inertial 
sensors include gyroscope, accelerometer, as well as a combination of gyroscope, 
accelerometer, and magnetometer [13, 14]. The commonly used MEMS IMUs in the 
literature are shown in Figure 3.

Notable use of inertial sensors in gait analysis is in providing rich kinematic 
information about the movement patterns of different body segments. However, 
there are issues related to the accuracy of the measurements from these low-cost 

Figure 3. 
Commonly used inertial sensors based on MEMS technology. (a) InterSense IMU, (b) ADI IMU, (c) Xsens 
IMU, and (d) MicroStrain IMU.
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MEMS sensors. The derived angle and position estimates are usually corrupted by 
varying sensor noises and biases, thereby resulting in the well-known continuously 
increasing error called drift, i.e., angular or positional deviations away from the 
ground truth. Many researchers addressed these issues and presented different 
methods to improve the system accuracy. It should be noted that the costs of MEMS 
accelerometers are decreasing while the accuracy is being improved, whereas the 
MEMS low-cost gyroscopes could not achieve the required accuracy for precise 
long-term positioning applications. Generally, MEMS gyroscopes have large bias 
drifts that can accumulate several degrees of orientation error during even 1 min. 
Such large error rates make it difficult to choose reasonably priced gyroscopes for 
inertial navigation applications, and hence the reliability and accuracy of gyro-
scopes are questionable [15, 16]. However, for gait analysis applications, gyroscope 
is the preferred device among the inertial sensors, due to the effects of human 
locomotion that rotational motion is more pronounced than translational motion. 
The systems using solely gyroscopes can provide both temporal and spatial gait 
parameters, whereas most other systems using accelerometers or foot switches are 
limited to temporal parameters merely. Therefore, the purpose of this chapter is to 
demonstrate the applications of MEMS gyroscope for human gait analysis.

2. Gait characterization

Generally, pathological gait shows a characteristic pattern with abnormal 
speed and range of joint movements, such as shortened stance phase, reduced 
gait cadence, limited extension/flexion, or inversion/eversion ankle movements. 
Professional physicians could easily recognize gait abnormalities and visually 
evaluate patients’ progress during the physiotherapy treatments; however, quantita-
tive measures allow a detailed description of these abnormalities, which would be 
desirable for diagnostic and therapeutic use. In this section, the system setup and 
ankle angles are first described, then the typical modes of dividing a gait cycle are 
discussed, and finally step lengths that can be provided by foot-mounted gyro-
scopes are discussed.

2.1 Ankle angles

In biomechanical analysis, kinematic information is a well-established set of 
gait parameters. To estimate spatiotemporal parameters, wearable gait analysis 
systems have been discussed in the literature, with two, three, four, or more gyro-
scopes attached to subject’s lower limbs, such as the foot, shank, or thigh. Accurate 
orientation estimation using gyroscopes has been a major research interest in this 
field. For wearable systems, a reduction in the number of sensing units is highly 
desirable, as the system will be more portable, convenient, reliable, cost-effective, 
and easy-to-use, due to the reduction of total cost and weight, the power consump-
tion and memory requirement, the time and operation needed for system setup, the 
hindrance to natural movement, etc.

For most types of pedal locomotion achieved by legged motion of human or 
animals, the intuitive experience is to implement gait analysis by attaching sensors 
to the feet. As the foot is the part of the lower limb distal to the leg, it functions as 
the interface between the lower limb and the ground and withstands high static and 
dynamic stresses that generate strong compression and shearing forces, making 
the periodic nature and disease symptoms of the foot more obvious than that of 
other parts of the lower limb. For example, diabetic foot is the distal ankle involve-
ment induced by various causes, mainly because of the interaction of peripheral 
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vasculopathy, neuropathy, and alterations in foot biodynamics [17]. Therefore, the 
foot is a preferred location of gyroscopes for gait data collection.

A dual-sensor configuration with one sensor on each foot is discussed in this 
chapter, as illustrated in Figure 4(a), which is supposed to be a promising way for 
wearable gait analysis. As is seen, two coordinate frames are introduced for gait 
analysis purpose, which are defined as follows.

• The body coordinate frame (b-frame for short) is parallel to the sensor’s axes.

• The global coordinate frame (g-frame for short) is a local east-north-up (ENU) 
reference frame.

Such system can yield the angles of ankle movements, such as plantarflexion 
and dorsiflexion movements in the sagittal plane, as well as the inversion and 
eversion movements in the coronal plane, as shown in Figure 4(b) and (c). These 
movements are described in terms of Euler angles to assess the ankle joint, as ankle 
rehabilitation includes range of motion training on eversion and inversion as well as 
plantarflexion and dorsiflexion.

2.2 Gait phases

To analyze gait abnormalities, temporal gait parameters should be estimated 
first. Terminologically, gait is the movement pattern involved during locomotion, 
which exhibits periodic patterns termed as gait cycle. Each gait cycle is character-
ized by a sequence of ordered gait events that occur at specific temporal locations. 
These events can be detected by using the measurements of wearable MEMS 
gyroscope. Different researchers pay attention to different gait events according 
to their specific application requirements. Normally, there are four typical events 
in one gait cycle, i.e., heel-strike (HS), foot-flat (FF), heel-off (HO), and toe-off 
(TO), as shown in Figure 5 identified relative to the right foot and defined in the 
following way:

1. HS event: the heel strikes the ground.

2. FF event: the toe touches the ground, and the foot becomes completely flat on 
the ground.

3. HO event: the heel leaves the ground.

4. TO event: the toe leaves the ground, and the foot becomes totally in the air.

Figure 4. 
Dual-sensor configuration for gait analysis and associated ankle angles. (a) Coordinate systems, (b) Foot 
anatomical planes and (c) Ankle movements.
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Usually, HS event is specified as the beginning of a gait cycle, and a complete 
gait cycle is defined as the time interval between successive HS events of the same 
foot. The typical gait events can divide a gait cycle into two to four consecutive time 
intervals termed as gait phases. When considering more gait events, e.g., mid-
stance and mid-swing, more gait phases will be delimited, which is not addressed 
in this chapter. As shown in Figure 5, there are three common modes of gait cycle 
division. The first mode (1) divides a gait cycle into two phases, i.e., stance and 
swing, where the stance phase lasts from HS to TO corresponding to about 60% of a 
gait cycle [18]. The second mode (2) divides a gait cycle into three phases, where the 
stance phase is delimited by HS and HO constituting about 40% of a gait cycle [19]. 
The third mode (3) divides a gait cycle into four phases, where the stance phase lasts 
from FF to HO comprising about 30% of a gait cycle [20].

Obviously, out-of-sequence events are not permitted in normal gait, and hence 
a breakdown in gait rhythm and bilateral coordination plays a significant role in 
identifying pathologic gait, e.g., freezing of gait in Parkinson’s disease. Besides, for 
the patients with gait abnormalities, the affected lower limb fails to support the body 
weight well, which makes the corresponding stance phase short-lasting and results 
in a highly unstable situation. Monitoring gait cycle distribution in temporal domain 
has been applied to detect the onset of neurodegenerative diseases and injuries [21].

In this chapter, for demonstration purpose, the mentioned four typical gait 
events are modeled and identified, and hence a normalized gait cycle is divided into 
four phases as that in the first division mode (1). In this division, the stance phase 
is the time interval when the foot is entirely on the ground, the swing phase is the 
time interval when the foot is entirely in the air, and the two remaining phases are 
the transition states between stance and swing. Furthermore, as the motions of 
subject’s two feet are strongly coupled with each other, detecting gait events using 
the measurements of both feet is supposed to obtain more accurate results than just 
using that of the ipsilateral limb. When the concerned gait events of each foot are 
correctly detected, the gait cycles will be divided, the gait phases will be delimited, 
and therefore the temporal gait parameters will be derived accordingly.

2.3 Step lengths

When the gait phases are delimited, the spatial gait parameters can be derived 
accordingly. The distance-related gait parameters involve step length, step width, and 
step height, corresponding to the maximum covered distance in the forward, lateral, 
and vertical directions, respectively, over a step, as shown in Figure 6. Among these 

Figure 5. 
Typical events and phases in one gait cycle.
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three parameters, the step length in the sagittal plane needs to be calculated separately 
for each step of each individual, as it varies considerably due to inter- and intraindi-
vidual gait variability. Actually, several factors can account for the phenomenon of 
gait variability, such as leg length, walking speed, and gait pattern. Step length has 
different values among the literature data. As reported in [22], the average step length 
is around 0.75 m for healthy adults walking at their self-selected normal speed of 
about 1.4 m/s, while, as reported in [23], the average step length varies with gender, 
which is about 0.79 m for males and 0.66 m for females.

As shown in Figure 6, a stride consists of two consecutive steps. Both stride length 
and step length are meaningful gait parameters to assess gait performance. Gait slow-
ness with reduced step length is a manifestation of diseases affecting walking ability, 
such as spinal cord injury, stroke, Parkinson’s disease, and osteoarticular disorders. 
Many methods for estimating step length and gait speed have been proposed in the 
literature, e.g., using a mathematical model. Prior studies have employed a single 
inverted pendulum model to estimate the step length [24], by using a uniaxial gyro-
scope. A more sophisticated method presented in [25] employs a double pendulum 
model comprised of an inverted double pendulum pivoting about the ground during 
stance and a double pendulum pivoting about the hip during swing. A four-sensor 
configuration is proposed to deal with the non-pendulum nature of double limb 
support [26]. Typically, a gait model can be driven by various combinations of direct 
or indirect gyroscope measurements, with the sensors attached to the subject’s shank, 
thigh, or lower lumbar spine near the body’s center of mass (COM), etc. Comparisons 
between different step length estimators are presented in [27].

Based on different gait models, necessary relations between the step length and 
various measurable or computable gait variables can be formulated. For the dual-
sensor configuration shown in Figure 4(a), a modified gait model was presented in 
our previous study [28], which is driven by the measurements from foot-mounted 
gyroscopes solely. In this model, human gait is represented by a single inverted 
pendulum model of a kneeless biped, taking the anthropometric data specific to each 
subject’s biomechanics into consideration, as shown in Figure 7. This model func-
tions as a self-contained step length estimator, which does not simply resort to other 
ranging technologies based on infrared, RF, or ultrasonic devices that usually use 
some type of beacon or active badge [29, 30] nor directly double integrate the gravity-
compensated translational acceleration over time. The step length SL can be estimated 
as the forward distance traversed by the body’s COM, during the stance phase of the 
contralateral rear foot that supports the forward motion of the swing leg.

Therefore, a mathematical model from indirect gyroscope measurements can be 
adopted to estimate the step length by

   S  L   = L ⋅  [sin  ( θ  1  )  + sin  ( θ  2  ) ]   (1)

Figure 6. 
Distance-related spatial gait parameters.
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where  L  denotes the pendulum length related to the subject’s height and leg 
length and   θ  1    and   θ  2    denote the amplitudes that the pendulum swings away from 
vertical, which are approximated by the maximum positive and negative rotation 
angles of foot pitch motion, respectively, and related to the plantarflexion and 
dorsiflexion angles on the sagittal plane.

3. Gait data acquisition

Gait analysis can be achieved by examining the patterns of sensed data from the 
measuring instruments. There are two sources of gait data in our study, i.e., inertial 
data and optoelectronic data. The optoelectronic data are measured by using the 
Vicon® optical motion capture system from Oxford Metrics Ltd., UK [10], which is 
used as reference data to provide ground truth for gait analysis algorithms. As illus-
trated in Figure 8(a), the MEMS inertial sensors and Vicon retroreflective markers 
are attached to the subject’s lower limbs. However, for demonstration purpose, 
only the measurements from foot-mounted devices are considered in this chapter, 
as shown in the partial enlarged drawing in Figure 8(b). Two types of inertial 

Figure 8. 
System setup for gait data acquisition. (a) Sensor placement on lower limbs and (b) Foot-mounted sensors and 
markers.

Figure 7. 
Kneeless inverted pendulum model of walking gait.
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sensors are used for gait data collection in our study, i.e., Nano IMU (nIMU) from 
MEMSense Inc., USA [31], and ADIS16448 iSensor® device from Analog Devices 
Inc., USA [32], as described below.

3.1 MEMSense IMU

The first type of inertial sensors used in our study is the MEMSense nIMU [13, 
33], which is a small-size and low-weight MEMS unit and costs about $1300, as 
shown in Figure 9 that illustrates the data acquisition process under normal condi-
tions. Since nIMU is a wired sensor node, when communicating with it, one needs 
to connect it to a USB interface board first and then connect the USB interface board 
to a computer for further processing. The software used for acquiring and storing 
sensed data is the MEMSense IMU Data Console (IDC), which is a console-based, 
menu-driven application and allows basic display and collection using a specified 
RS422 protocol.

The nIMU is compensated for temperature sensitivities to bias and scale factor 
and provides serial outputs including 3D acceleration, 3D angular rate, and 3D 
magnetic field intensity, with a sampling rate of 150 Hz. The key manufacturer 
specifications of the gyroscope in nIMU are listed in Table 1.

A segment of raw measurements is shown in Figure 10. As the IMUs are placed 
on the subject’s feet, the gyroscope measurements feature periodic and repetitive 
patterns according to the transitions of gait phases. These patterns are helpful for gait 
analysis, by facilitating the detection of the key gait events and the concerned gait 
phases correspondingly. Since the feet are exposed to quite extreme dynamics at HS 
events, it is found that the bandwidth and dynamic ranges of the gyroscope in nIMU 
are insufficient for optimal gait characterization, as seen in Figure 10. These insuf-
ficiencies would induce systematic measurement and modeling errors to the system. 
When testing the sensor for running gait, the achieved tracking results are reason-
able but would improve considerably if the gyroscope has sufficient dynamic range, 
so as to accurately monitor the impact of foot on the ground. According to research 
in [34], the maximum angular velocity experienced by toe-mounted gyroscopes can 

Figure 9. 
MEMSense nIMU used for gait data collection.

Mass (g) 20

Size (mm) 45 × 23 × 13

Operating temperature (°C) 0 to +70

Gyroscope Range (°/s) ±600

Nonlinearity (% of FS) ±0.1

Noise (°/s) 0.56 (0.95)

Bandwidth (Hz) 50

Table 1. 
Key specifications of gyroscope in MEMSense nIMU.
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reach 1500°/s during running and 2000°/s during sprinting. This is because the foot 
attitude changes very rapidly over the gait cycle, especially for the toe motion that 
exhibits the highest angular velocity. The maximum angular velocities experienced 
by the heel, ankle, and shin are no higher than 1000°/s during running.

3.2 Analog devices IMU

The other type of inertial sensors used in our study is the ADIS16448 iSen-
sor® device [35–37], which combines industry-leading iMEMS® technology with 
signal conditioning that optimizes dynamic performance and costs about $600. 
The ADIS16448 is packaged in a module that has a standard connector interface, 
as illustrated in Figure 11 that depicts the data acquisition process in a physical 
therapy and rehabilitation department of a public hospital. The SPI and register 
structures provide a simple interface for data collection and configuration control. 
The ADIS16448 has a compatible pinout for systems that currently use other 
Analog Devices, Inc., IMU products. Each ADIS16448 includes a triaxial gyroscope, 
a triaxial accelerometer, a triaxial magnetometer, and pressure sensors. The factory 
calibration characterizes each sensor for sensitivity, bias, and alignment. Thus, 
each sensor has its own dynamic compensation formulas that provide accurate 
sensor measurements. The key manufacturer specifications of the gyroscope in 
ADIS16448 are listed in Table 2.

The dimensions of the entire sensing assembly are 4.5 × 3.5 × 2.25 cm, and the 
sampling rate is 400 Hz. The main components include the ADIS16448 IMU, a 
printed circuit assembly (PCA) with a microcontroller, a power supply, and a casing 
enclosing all of the components. The collected data were stored in internal memory 
first and then transferred to an external computer for further processing. A seg-
ment of raw measurements is shown in Figure 12. It can be seen that the gyroscope 

Figure 10. 
Raw gyroscope measurements of MEMSense nIMU. (a) Walking at 130 steps/min anf (b) Running at 170 steps/min.

Figure 11. 
ADIS16448 iSensor® device used for gait data collection.
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range of ±1000°/s would be more suitable, as the sensor readings stay within this 
dynamic range during walking and running at varying speeds.

4. Rule-based gait detection

In this chapter, the raw measurements of accelerometer and gyroscope are 
compared first, then the gait events are identified by using a rule-based method, 
and finally the false-detected gait phases are discussed and eliminated.

4.1 Raw inertial measurements

Different methods have been presented for gait detection in the literature [38]. 
In a sense, gait phases are a function of time and inertial measurements. A segment 
of raw measurements is shown in Figure 13, including specific forces and angular 
rates of both feet measured by the accelerometer and the gyroscope, respectively, 
together with the key gait events and their delimited gait phases. Gait detection can 
be achieved by using a rule-based method from the raw measurements or its mag-
nitude [39], root mean square [40], and moving average [41], which is straightfor-
ward and easy to implement. Different detection methods have been compared in 
[42], and the results suggest that angular rate is more reliable than acceleration for 
typical walking. As can be seen in Figure 13, the angular rates provide more promi-
nent characteristics than the specific forces for gait detection, especially the angular 
rate around Z-axis in the sagittal plane. Due to the specificity of foot motion, there 
are at least two possible explanations for this phenomenon:

Mass (g) 15

Size (mm) 24.1 × 37.7 × 10.8

Operating temperature (°C) −40 to +85

Gyroscope Range (°/s) ±1000

Nonlinearity (% of FS) ±0.1

Noise (°/s) 0.27

Bandwidth (Hz) 330

Table 2. 
Key specifications of gyroscope in ADIS16448 iSensor® device.

Figure 12. 
Raw gyroscope measurements of ADIS16448 iSensor® device. (a) Walking at 3 km/h and (b) Running at 
6 km/h.
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Figure 13. 
A segment of raw inertial measurements from both feet.

1. Although the angular rates have large bias, their SNR (signal-to-noise ratio) is 
higher than that of the specific forces.

2. The specific forces are perturbed by the integrated effects of initial alignment 
error, gravity disturbance, and accelerometer bias.

4.2 Gait detection with predefined rules

The rules for gait detection from inertial data can be predefined against 
the ground truth provided by the Vicon system. Generally, three types of 
rules might be involved in the detection process, i.e., peak detection, flat-zone 
detection, and zero-crossing detection. Take the stance phase, for example, it 
is the nature of walking or running locomotion that the foot swings to stance 
phase in every gait cycle and then exhibits a zero velocity until it swings again. 
This information can be effectively utilized by a flat-zone detection method to 
identify the successive stance phases. With careful rule design and parameter 
selection, the rule-based methods can identify all concerned events from a long 
inertial data sequence.

For a straight-line walking of 20 m long, the detection results are shown in 
Figure 14. However, as seen in Figure 13, the measurements are characterized by 
some sudden spikes, especially when the HS and TO events occur, which can induce 
momentary fluctuations in the magnitude or short-term statistics of angular rates 
and thereby result in false detections of gait phases. In some research, a time heuris-
tic method is applied to the raw detection results to avoid unnecessary influence of 
the measurement fluctuations, i.e., incorrectly declaring, interrupting, or missing 
of gait phases. This is achieved by adding a time duration threshold to filter out the 
gait phases that have a duration shorter than the threshold, as the false gait phases 
are usually short-lasting [43, 44]. However, as all the thresholds are hand-tuned, 
they may work well for the gait data that they are derived from, but not apply to 
each subject’s individual gait.
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4.3 Elimination of false gait phases

As each individual has a unique gait pattern, the percentage of the gait cycle 
spent in each phase slightly varies between the literature sources. In litera-
ture research, it is rarely discussed explicitly how to choose a time duration 
threshold for eliminating the false gait phases but based on empirical evidence. 
Therefore, an adaptive time threshold is required to provide a more robust 
method for gait detection. As done in our previous study, a clustering tech-
nique can be used to automatically distinguish the true and false gait phases 
according to their time durations and yield the time threshold parameter 
simultaneously [33], as shown in Figure 15. In this scenario, since the number 
of clusters is known, the k-mean or k-median methods can be employed due to 
their simplicity and efficiency.

Figure 14. 
Results of gait division and gait detection.

Figure 15. 
Binary classification of potential gait phases. (a) Clustering of stance phases and (b) Clustering of swing phases.
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Multiple parameters are involved for gait detection, which are interrelated and 
work together to achieve their goal. The adopted clustering technique tried to tune 
one of the thresholds automatically (i.e., the time threshold of gait phases) and 
further facilitate the choice of other thresholds, but careful parameter setting is 
stilled needed. Generally, rule-based methods rely on careful sensor alignment and 
a set of thresholds, which are brittle or difficult to implement due to the natural 
variability of human gait. Moreover, the thresholds are usually hand-tuned and 
fixed in the whole process regardless of gait changes, and the process of rule design-
ing and threshold tuning itself is frustrating and time-consuming. Furthermore, if 
new sensors are added to the setup or the sensors are attached to new locations, new 
detection rules and associated thresholds are required. Therefore, there is a clear 
need of an adaptive detection method.

5. Machine learning-based gait detection

As mentioned above, gait detection is actually a pattern recognition problem. 
Hidden Markov models (HMMs) have been widely used for pattern recognition. An 
HMM-based method was developed for gait detection in children with and without 
hemiplegia, and the gait events were specified as hidden states [45]. A classifier based 
on HMM is applied for gait phase detection and discrimination between walking-
jogging activities [20]. An HMM was applied to detect the gait phases of children with 
cerebral palsy [46]. However, HMMs are less suitable for gait data of high dimension. 
An HMM was adopted to estimate temporal gait parameters with a feature selec-
tion and model parametrization system based on genetic algorithms (GAs) [47]. An 
HMM was presented to detect gait phases with observations provided by a five-layer 
feed-forward neural network (FNN) [48]. Generally, these hybrid methods have 
better performance than the pure HMMs when dealing with high-dimensional data. 
Inspired by the existing methods, an adaptive hybrid method is presented in our 
previous study [36], by modeling human gait with a left-right HMM and employing a 
three-layer neural network (NN) to deal with the raw measurements.

5.1 HMM-based gait model

HMM is a statistical model used to represent discrete and stochastic Markov process, 
in which the states cannot be directly observed. It can be of three types, i.e., ergodic, 
left-right, or parallel left-right. At each time instant, HMM is in just one state. For gait 
detection, the gait events or their delimited phases are the hidden states of HMM. Due 
to the periodic nature of normal foot motion with a sequence of ordered gait events, 
each state can only transit to itself or the “right” state. Thus, each gait phase can be 
represented by a unique state in HMM using a left-right model, as shown in Figure 16, 
where aij is the state transition probability. This process yields a sequence of hidden 
states and a sequence of corresponding observations. Each HMM state corresponds to a 
gait phase that begins with the present gait event and lasts until the next event.

Figure 16. 
Left-right HMM with four gait phases.
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5.2 NN-/HMM-based hybrid gait model

Given a sequence of ordered observations and a trained HMM, the Viterbi 
algorithm can estimate the most likely sequence of hidden states. However, HMMs 
are generative models, whereas discriminative models are supposed to achieve 
better classification results. Discriminative models based on machine learning 
techniques are perceived to be promising alternatives to HMMs [49]. Generally, 
any machine learning method, such as support vector machine (SVM), k-nearest 
neighbor (k-NN), and neural network (NN), can be used for gait detection. It 
is found that NNs can achieve the best trade-off between efficiency, accuracy, 
and computational complexity. The NNs can learn nonlinear combinations of 
inputs automatically, and a three-layer network can approximate any multivariate 
polynomial function [50]. However, the pure NNs have been limited to process 
inputs in isolation.

To take advantage of both NN and HMM methods for gait detection, one intui-
tive way is to combine them together in a hybrid manner [48]. The NN can process 
the gyroscope measurements first and provide observations for HMM with its 
classifications. Each input of NN is formed by using a sliding window approach, 
and hence it might be of high dimension. The HMM can model the sequential 
property of human gait and complement the NN by providing contextual infor-
mation. Figure 17 shows the framework of training and testing procedures of 
this hybrid detection method. Although the NN-/HMM-based hybrid method is 
computationally complex for training, it is computationally efficient at runtime. 
It requires no careful sensor alignment or parameter adjustment and generalizes 
well to new subjects, new gaits, new sensors, and new sensor locations [51].

6. Gait analysis experiment

Usually, pathological gait exhibits a characteristic gait pattern with limited range 
and velocity, such as shortened stance phase and step length, reduced gait cadence 
and gait velocity, and diminished extension-flexion movement. The outputs of 
wearable gait analysis system are of great use for a close examination of human gait, 
which allow a rapid and accurate quantification of these abnormalities. In this sec-
tion, the setup and results of the experiments are first presented, then some discus-
sions on the experimental results are made, and finally the capability of IMU-based 
gait analysis system for tracking the rehabilitation process is verified.

Figure 17. 
Framework of the hybrid gait detection method.
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6.1 Experiment setup

Patients during the course of their rehabilitation were recruited as volunteers 
in our study. For comparison purpose, young healthy subjects were also recruited 
as volunteers to participate in the study. Prior to each trial, the subjects were 
asked to stand still for a few seconds to perform initial alignment of the system 
[52]. During each trial, the patients were instructed to walk at their comfort-
able speed along a straight-line path about 10 m long, which is along a hospital 
corridor and free of obstacles. All patients were asked to perform two consecu-
tive walks in forward and backward directions, respectively, and return at the 
starting position at the end of each trial. For the healthy subjects, the experiment 
was performed with the same procedure, except that four consecutive walks were 
performed and the predefined path was 20 m long on a flat floor of a modern 
office building.

6.2 Experiment results

6.2.1 Single trial

When the gait events are correctly detected, the spatiotemporal gait parameters 
can be extracted, such as gait phase duration, gait cycle distribution, foot angle, 
stride length, and gait speed, as shown in Figure 18 for a single trial.

As is seen in Figure 18, a gait cycle is divided into four successive phases, which 
are defined as follows:

• HS (HS-FF): the phase lasting from HS event to FF event

• ST (FF-HO): the stance phase

• HO (HO-TO): the phase lasting from HO event to TO event

• SW (HO-HS): the swing phase

Hemiparesis can lead to unilateral paresis, i.e., weakness of one side of the 
body. Compared with the normal gait of healthy subjects, several conclusions can 
be drawn for the pathological gait of patients from the results shown in Figure 18, 
some of which are as follows:

1. The patient exhibits a reduced gait cadence with longer gait cycle and an 
irregular and asymmetric gait pattern.

2. The patient is affected on the left side, as the stance phases of the left foot 
are shorter than that of the right side, while the opposite is true for the swing 
phases, which is in turn due to the affected lower limb that cannot support the 
body weight well alone and creates a highly unstable situation.

3. The patient exhibits a significantly diminished extension-flexion foot move-
ment, especially for his left foot, where the shortened HS phases are manifes-
tations of insufficient foot dorsiflexion during the swing phase.

4. The patient exhibits a shortened stride length, as although the covered dis-
tance of the patient is half that of the healthy subject, the numbers of strides 
taken were almost the same.
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5. The patient’s gait speeds of both feet are clearly reduced, and the stride lengths 
of both lower limbs are greatly shortened, which supports the hypothesis that 
the healthy side is influenced by the affected side, and the patient even has no 
asymptomatic side due to the so-called compensatory responses.

As discussed above, insufficient dorsiflexion of foot motion means that the patient 
is not capable of lifting the toe adequately during the swing phase, thereby resulting in 
a quick translation from swing to stance. This disorder could not only yield abnormal 
proportions of gait phases, affecting the gait symmetry and gait regularity, but also be 
dangerous to patients for being a high risk of fall as it alters the load distribution.

6.2.2 Multiple trials

More trials were performed for a rich data to increase the variability of gait patterns. 
For demonstration purpose, the average values and standard deviations of the durations 
of each gait phase and their relative percentages in each gait cycle are calculated for 
each concerned gait phase of all the trials, as shown in Figures 19 and 20. The result of 
multiple trials further confirms the conclusions made from that of the single trial.

6.3 Rehabilitation process evaluation

To verify the ability of IMU-based gait analysis system for evaluating the 
rehabilitation process, a patient’s gait was measured once a week for 1 month. The 

Figure 18. 
Estimated spatiotemporal gait parameters. (a) Healthy subject and (b) Hemiparesis patient.
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estimated foot angles of extension-flexion movement are shown in Figure 21, in 
which each region of maximum foot dorsiflexion angles is marked by an ellipse. 
For a better comparison, the angles over successive gait cycles are segmented and 
aligned along the time axis with the same starting point.

Figure 19. 
Durations of the gait phases over multiple trials. (a) Healthy subject and (b) Hemiparesis patient.

Figure 20. 
Pie charts of the gait phases. (a) Healthy subject and (b) Hemiparesis patient.

Figure 21. 
Aligned extension-flexion angles of foot during rehabilitation. (a) First week, (b) Second week, (c) Third week 
and (d) Fourth week.
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As expected, the dorsiflexion range of the affected foot increased gradually 
as the treatment proceeded. If not, healthcare professionals may need to modify 
their treatment plans. Meanwhile, the gait symmetry of patient was also improved, 
as shown in Figure 22 in terms of the percentages of the gait cycles spent in each 
concerned phase.

The conclusions drawn from Figures 21 and 22 are consistent with that drawn 
in Sections 6.1 and 6.2. Based on the quantified spatiotemporal gait parameters that 
are provided by gyroscope-based foot-mounted gait analysis system, gait perfor-
mance can be characterized to assess the rehabilitation process of patients with gait 
abnormalities, which is useful for deciding appropriate medical intervention.

7. Conclusions

Quantification of human gait via wearable inertial sensors has been attracting 
increasing interests in recent years, ranging from aiding pathologic diagnosis, 
choosing appropriate therapy, evaluating treatment efficacy, and assessing rehabili-
tation outcomes to monitoring gait degradation, predicting fall risks, and prevent-
ing elderly falls. This chapter demonstrated that gait analysis system constructed 
of foot-mounted MEMS gyroscopes could provide a promising way for estimating 
spatiotemporal gait parameters and has various potential uses in future research 
and clinical applications. Such systems are not only convenient for clinical diagnosis 
and treatment use but also can continuously monitor gait changes in nonclinical 
settings, thus providing seamless gait analysis from clinical to real-world settings.

However, although wearable technologies are regarded as solutions to create a more 
effective, convenient, and economical gait analysis technology, the potential of gait 
analysis has not been fully exploited thus far. There is still a great deal to do for its per-
vasive use. In future work, more gait parameters will be closely examined in the spa-
tiotemporal domain, to conduct a thorough examination of person’s pathological gait. 
Furthermore, reasonable indexes will be explored to evaluate the gait performance as 
fully as possible, and some nonlinear analysis techniques will be utilized to provide 
insight into the neuromuscular control processes that govern human locomotion.

Figure 22. 
Averaged percentages of gait phases during rehabilitation. (a) First week, (b) Second week, (c) Third week and 
(d) Fourth week.
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