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 ABSTRACT 

Zero-velocity update method is widely used in inertial measurement unit based 

pedestrian navigation systems for mitigating sensor drifting error. In the basic 

pedestrian dead reckoning system, especially in a foot-tie PDR system, zero-velocity 

update method and a Kalman filter are two core algorithms. In the basic PDR system, 

ZUPT usually uses a single threshold to judge the gait of pedestrians. A single 

threshold, however, makes ZUPT unable to accurately judge the gait of pedestrians 

in different road conditions. In this thesis paper, we propose a new, redesigned zero-

velocity update method without using additional equipment and filter algorithms to 

further improve the accuracy of the correction results. The method uses a sliding 

detection algorithm to help re-detect the zero-velocity intervals, aiming to remove 

the pseudo-zero velocity interval and the pseudo-motion interval, as well as 

improving the performance of the ZUPT method. The method was implemented in a 

shoe-mounted IMU-based navigation system. For 3-6 km/h walking speed step 

detection tests, the accuracy of the proposed ZUPT method has an average 23.7% 

higher than the conventional methods. In a long-distance walking path tracking test, 

the mean error of the estimated path for our method is 0.61 m, which is an 81.69% 

reduction compared to the conventional ZUPT methods. The details of the improved 

ZUPT method presented in this paper not only enables the tracking technology to 

better track a pedestrian's step changes during walking, but also provides better 

calculation conditions for subsequent filter operations.  
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Chapter 1: Introduction 

 Background 

1.1.1 Pedestrian Positioning Information System 

Pedestrian positioning information system is a method for the real-time 

positioning of pedestrians through modern technologies [1]. Due to human beings’ 

requirements for authenticity, convenience, and real-time information in present day 

society, the rapid development of this technology has been promoted. Therefore, 

pedestrian positioning information systems now play an increasingly important role in 

many applications, including assisted navigation, aiding first responders, biomedical 

uses, healthcare monitoring, defense, and other applications. Due to the development 

of personal mobile devices, the demand for location-based services is increasing, even 

in consumer contexts, such as cell phones, shopping malls, hospitals, and urban 

locations. The most popular application of pedestrian positioning information systems 

is seen when the Internet and personal mobile devices are used to obtain positioning 

information and for use in navigation, tracking, detection, information notification, and 

other services. Because of the extensive use of pedestrian positioning information 

systems, the needs for high-precision systems increases fast. The pursuit of more 

precise systems has always been the direction of development in this field. In 

consideration of the different requirements of pedestrians for information positioning 

in different locations, the information network developers will also choose different 

information network construction methods to meet the needs of different people. 

Moreover, the construction methods of these information networks are all based on the 

strength of information signals that can be collected and transmitted under different 

environments.  

Therefore, there are two main categories for pedestrian positioning information 
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systems: outdoor environment positioning technology and indoor environment 

positioning technology.  

1.1.2 Outdoor Environment Positioning Technology 

The main application scope of outdoor environment positioning technology is 

outdoor environments, which is also the most widely and frequently used positioning 

technology for pedestrians. Usually, to locate pedestrians’ positioning information in 

the outdoors – and to make these outdoor technologies work accurately – the 

technologies need connectivity with external sources, such as routers, cell phone towers, 

and satellites to estimate accurate position information. 

The global navigation satellite system (GNSS) [2] is widely used in outdoor 

environments due to its three main advantages: wide signal coverage, high positioning 

accuracy, and real-time position update function, which it completes by receiving and 

emitting satellite signals. In the satellite network coverage area, pedestrians can quickly 

obtain current position information through GNSS, and the error of the position 

information can be well controlled within a certain range. In areas with strong satellite 

signal coverage, the position information error can be controlled within 5-10 meters, 

and, in areas with weak satellite signals, the position information error can also be 

controlled within the interval of 20-30 meters [3], [4]. It is now the most commonly 

used positioning system in daily life. The GNSS is great for outdoor positioning 

tracking, but, for indoor positioning use, it is limited by its signals. For example, in 

urban environments, the tall buildings will block the satellite signals, removing the 

GNSS’s line of sight, and will have the multipath effect, which leads to the signals being 

superimposed on each other to cause interference, distorting the original signal and 

producing errors. In some specific area, like basements, weak signal strength is another 

problem. The limitations of satellite signal coverage make GNSS not suitable for indoor 

environment positioning navigation.  
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1.1.3 Indoor Environment Positioning Technology 

As the name suggests, indoor environment positioning technology mainly focuses 

on indoor environments. Furthermore, this technology also performs well in some 

special areas that cannot be covered by satellite signals, such as suburbs, barren 

mountains, and forests. For humans, many activities are performed indoors, so the 

demand for accurate and standalone indoor positioning is becoming higher and higher. 

There are various approaches for indoor positioning methods. Therefore, based on these 

different methods, indoor environment positioning technology can be divided into two 

categories: infrastructure-based approaches and infrastructure-free approaches [5]. 

The infrastructure-based method refers to the technology for inferring indoor 

locations by sensing and collecting signals through pre-built indoor equipment. These 

pre-built devices include various communication technology facilities that are currently 

in wide use, such as wireless fidelity (Wi-Fi) [6], Bluetooth, wireless sensor networks 

(WSN), infrared, and ultra-wide band (UWB) [7]. Due to the physical limitations of 

indoor environments, including the area’s size and temperature, as well as the cost of 

equipment construction, infrastructure-based methods have challenges based on their 

proximity and connectivity to the pre-build equipment. To overcome these, other 

methods are explored that do not rely on pre-built equipment. 

An infrastructure-free method is one that can obtain indoor positioning data 

without the need to pre-arrange equipment that senses and receives signals. Because 

there are no constraints based on either the environment or the proximity and cost of 

equipment, the method without infrastructure is easier to apply and more widely 

popular than the method based on infrastructure. The inertial navigation system (INS) 

is the representative method in the infrastructure-free method. 

Compared with the infrastructure-free method, the infrastructure-based method 

has some major shortcomings. The first major shortcoming is the area of application. 

Because it requires pre-built equipment when in use, and the use range of pre-built 
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equipment has an upper limit, this method is limited to the scope of pre-built equipment 

when it is used, leading to a decrease in the practicability of the device. The second 

major shortcoming is the cost of pre-built equipment.  Because pre-built equipment is 

required every time the infrastructure-based method is used, the cost of pre-built 

equipment will be incurred every time. Compared with the infrastructure-free method, 

the infrastructure-based method is more expensive. After the pre-built equipment is 

built, this method will then face the third major problem: challenges based on the 

proximity and connectivity of the pre-built devices. Because the experimental site 

cannot be an empty site, it is a problem determining how to ensure the communication 

conditions of this method in the site. Therefore, considering the cost of devices and the 

difficulty of equipment installation, when we need to choose an indoor environment 

positioning method as our experimental method, the infrastructure-free method will be 

the first choice. 

1.1.4 Inertial Navigation System 

An inertial navigation system is an autonomous navigation system that does not 

rely on external information, such as that from a global positioning system (GPS), and 

does not radiate energy to the outside. Due to its own working characteristics, the INS 

can work in the air, on the ground, and even underwater. The basic principle of the INS 

is based on Newton’s laws of mechanics. By measuring and collecting the acceleration 

of the carrier in the inertial reference system, integrating it with time, and converting it 

to the navigation coordinate system, the navigation coordinate system can be obtained, 

and the velocity, heading direction, and position information can be calculated. The 

advantage of the INS is that it can work in any weather, at any time, and can provide 

continuous navigation information with a high data update rate and good stability. 

Therefore, the original INS is mostly used in national armed strategy, weapon 

deployment, and intercontinental civil aviation flights. The cost of INS in these fields 

is also very expensive. With the development of micro-electro-mechanical systems 

(MEMS), commercial and consumer-grade inertial navigation systems can be gradually 



5 

 

accepted by the public. Compared with military-grade INS, the accuracy of a MEMS 

INS will decrease with the increase of time. Due to the influence of external factors 

such as noise, the drift rate generated by the movement of objects is very high. A 

MEMS-level INS, thus, has poor accuracy in long-term use. Therefore, when using a 

civilian-level INS, a complete calibration mechanism and filter algorithm are required 

to ensure the accuracy of the navigation system. Table I shows the comparison between 

different classifications of MEMS inertial sensors [8].   

TABLE I 

Application Scenario Bias Stability level System Price Range Control Level 

Consumer electronics Low Under one hundred 

dollars 

High 

Car ESP and navigation 

system 

Medium Thousands of dollars Medium 

Military and aerospace 

grade 

 Medium Millions of dollars Low 

Table I：MEMS Inertial Sensor Classification Comparison [8]. 

1.1.5 MEMS-Based Devices 

A micro-electro-mechanical system sensor is a combination of electronic and 

mechanical hardware in chip form. Each MEMS sensor is composed of micro-silicon 

structures, and these silicon structures are embedded into the silicon wafer through a 

special etching process. These kinds of inertial sensors are microscale devices (10-6 m) 

that utilize both mechanical and electrical systems to provide sensing ability. In recent 

years, through continuous improvement of sensors, including their cost, size, and 

accuracy, MEMS-based inertial sensors can be used in multiple applications of personal 

electronic platforms, especially wearable smart device platforms. 
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MEMS-based inertial sensors work through the employment of a mass, which is 

driven to resonance by an electrical circuit. Taking a gyroscope as an example, the 

resonance mass of the gyroscope will be displaced by the action of the Coriolis force, 

and then the change in capacitance caused by the change in the distance between the 

electrodes is measured to sense the angular velocity. Within this work, two types of 

inertial sensors will be utilized, a gyroscope and an accelerometer. An accelerometer is 

a sensor that senses axial acceleration and converts it into a usable output signal; a 

gyroscope is a sensor that can sense the angular velocity of a moving body relative to 

inertial space. Three MEMS accelerometers and three MEMS gyroscopes are combined 

to form an inertial measurement unit [9], [10], [11] that can sense the angular velocity 

and acceleration of the carrier in three directions.  

Different from traditional inertial devices, because of the development of MEMS, 

today’s IMU is no longer limited to the use of professional navigation, as in military 

navigation. MEMS technology helps IMU improve the shortcomings of traditional 

inertial devices, such as their high prices, large volumes, small precision adjustment 

ranges, and single application fields [12], [13]. As a result, IMU has entered the field 

of low-priced electronic consumer products. The characteristics of this type of MEMS-

based IMU are low unit prices, small sizes, and narrow temperature ranges. These 

features help IMUs expand the application field, especially in the development of 

personal devices – for example, the pedestrian dead reckoning (PDR). MEMS-based 

IMU has two kinds of inertial sensors, and is characterized by its small size and 

wearability, which is exactly what PDR technology needs. In addition, the low unit 

price feature means the IMU can be widely used in PDR systems, and it can be easily 

accepted by the public [14]. 
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1.1.6 Pedestrian Dead Reckoning 

Inertial navigation system (INS) is the widely used system in the infrastructure-

free filed. Figure 1.1 shows the flowchart of the basic inertial navigation system’s 

implementation algorithm. In the INS system, the representative method is PDR [15], 

[16]. PDR is a technique that uses the inertial measurement unit to estimate the position 

of the pedestrian. The principle of PDR is to calculate the pedestrian’s walking 

trajectory, position, and other information by measuring and counting the number of 

steps, step length, and direction of the pedestrian [17], [18].  

The traditional PDR system uses the data collected by the IMU to perform integral 

calculations to obtain the walking trajectory of pedestrians [19]. The PDR system 

collects data by operating two inertial sensors of the IMU while the pedestrian is 

walking. The accelerometer collects the acceleration values corresponding to the three 

axes of X, Y, and Z at each moment, and the gyroscope collects the corresponding 

angular velocity on the same three axes at the same time. Acceleration is calculated 

through integration to obtain speed and displacement, and angular velocity is calculated 

to obtain changes in the direction of pedestrian walking. The pedestrian walking path 

information can be estimated by combining the two resulting values. Integral operation 

has certain requirements for the accuracy of the collected data because the low-cost, 

consumer-grade IMU device will be affected by noise when moving, resulting in data 

drift [20]. This will cause uncontrollable displacement errors and attitude errors in PDR 

systems based on integral operations. Therefore, to improve the accuracy of the PDR 

system, it is necessary to perform algorithmic error removal processing on the system. 

 

Figure 1. 1: Flowchart of the basic INS implementation algorithm [19]. 

 

 

Correct gravity 

Orientation Gyroscopes Rotations 

Position Velocity Accelerometers Accelerations 

Gravitational 

field model 



8 

 

By adding filters to filter out the errors that may occur during the IMU working process 

and then assisting with the zero-velocity update (ZUPT) algorithm, it can help the basic 

PDR system in performing path simulation. In the pedestrian walking process, the IMU 

sensor continuously collects data value, even if the pedestrian is in a static state. Each 

group of data will be integrated by the PDR system to calculate the displacement. If it 

is impossible to judge the walking state of the pedestrian – moving or stationary – the 

data in the stationary state calculated by the integral will be added to the pedestrian 

walking path as valid displacement data, which will cause our final estimated path to 

contain a large drifting error. The addition of the ZUPT method allows us to judge the 

walking state of pedestrians and classify them, so that the PDR system only integrates 

the data in the motion state, controlling the displacement errors. Therefore, the ZUPT 

method is an indispensable part of the basic PDR system algorithm. Next, the structure 

and working principle of the ZUPT method-based PDR system will be introduced, and 

the data will be studied for the gait of pedestrians, and how to determine the zero 

velocity interval through the gait changes will be discussed.  

 

 ZUPT-Based PDR System 

1.2.1 System Components 

The most basic PDR principle is to obtain acceleration and angular velocity data 

from the IMU sensor and process the acquired data through algorithmic calculations to 

obtain pedestrian’s walking path. Because of the accumulation of errors generated by 

the sensor during work, the inaccuracy of the integral calculation is increased. 

Therefore, when the PDR system is designed, data constraints around the basic 

principles are used to obtain a more accurate trajectory. Kalman filter and zero-velocity 

update method [21], [22], [23], [24] are often used for data processing and error control.  

The working algorithm for the ZUPT-based PDR system can be formulated 
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summarized as [25]:  

1. Accelerometers and gyroscopes provide information about axial accelerations 

and angular velocity. 

2. The gravity vector is removed from acceleration information. 

3. Gyroscope values are integrated to provide rotational displacement since the 

last sample. 

4. The orientation in the navigation frame is determined. 

5. Accelerations are transformed from inertial frame to navigation frame, then 

integrated for velocity, then integrated again for displacement. 

6. Kalman filter is used to estimate error covariance [26]. 

7. Zero-velocity update method is used to detect walking gait phases and correct 

errors. 

Therefore, according to the above process, the ZUPT-based PDR system can be 

divided into three phases: INS, KF prediction, and ZUPT. Figure 1.2 shows the 

flowchart of the basic ZUPT-based PDR system implementation algorithm. The INS 

phase is responsible for orientation estimation and position calculation, the KF 

prediction phase is responsible for estimating the error covariance, and ZUPT is 

responsible for judging the swing and stance phases of pedestrians and correcting the 

errors generated during the walking process. This research focuses on how to optimize 

and improve the accuracy of the ZUPT method in the PDR system. To improve the 

accuracy of the ZUPT method, we need to analyze its working principle.  
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Figure 1. 2: Flowchart of the basic ZUPT-based PDR [25]. 
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1.2.2 Zero-Velocity Update  

The zero-velocity update method (ZUPT) is widely used to mitigate the drift error 

accumulated by MEMS inertial sensors in long-distance navigation [27], [28].  

The principle of ZUPT is to analyze the pedestrian’s gait based on the movement 

characteristics of their footsteps during walking; this is done to estimate step length 

during the movement process and to correct errors during the process of being stationary. 

As shown in Figure 1.3, the footsteps’ movements of the pedestrian walking can be 

divided into two phases: swing phase and stance phase. Therefore, ensuring that the 

ZUPT correctly distinguishes between swing phase and stance phase is the key to 

eliminating drift error to a greater extent. The stance phase is the period from when the 

heel touches the ground until the forefoot leaves the ground, while the swing phase is 

 

Figure 1. 3: Pedestrian footsteps dynamic decomposition 
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when the feet are completely suspended in air [29]. Therefore, ZUPT can help to 

identify the walking motion of pedestrians, tracking the number of pedestrian steps by 

performing dynamic judgment on the data output from IMU devices, which better 

completes the positioning estimation. 

At present, ZUPT has been developed in many versions, and it differs under 

different navigation algorithms [30], [31], [32], [33], [34]. In the basic pedestrian dead 

reckoning (PDR) system – especially in the foot-tie PDR system – zero-velocity update 

method and Kalman filter are two core algorithms. In the basic PDR system, ZUPT 

usually uses a single threshold to judge the gait of pedestrians. In reality, however, the 

limitation of a single threshold makes ZUPT unable to accurately judge the gait of 

pedestrians in different road conditions. From this, the double-threshold ZUPT method 

is derived. The double-threshold ZUPT largely solves the problem of gait detection 

when pedestrians are walking, but the lack of stability in long-distance range walking 

tests due to the two fixed thresholds means that the drifting errors cannot be removed 

perfectly. Therefore, the current research trend of PDR for the double-threshold ZUPT 

method is adding other filter algorithms besides the Kalman filter to help PDR reduce 

the displacement error during walking. The variance method is one of them [34]. The 

variance method is based on the double-threshold ZUPT method. After detecting a set 

of walking data with two fixed thresholds, the PDR system calculates the variance in 

data. If the range of variance is outside the pre-set range, it means that an error has 

occurred, and the error data will be compensated. The variance method makes up for 

the shortcomings of the narrow applicability of the fixed threshold, causing the data to 

have better stability. Due to the functional limitation of the low-cost IMU, however, the 

large amount of calculations involved in the variance method makes this algorithm only 

suitable for short-distance walking tests. In long-distance range tests, the output results 

of this method are delayed.  

When ZUPT can help PDR perform pedestrian gait analysis, we need some media 

to help ZUPT apply the judgment results to the PDR system. The filters, such as the 
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Kalman filter, can very well help ZUPT to do this work. These filters will help ZUPT 

transfer the judged data to the INS phase of the PDR system, filter the final output, and 

improve the PDR system’s estimation results of pedestrian walking paths. 

 Filtering 

Filtering is the operation of remove specific band frequencies in the signal, and it 

is an important measure to suppress and prevent interference. It is a probabilistic 

method to estimate a related random process based on the result of observing a certain 

random process. 

Filtering is an important concept in signal processing. There are two types of 

filtering: classical [35], [36], [37]and modern [38]. Classic filtering is an engineering 

concept based on Fourier analysis and transformation. According to advanced 

mathematics, any signal that satisfies certain conditions can be regarded as a 

superposition of infinite sine waves. Modern filtering uses analog electronic circuits to 

filter analog signals. The basic principle is to use the frequency characteristics of the 

circuit to select frequency components in the signal. According to frequency filtering, 

the signal is regarded as an analog signal superimposed by sine waves of different 

frequencies, and the signal filtering is realized by selecting different frequency 

components.  

In inertial navigation systems, filters are widely used to help eliminate the noise 

in the desired signal collected by the IMU; this is done to reduce the influence of errors 

caused by noise. Next, the working principles of some commonly used INS filters will 

be introduced. In subsequent chapters, the algorithm of each filter will be introduced in 

more detail. 
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1.3.1 Kalman Filter 

A Kalman filter is a recursive linear filtering method developed by Rudolf Emil 

Kalman in 1960 [39]. A Kalman filter uses the system input and output observation data 

to optimally estimate the system state. Since the observation data includes the influence 

of noise and interference in the system, the optimal estimation can also be regarded as 

a filtering process. A Kalman filter can estimate the dynamic state of a series of data 

with measurement noise when the measurement variance is known.  

It has two characteristics: (1) it can update and process the data collected on site 

in real time, and (2) it is very convenient to program with a computer. Therefore, 

Kalman filters are currently the most widely used filtering method, with very good 

development prospects, and are widely used in many modern engineering fields, such 

as communications, navigation, guidance, and control [40]. 

1.3.2 Gaussian Filter 

The Gaussian filter is a linear smoothing filter mainly used to eliminate Gaussian 

noise. It is widely used in the noise reduction process of image processing [41]. 

Gaussian filtering smoothes the edges of the image and eliminates noise by performing 

weighted average processing on the image.  

In the inertial navigation system, the Gaussian filter is a mathematical filter. It 

establishes a mathematical model, transforming image data according to this model. 

The converted image data has high and low frequency parts, and the high frequency 

part belongs to noise. The Gaussian filter smoothes this part of the high-frequency data, 

thereby improving the accuracy of the pedestrian's final path simulation map. 

1.3.3 Complementary Filter 

The complementary filter is a simple filter. It takes a weighted average of two or 

more signals, combining the weighted data to generate the required value estimate. The 
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complementary filter is generally comprised of a high-pass filter and a low-pass filter. 

The data with high-frequency noise will pass through the high-pass filter, and the data 

with low-frequency noise will pass through the low-pass filter, and the two pieces of 

data will be weighted, making the sum of the weights equal to 1. These complementary 

measurements produce a full measure of the desired information. INS often uses 

complementary filters for data processing, which is mainly used to calculate the 

direction. Compared with KF, however, the advantage of the complementary filter is 

very small. The advantage is that, if the noise of the sensor is random and obeys a 

normal distribution, the complementary filter can better perform error correction 

without making too many assumptions about the error model [42]. 

1.3.4 High-Pass Filter and Low-Pass Filter 

A high-pass filter is a filter that allows frequencies higher than a certain cutoff 

frequency to pass and attenuates low-frequency signals. For a piece of signal data, if 

there is signal interference in the low frequency, a high-pass filter is needed to process 

the signal data to remove the error signal in the low frequency and to improve the 

accuracy of the signal. The principle of the low-pass filter is like the high-pass filter, 

except that the intercepted frequency signal is different [43], [44].  

In an inertial navigation system, the sensor will produce errors due to noise during 

operation. The high-frequency characteristics of the noise will affect the subsequent 

data processing of the inertial navigation system, while, at the same time, reducing the 

accuracy of short-period inertial components. Therefore, based on the high-frequency 

characteristics of noise, the inertial navigation system will use a low-pass filter to 

reduce the noise of the high-frequency signal, eliminate the high-frequency signal of 

the original data, and improve the position measurement accuracy of the inertial 

navigation. In subsequent chapters, this thesis will also give a detailed introduction on 

how to build a low-pass filter model. 
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 Existing PDR Methods 

Due to the development of MEMS technology, the design of IMU has also become 

diversified. In the field of practical application, inertial navigation benefits from the 

diversification of IMU design, and various inertial navigation methods and algorithms 

are also derived. 

In the field of PDR navigation, the current inertial sensor-based PDR methods can 

be divided into three types: foot-wear method [45], [46], leg-wear method [47], and 

waist-wear method [48], [49]. In addition, the path estimation algorithm in these PDR 

methods is different. Because pedestrians wear the sensors at different positions and the 

sensors experience different inertias during the walking phase, different algorithm need 

to be used to analyze and calculate the data when estimating the path. 

Previously, there have been four PDR algorithms based on different wearing 

methods that have achieved relatively good results in path estimation. Table II below 

shows the results of experiments with these four methods. 

Among these methods, the quaternion vector-based PDR method is based on a 

smartphone’s built-in IMU sensor [50]. It is a handheld device that uses the quaternion 

principle to estimate the attitude. One challenge in this method is that it has a Euler 

integration singularity problem. Another method is the waist-mounted PDR system, 

which is based on an IMU sensor; the device is worn on the waist [48]. This method 

uses the heuristic heading reduction algorithm (HDR) and a hidden Markov model 

(HMM) [51] to combine Kalman filter and zero-velocity update method to track 

pedestrian position. The dual-mounted IMU PDR method is based on an IMU sensor, 

without using GPS [47]. It uses dual-mounted sensors, which were worn on legs and 

feet. The purpose of using two IMUs is to establish a joint constraint between the IMUs 

and to decrease the heel strike impact. Due to the restraint between the two IMUs, this 

method does not require an additional filter algorithm for error mitigation. Additional 

sensors are also used in PDR-based navigation – for example, an ultrasonic sensor-
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integrated PDR method, which is also based on an IMU sensor combined with 

ultrasonic sensor for error correction. This is a foot-mounted sensor method, combined 

with the ultrasonic sensor module. It uses the Kalman filter and zero-velocity update 

method to help estimate the walking path [24], [25]. 

The four PDR methods introduced above produce different results due to different 

wearing methods, algorithms, and error mitigation approaches. Some require additional 

sensors or algorithms to obtain better path tracking results. Due to the use of additional 

sensors and algorithms, however, the overall PDR system often becomes complex; 

therefore, simple solutions are sought. 

Table II: Experiment results for four PDR methods. 

TABLE II 

Method Experiment Error Percentage 

Quaternion vector-based PDR 380 m walking route 2.57 m 0.68% 

Waist-mounted PDR 64.48 m walking route 1.934 m 2.99% 

Dual-mounted PDR (foot- 

and leg-mounted) 

23 m walking route 0.286 m 1.24% 

Ultrasonic sensor foot-

mounted PDR 

120 m walking route 0.53 m 0.44% 
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 Problem Statements 

In the current market, GNSS is already a very mature technology, with very 

accurate positioning technology in outdoor environments. It is able to provide long-

term and stable location tracking services. Moreover, as the coverage of today’s signal 

networks and signal strength have increased, especially with the popularization of 5G 

signal networks, signal services have reached a new level, with the rapid development 

of GNSS technology. It cannot be ignored, however, that the scope of human activities 

is not limited to the outdoors. In more indoor activities, GNSS is often incapable. For 

example, in urban settings, tall buildings will block the satellite signal, making the 

GNSS lack a line of sight and will have the multipath effect [52], which leads to the 

signals superimposed on each other to cause interference, distorting the original signal 

and producing errors. Figure 1.4 shows that the multipath effect happens on the direct 

signals due to the scatterers like buildings and mountains. In some specific area, like 

basements, poor signal strength is another problem. The limitations of satellite signal 

 

Figure 1. 4:  Multipath effect on direct signals. 
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coverage make GNSS not suitable for indoor positioning navigation. 

Accurate indoor navigation yields strong potential for visually impaired persons, 

military and emergency service applications, and virtual reality. The shortcomings in 

inertial navigation, however, still need to be solved: the high cost of accurate sensing 

capabilities and the external navigation aids that are difficult, costly, and time 

consuming to implement. For the disadvantages in the existing PDR system, there are 

high computational requirements for standalone devices in implementing complex error 

correction algorithms. So, additional equipment is required for error correction. The 

PDR system does not only use one sensor to help track the pedestrian position, which 

means the integration of multiple devices increases the difficulty and cost of PDR 

system design. All these systems have uneven accuracy. 

Therefore, for the development of PDR, it has always been crucial to:  

1. Improve the stability of the system,  

2. Improve the accuracy of positioning calculations,  

3. Simplify the complexity of the PDR system, 

4. Reduce costs. 

To solve the current problems of the PDR system, research goals and methods are 

proposed based on these problems.  

 Objectives and Methodologies 

Within this thesis, system augmentations will be investigated to reduce navigation 

system errors, especially to improve the accuracy of the ZUPT method without the use 

of bulky or computationally expensive sensors.  

Firstly, an investigation into conventional foot-mounted PDR system with ZUPT 
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method will be described, discussing its strengths and shortcomings in the navigation 

field and the caveats experienced in its implementation such as physical system design 

and setup, IMU sensor calibration and filters using.  

Next, analyzing the data results of the conventional PDR system, summarizing the 

walking habits of pedestrians, and proposing a new ZUPT method to improve the 

positional accuracy. Without adding additional sensors, by performing secondary 

detection and correction on the pseudo zero velocity intervals generated during data 

processing, the accuracy of step detection is improved, and the purpose of controlling 

drift errors is achieved. 

Finally, the proposed ZUPT method will be validated through several experiments, 

showing improvements that have been made over the conventional ZUPT methods, 

proving that the proposed ZUPT method has the ability to improve the zero velocity 

detection results. The walking path estimation experiments prove that the proposed 

ZUPT method can help the basic PDR system have more accuracy positioning results.   
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Chapter 2: Development of Baseline 

Inertial Navigation System 

 Physical System Design 

2.1.1 IMU Sensor and Platform  

The IMU sensor used in this thesis is SparkFun LSM9DS1 Breakout. It is a 

versatile, motion-sensing system-in-a-chip. Additionally, it is a system-in-package 

featuring a 3D digital linear acceleration sensor, a 3D digital gyroscope sensor, and a 

3D digital magnetic sensor. LSM9DS1 has a total of 9 degrees of freedom on its single 

board. The LSM9DS1 includes an I2C serial bus interface supporting standard and fast 

mode (100 kHz and 400 kHz) as well as an SPI serial standard interface. The LSM9DS1 

is one of only a handful of ICs that can measure three key properties of movement – 

angular velocity, acceleration, and heading – in a single IC. Through these three 

properties, LSM9DS1 can measure the motion information of objects in three 

dimensions, generating nine pieces of data corresponding to acceleration, angular 

 

Figure 2. 1: SparkFun LSM9DS1 Breakout. 
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velocity, and magnetic data. Figure 2.1 shows the picture of SparkFun LSM9DS1 

breakout. Table III shows the operating specifications of LSM9DS1. 

TABLE III 

LSM9DS1 Specifications Values 

Operating Voltage 3.3 V 

Operating Temperature Range -40 °C to +85 °C 

Full Scale for the Accelerometer ±2g/±4g/±8/±16 g 

Full Scale for the Gyroscope ±245/±500/±2000 dps 

Full Scale for the Magnetic Field ±4/±8/±12/±16 gauss 

Table III: LSM9DS1 operating specifications. 

To control the IMU sensor, the Raspberry Pi is used as the platform for LSM9DS1. 

Raspberry Pi is a series of small, single-board computers. The model used is Raspberry 

 

Figure 2. 2: Figure 2.2: Raspberry Pi 3 Model B. 
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Pi 3 Model B. Figure 2.2 shows the picture of raspberry pi 3 which used in this thesis. 

It has 1.2 GHZ 64-bit quad core ARM Cortex-A53 processor, on board 802.11n Wi-Fi, 

Bluetooth, and USB boot capabilities. It helps control the LSM9DS1 with the Python 

programming code through SSH client PuTTY software.  

Through the IMU sensor and Raspberry Pi platform, we can build a PDR device 

system. Because LSM9DS1 has the characteristics of being small in size and wearable, 

we can mount the IMU sensor on the parts of the pedestrian’s body, such as arms, waist, 

and feet. Then we can control LSM9DS1 through the Raspberry Pi platform, collect 

accelerometer and gyroscope data, and store them in CSV format files. The saved 

inertial data will be used for subsequent pedestrian path estimation.  

After determining the specifications of the sensor and the operating platform, we 

need to design a stable structure that can mount the device to facilitate us collecting 

data on the sensor when pedestrians are walking. 

2.1.2 Foot-Mounted INS device  

Because it is necessary to obtain and calculate the data of pedestrian displacement 

through the swing of the pedestrian’s footsteps, the INS device needs to be designed as 

a wearable foot-mounted device. The design requirements of the device are: (1) 

Raspberry pi and IMU can be placed; (2) the IMU can maintain stability during the 

pedestrian’s movement; and (3) the coordinate axis direction of the IMU should be 

consistent with the direction of the foot. 

Figure 2.3 shows the first generation of this thesis device setup. In this device 

setup, the IMU sensor was putted in a bag which was mounted on the ankle. Because 

this method is mounted near the ankle, it cannot fully detect the movement 

characteristics of the footsteps, and because the bag where the IMU sensor is placed is 

not stable enough, it will produce additional vertical sliding errors, so this method is 

abandoned. The experience summarized from the first-generation device setup is: (1) 
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The IMU sensor needs to collect complete data consistent with the movement of the 

foot; (2) During the walking test, it is necessary to provide a more stable working 

environment for the IMU sensor. 

 

Figure 2. 3: First generation of the device setup. 

Figure 2.4 shows the upgrade result of the first-generation device setup. In this 

device setup, the IMU sensor was pasted on the front top of the shoe. In this upgrade, 

the data collected by the IMU sensor can be the same as the foot movement, and the 

device also has a certain degree of stability in short-distance walking experiments. 

However, due to the instability of the fixing method of the IMU sensor, the IMU sensor 

may slip and fall during long-distance walking experiments. Therefore, the IMU sensor 

needs a structure that can have stronger stability while ensuring consistency with the 
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foot movement. 

 

Figure 2. 4: Second generation of the device setup. 

 Figure 2.5 shows the structure designed for the INS device. The IMU sensor and 

Raspberry Pi 3 are fixed to the side of the shoe with a Z-shaped aluminum alloy support 

plate. The bottom end of the Z-shaped bracket is inserted into the sole to ensure that 

unnecessary shaking will not occur when walking. This structure provides the INS 

device with a motion state that is the same as that of the foot so that the IMU sensor 

can unrestrictedly obtain the pedestrian’s acceleration and the angle of foot rotation 

when the pedestrian is walking. 

As the variety of experiments increases, such as multi-speed, long-distance testing, 

the shortcomings of the device structure have also been revealed. In the running test, 

due to the fixed method of the Z-shape structure, a vibration error was generated in the 

fast-walking speed test. To reduce these vibration errors, a new structure was designed 

shown in Figure 2.6. Figure 2.6 shows that the Z-shape frame was nailed in the shoe’s 
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sole, which can provide a more stable working environment for the IMU sensor during 

more strenuous exercise.  

 

Figure 2. 6: Device upgrade version for fast walking test. 

Since then, the device setup can adapt to walking tests at various speeds and can 

 
Figure 2. 5: Proposed shoe-mounted tracking device setup. 
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provide a stable working environment for the IMU sensor, and the structure can also 

enable the IMU sensor to collect data consistent with the movement of the foot, and 

better help the PDR to estimate the positioning information. 

After completing the design of the device structure, it is necessary to perform the 

corresponding calibration according to the placement of the IMU sensor to ensure that 

the IMU sensor will not be interfered by the bias during the working process. 

Calibration is also an important part of the preliminary preparations. It can help the 

IMU sensor to achieve the best working condition and minimize the impact of errors 

caused by bias. 

 Calibration  

After fixing the IMU sensor and platform, the IMU for the calibration step needs 

to be prepared. Before all tests are performed, the gyroscope and accelerometer of the 

IMU need to be calibrated to ensure that the IMU can provide maximum accuracy 

during operation. 

In the first step, the sensor error needs to be calculated according to the output 

characteristics of the IMU sensor, especially the bias instability for each axis of the 

sensor. This bias value can allow us to understand the motion characteristics of the IMU 

more clearly during work, which is convenient for subsequent data processing and 

reduces the occurrence of errors. From the LSM9DS1 IMU device datasheets, the 

relevant sensor specifications are listed in Table IV. According to the information 

provided in the table, the data can be further quantified through the Allan variance 

method to obtain the required error interval and value. Allan variance is a method 

developed by David Allan which measures the frequency stability of oscillators and is 

commonly used in measuring the stability of MEMS devices [53]. Table V [25] shows 

the relative bias instability change value of the LSM9DS1 sensor obtained by the Allan 

variance method, which needs to be used in the path tracking tests.   
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TABLE IV 

Parameter Setting Typical Value Unit 

Acceleration Sensitivity ±2 g 0.061 mg/LSB 

Acceleration Sensitivity ±4 g 0.122 mg/LSB 

Acceleration Sensitivity ±6 g 0.183 mg/LSB 

Acceleration Sensitivity ±8 g 0.244 mg/LSB 

Acceleration Sensitivity ±16 g 0.732 mg/LSB 

Angular Rate Sensitivity ±245 8.75 mdps/digit 

Angular Rate Sensitivity ±500 17.50 mdps/digit 

Angular Rate Sensitivity ±2000 70 mdps/digit 

Angular Rate Zero-Rate ±245 ±10 dps 

Angular Rate Zero-Rate ±500 ±15 dps 

Angular Rate Zero-Rate ±2000 ±25 dps 

Table IV: SparkFun LSM9DS1 Sensor Specifications. 

 

TABLE V 

Sensor Type Axis Angle (Velocity) 

Random Walk 

Unit Bias 

Instability 

Unit 

 

Accelerometer 

X 0.001292 m/s/h0.5 0.000632 m/s2 

Y 0.001201 m/s/h0.5 0.000585 m/s2 

Z 0.001242 m/s/h0.5 0.000504 m/s2 

 

Gyroscope 

X 0.000143 rad/h0.5 0.000214 rad/s 

Y 0.012323 rad/h0.5 0.000321 rad/s 

Z 0.000297 rad/h0.5 0.000297 rad/s 

Table V: Sensor Errors Determined from Allan Variance Plot. 

Since the IMU will produce the above-mentioned bias on the accelerometer and 

gyroscope, after being used for a period, it is necessary to calibrate the IMU before each 

experiment. In the second step, the accelerometer and gyroscope of the IMU sensor 

need to be calibrated. The calibration method comes from the RTIMULib IMU 

programming file of Github [54]. This file provides calibration procedures for the 

accelerometer and gyroscope, respectively. For the accuracy calibration of the 

accelerometer, the program uses the six-position static calibration method. The 

principle of this method is to compare the accelerometer data collected in six different 

coordinate directions with the factory data and to compensate for errors on the axis of 
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the sensor accelerometer. Figure 2.7 shows the six different coordinate directions below.  

 

 

The gyroscope error model is similar to the accelerometer, and the calibration 

 

G 
G G 

G G G 

x 

x 

x 

x 

x 

x 

y 

y 

y 

y 

y 
y 

z z 

z 

z z 

z 

Figure 2. 7:  Six-position static calibration method [52]. 
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method adopted is three-position dynamic rotation. This involves placing the IMU in 

three different position as shown in Figure 2.8, making each axis rotate at the speeds of 

50°/s, 100°/s, 150°/s, 200°/s, and 250°/s in the up and down direction, and then 

collecting data. Compare the collected gyroscope data with the original factory data and 

perform error calibration. 

In the IMU, the influence of the accelerometer is mainly reflected in the accuracy 

and stability of the accelerometer. Among them, the high accuracy of the accelerometer 

ensures the accuracy of subsequent data processing, and the stability of the 

accelerometer is a key factor directly affecting the normal performance of the IMU. The 

influence of the gyroscope on the IMU is mainly reflected in its accuracy, which will 

directly affect the performance of the attitude calculation. In other words, whether the 

IMU can correctly perceive the attitude of the product depends on the accuracy of the 

gyroscope. 

Therefore, to ensure that, after the pedestrian wears the device, the coordinate 

system of the IMU sensor can be the same as the foot, the third step is to calibrate the 

accelerometer and gyroscope of the foot-mounted device after the pedestrian finishes 
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Figure 2. 8: Three-position calibration method. 
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wearing it. When the device was worn, the bias of the IMU sensors was determined 

during zero movement scenarios. In a stationary situation, the reference output value of 

the X-axis and Y-axis of the accelerometer is zero, and the reference output value of the 

Z-axis of the accelerometer is the acceleration of gravity. For the X, Y, and Z axes of 

the gyroscope, the expected output in the static state is all 0. By collecting the data of 

pedestrians standing still on the ground for 10 s, the collected data are compared with 

the expected output values of the accelerometer and gyroscope. For a 100 Hz collection 

frequency device, 10,000 data sets can be collected within 10 s, which is sufficient for 

calibration. This method can effectively calibrate for the position error caused by 

pedestrians wearing the device. 

The fourth step is to determine the noise error of the IMU sensor. The IMU sensor 

will be affected by noise, so a low signal-to-noise ratio will cause insensitivity of IMU. 

Therefore, for subsequent noise reduction processing, the initial noise variables based 

on the IMU sensor specification need to be determined. Table VI shows the initial noise 

variables for the LSM9DS1 IMU sensor, used for the PDR system in this thesis.  

Table VI: Initial Noise Variables. 

After completing the calibration steps, we can use the IMU sensor for more 

accurate data collection and to perform calculation processing by analyzing the changes 

in the data collected when the pedestrian is walking in order to estimate the walking 

trajectory of the pedestrian. 

 

 

 

 

 

 

TABLE VI 

Noise Type Noise Value Unit 

Accelerometer noise 0.05 𝑚/𝑠2 

Gyroscope noise 0.01 𝑟𝑎𝑑/𝑠 

ZUPT measurement noise 0.01 𝑚/𝑠 
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 Data Expression 

The Raspberry Pi connects to the IMU sensor via SSH and uses the i2c 

communication protocol to collect all data. The collected data includes all 

accelerometer axis and gyroscope axis values after the pedestrian starts the walk test. 

The collected data is saved in CSV format, and is then imported into MATLAB, where 

the algorithms defined herein are implemented. Table VII below shows the data 

collected from the IMU sensor directly and saved in the CSV file.   

TABLE VII 

Time 

Stamp (s) 

Accelerometer  

(𝑚/𝑠2) 

Gyroscope 

(𝑟𝑎𝑑/𝑠) 

Accel X Accel Y Accel Z Gyro X Gyro Y Gyro Z 

0.41237 1.05341 0.11004 9.92991 -0.01407 0.05586 -0.02228 

0.42065 1.02538 0.13732 9.94334 -0.01233 0.06275 -0.02415 

0.42917 1.03239 0.07857 9.92869 -0.01663 0.07469 -0.02538 

0.43771 1.04640 0.09116 9.91647 -0.01485 0.08127 -0.0263 

0.4462 0.95066 0.09535 9.95433 -0.0146 0.08534 -0.02419 

0.45449 0.87360 0.10584 9.97632 -0.01826 0.07973 -0.02512 

0.46305 0.81288 0.07647 10.0019 -0.01405 0.06761 -0.02153 

0.47159 0.81055 0.07857 9.97632 -0.01261 0.05629 -0.02071 

0.47987 0.82923 0.08066 9.96535 -0.01059 0.04255 -0.01826 

0.48847 0.81522 0.09745 9.97266 -0.00571 0.02667 -0.01521 

0.49679 0.86192 0.14781 9.94334 0.00052 0.01415 -0.01643 

0.50535 0.91329 0.12682 9.93357 0.00742 0.01383 -0.01857 

0.51388 0.93431 0.08277 9.93479 0.00681 0.01078 -0.01887 

0.52219 0.88761 0.09745 9.96410 0.00773 0.00773 -0.01735 

0.53077 0.86893 0.12473 9.95678 0.01172 0.00345 -0.01582 

0.54773 0.90398 0.11424 9.94579 0.01200 -0.00113 -0.01887 

Table VII: Data Samples Collected from IMU Sensor in CSV File. 
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To better summarize the relationship between the data collected by the sensors and 

the gait changes of pedestrians walking, this paper selects a 25 s period of walking data 

for analysis and explanation. In this 25 s walking experiment, the walker wore a device 

and, after the experiment started, stood still on the ground for 1.7 s, then started walking 

at the speed around 3 km/h, trying to maintain the same walking state throughout the 

experiment to collect acceleration and angular velocity data through the IMU sensor. 

The data collected through the experiment is shown in Figure 2.9 and 2.10. Figure 2.9 

is the data collected by the accelerometer of the IMU sensor. It is composed of the data 

for the X-, Y-, and Z-axes of accelerometer. The X-axis and Y-axis in the accelerometer 

are calibrated to parallel to the ground, so the initial acceleration reading starts from 0. 

Since the Z-axis is perpendicular to the ground, the acceleration reading of the Z-axis 

starts from the gravity value. Figure 2.10 is the data collected by the gyroscope in the 

IMU sensor. It is also composed of data on the three axes – X, Y, and Z. At the beginning 

of the experiment, the pedestrian’s feet are stationary on the ground, so the angular 

velocity readings of the three axes all start from 0 rad/s. It can be seen from these two 

figures that, with the advancement of time, the graphics follow the same changing loops, 

from a stable state to a fluctuating state, regularly switching back-and-forth between 

the two. 

 
Figure 2. 9: Acceleration data collected from 25 s walking test. 

 

 

 



34 

 

 

Figure 2.11 and Figure 2.12 are the experimental data figures for the first 5 s of 

the 25 s experiment. These two pictures make it clearer and more intuitive to see the 

relationship between gait transitions and data changes during walking.  

 
Figure 2. 10: Gyroscope data collected from 25 s walking test. 

 

 

 

 

Figure 2. 11: The first 5 s acceleration data collected from 25 s walking test. 
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The accelerometer and gyroscope data collected by the IMU sensor is the basis of 

the entire PDR system. Only when the acceleration and angular velocity at each 

moment are accurately collected can the path estimation be performed by the INS 

algorithm. Moreover, the filter algorithm is also based on the accelerometer and 

gyroscope values, especially the ZUPT method.  

Now, the design of the foot-mounted device and the calibration of the 

accelerometer and gyroscope of the IMU sensor have been completed, and the 

collection of the moment data on the X, Y, and Z axes have been finished after the 

calibration. Next, the algorithm of the PDR system needs to be developed. 

 

 

Figure 2. 12: The first 5 s gyroscope data collected from 25 s walking test. 
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 Methodology and Implementation 

2.4.1 Inertial Navigation System Algorithm

As seen in the basic PDR navigation system algorithm flowchart, the INS phase is 

the beginning of the entire PDR algorithm. It is mainly composed of two key parts; the 

first part is the conversion of orientation, and the second part is the calculation of 

velocity and position. The Figure 2.13 shows the flowchart of the INS phase 

implementation algorithm. 

 

 

Figure 2. 13: Flowchart of the INS phase implementation algorithm. 
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Because the IMU sensor has its own built-in orientation, the data collected by the 

IMU sensor is based on the orientation of the sensor itself. Therefore, when the 

collected data needs to be processed in the navigation direction in MATLAB, these two 

directions need to be unified. Only after finishing this step can the collected data be 

used in path estimation. 

After completing the unification of orientation, the INS phase will integrate the 

acceleration data collected by the IMU sensor. Integrate the acceleration to get the 

velocity value and perform an integral calculation again on the velocity value to get the 

position. The position obtained by this method can be said to be the prototype algorithm 

of the PDR system. The formulas for the integration are shown below: 

𝑑𝑠 = 𝑣𝑑𝑡 (2.1) 

𝑠 = ∫ (
𝑡2

𝑡1
)  𝑣 𝑑𝑡   (2.2) 

𝑠 = ∫ (
𝑡2

𝑡1
)  𝛼𝑡 𝑑𝑡  (2.3) 

Where 𝛼   is the acceleration, 𝑠  is the displacement, 𝑡1  and 𝑡2  are the time 

stamp. The velocity is 𝑣 = 𝛼𝑡. 

Because there is error in the collected IMU sensor data, when the displacement 

obtained by this algorithm is combined with the angular velocity, there is heading drift. 

Therefore, the PDR system needs a basic filter algorithm to perform error processing 

on the results calculated in the INS phase. Generally, the filter system of the traditional 

PDR system is composed of a Kalman filter and the ZUPT method. 

2.4.2 Kalman Filter Algorithm 

A Kalman filter is an optimal estimation method based on variance. The Kalman 

filter algorithm in the PDR system is divided into two parts, the first being the 

prediction phase and the second being the correction phase. 

In the prediction phase, there are two main formulas: 
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𝑋(𝑘|𝑘 − 1) = 𝐴𝑋(𝑘 − 1|𝑘 − 1) + 𝐵𝑈(𝑘) (2.4) 

Where A and B are matrix coefficients. 𝑋(𝑘|𝑘 − 1) is based on the results of the 

previous round of predictions. 𝑋(𝑘 − 1|𝑘 − 1) is the optimal prediction result in the 

previous round. 𝑈(𝑘)  is the control quantity of the current state. Through the first 

formula, the previous set can be verified and predicted based on the optimal value 

estimated, then the covariance of the error on the currently predicted data set can be 

calculated. 

𝑃(𝑘|𝑘 − 1) = 𝐴𝑃(𝑘 − 1|𝑘 − 1)𝐴𝑇 + 𝑄 (2.5) 

Where 𝑃(𝑘|𝑘 − 1) is the covariance of 𝑋(𝑘|𝑘 − 1), and 𝑃(𝑘 − 1|𝑘 − 1) is the 

covariance of 𝑋(𝑘 − 1|𝑘 − 1). 𝑄 is the error covariance of the estimation process. 

After completing the first part of the prediction phase, then the data can be corrected. 

In the second phase, there are three main formulas. The first one is to calculate the 

Kalman gain: 

𝐾𝑔(𝑘) =
𝑃(𝑘|𝑘 − 1)𝐻𝑇

𝐻𝑃(𝑘|𝑘 − 1)𝐻𝑇 + 𝑅
 (2.6) 

Where the H is the coefficient matrix, and R is the noise covariance of the 

measured value. After the Kalman gain is calculated, a correction can be performed on 

the predict values: 

𝑋(𝑘|𝑘) = 𝑋(𝑘|𝑘 − 1) + 𝐾𝑔(𝑘)(𝑍(𝑘) − 𝐻𝑋(𝑘|𝑘 − 1)) (2.7) 

Where 𝑍(𝑘) is the measured value. 

𝑃 (𝑘|𝑘 = (𝐼 − 𝐾𝑔(𝑘)𝐻)𝑃(𝑘|𝑘 − 1)) (2.8) 

Where 𝐼 is the identity matrix. This formula is used to update the error covariance.  
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The above five formulas constitute the basic working principle of the Kalman filter. 

When these formulas are applied to actual experiments, it is necessary to transform the 

variables in the formulas according to the actual situation. The following section will 

introduce how to establish a Kalman filter algorithm in the PDR system based on the 

data collected from the IMU sensor. 

2.4.3 Zero-Velocity Update Algorithm 

Zero-velocity update method (ZUPT) is widely used in inertial measurement unit 

(IMU)-based pedestrian navigation systems for mitigating sensor drifting error. In the 

PDR algorithm, after the KF phase finishes estimating error covariance, the algorithm 

will enter the ZUPT detect phase. First, ZUPT will judge the walking state of the 

pedestrian. If the pedestrian is in the stance phase, a Kalman filter will start to estimate 

errors in velocity, position, and orientation, and then the algorithm will correct error 

covariance. The more accurate the pedestrian phase is, the more accurate the follow-up 

Kalman filter will be.  

Judgment of the walking phases of pedestrians is based on thresholds obtained 

through experiments. Thresholds are the most important data in the ZUPT method; they 

are the basis of the entire ZUPT detection. The threshold value of each state when the 

gait changes is calculated by collecting the walking data of pedestrians and 

summarizing the data changes in the gait transition.  
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In the threshold experiments, people wear devices and perform walking 

experiments, which include normal walking, fast walking, climbing, and jumping, then 

data is collected. Classify different types of walking styles, perform one-to-one 

correspondence with the data, and take the maximum and minimum values of the data 

as the threshold of the walking style. For example, in the fast-walking experiment, the 

IMU data (acceleration data and angular velocity data) under fast walking condition is 

collected and plotted on the 2D coordinate system (Figure 2.14). The changing rule of 

the data is analyzed, and the maximum and minimum values of the stance phase and 

swing phase are used as the threshold for this segment data of fast walking. Through 

over 20 repetitions of the experiments, the applicable fast-walking threshold can be 

obtained. 

The threshold value is calculated and summarized, and a list of the threshold value 

range of the ZUPT method experiment is obtained. 

Angular rate value threshold: 

𝜔𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 0.6 𝑟𝑎𝑑/𝑠, when 𝜔𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 value is smaller than 0.6 rad/s, the foot 

is in stance phase.   

 
Figure 2. 14: Stance phase and swing phase shown by the magnitude angular rate. 
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Accelerometer threshold shown in Table VIII: 

TABLE VIII 

Motion State Accelerometer Threshold (g) 

Normal walking (3km/h - 4 km/h) 𝑎𝑚𝑎𝑔_𝑚𝑎𝑥 − 𝑎𝑚𝑎𝑔_𝑚𝑖𝑛 < 3𝑔 

Fast walking (4 km/h – 6 km/h) 3𝑔 < 𝑎𝑚𝑎𝑔_𝑚𝑎𝑥 − 𝑎𝑚𝑎𝑔_𝑚𝑖𝑛 < 4𝑔 

Climbing stairs 4𝑔 < 𝑎𝑚𝑎𝑔_𝑚𝑎𝑥 − 𝑎𝑚𝑎𝑔_𝑚𝑖𝑛 < 7𝑔 

Striding or jumping  𝑎𝑚𝑎𝑔_𝑚𝑎𝑥 − 𝑎𝑚𝑎𝑔_𝑚𝑖𝑛 > 7𝑔 

g is the gravity acceleration values. 

𝑎𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 𝑎𝑚𝑎𝑔_𝑚𝑎𝑥 − 𝑎𝑚𝑎𝑔_𝑚𝑖𝑛  

𝑎𝑚𝑎𝑔_𝑚𝑎𝑥 is the maximum magnitude of the acceleration data 

𝑎𝑚𝑎𝑔_𝑚𝑖𝑛 is the minimum magnitude of the acceleration data 

Table VIII: Specific judgment of the accelerometer threshold. 

All thresholds used in this paper are calculated based on the IMU sensor used in 

this paper. To adapt the walking state of different pedestrians, the number of people in 

the threshold experiment is 20. 20 is not an ideal sample size, due to the limitations at 

the time of this thesis, this thesis cannot carry out larger-scale data collection and cannot 

provide more groups’ sample test data as a reference for the threshold range. Therefore, 

if want a more accurate threshold range, to conduct further sample data collection and 

analysis is needed.  

When the range of different motion threshold is determined, it can help the ZUPT 

method to determine the gait of pedestrians and reduce positioning errors more 

accurately. Next, the conventional single-threshold ZUPT method will be used to merge 

with the Kalman filter to construct an algorithm for the PDR system. 
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2.4.4 IMU-Based PDR Algorithm 

Because it is an IMU-based PDR algorithm, the data collected are the 

accelerometer value, gyroscope value, and time stamp. According to the IMU sensor 

used, some variables also need to be initialized at the beginning of the algorithm: 

System initialized parameter values shows in the Table IX [25]: 

TABLE IX 

System Initialized Parameter Values 

Gravity 𝑔 = 9.8 𝑚/𝑠2 

Time step ∆𝑡 = 0.01 𝑠𝑒𝑐𝑜𝑛𝑑 (100𝐻𝑧) 

Acceleration matrix 𝑎 = (0𝑥 0𝑦 0𝑧)𝑇 

Velocity matrix 𝑉 = (0𝑥 0𝑦 0𝑧)𝑇 

Position matrix 𝑃 = (0𝑥 0𝑦 0𝑧)𝑇 

KF error covariance matrix 𝑝 =  09𝑥9 

ZUPT acceleration threshold: 𝜎𝑡𝑎 

ZUPT gyroscope threshold: 𝜎𝑡𝜔 

Table IX: System initialized parameter values. 

Initialize the acceleration orientation matrix𝐶𝑘: 

𝐶𝑘 = [

cos(𝑝𝑖𝑡𝑐ℎ) sin(𝑟𝑜𝑙𝑙) sin(𝑝𝑖𝑡𝑐ℎ) cos(𝑟𝑜𝑙𝑙) sin(𝑝𝑖𝑡𝑐ℎ)

0 cos(𝑟𝑜𝑙𝑙) − sin(𝑟𝑜𝑙𝑙)

− sin(𝑝𝑖𝑡𝑐ℎ) sin(𝑟𝑜𝑙𝑙) cos(𝑝𝑖𝑡𝑐ℎ) cos(𝑟𝑜𝑙𝑙) cos(𝑝𝑖𝑡𝑐ℎ)
] , (2.9) 

𝑟𝑜𝑙𝑙 = arctan (
𝑎𝑦

𝑠𝑒𝑛𝑠𝑜𝑟

𝑎𝑧
𝑠𝑒𝑛𝑠𝑜𝑟

) (2.10) 

𝑝𝑖𝑡𝑐ℎ = − arcsin (
𝑎𝑥

𝑠𝑒𝑛𝑠𝑜𝑟

𝑔𝑟𝑎𝑣𝑖𝑡𝑦
) (2.11) 

𝑦𝑎𝑤 = 0 (2.12) 

Roll, pitch, and yaw are the three basic variables to calculate in the orientation 



43 

 

matrix 𝐶𝑘; these three variables are calculated from the IMU acceleration data. 

The IMU sensor will be affected by noise, so use the initial noise variables shown 

in Table VI:  

Accelerometer noise: 𝜎𝑎 = 0.05 𝑚/𝑠2 

Gyroscope noise: 𝜎𝜔 = 0.01 𝑟𝑎𝑑/𝑠 

ZUPT measurement noise: 𝜎𝑣 = 0.01 𝑚/𝑠 

Acceleration noise covariance as a diagonal matrix with values: 

𝑅𝑎 = 𝑑𝑖𝑎𝑔 (𝜎𝑎,𝑥  𝜎𝑎.𝑦  𝜎𝑎,𝑧)
2

(2.13) 

Gyroscope noise covariance as a diagonal matrix with values: 

𝑅𝜔 = 𝑑𝑖𝑎𝑔 (𝜎𝜔,𝑥  𝜎𝜔.𝑦  𝜎𝜔,𝑧)
2

 (2.14) 

ZUPT measurement noise covariance as a diagonal matrix with values: 

𝑅𝑍 = 𝑑𝑖𝑎𝑔 (𝜎𝑣,𝑥  𝜎𝑣.𝑦  𝜎𝑣,𝑧)
2

(2.15) 

After completing the creation of the initial value, the algorithm can be built for the 

PDR system. The algorithm built is based on the principles of INS phase, KF phase, 

and ZUPT phase [25].  

First, the data collected by the gyroscope in the IMU sensor needs to subtract the 

bias error, the bias error should be calculated by the data at the beginning of the 

experiment: 

𝜔 = 𝜔 − 𝜔𝑏𝑖𝑎𝑠 (2.16) 

Then, the skew-symmetric angular rate matrix is calculated, and the orientation 

matrix in sensor frame is updated: 

Ω𝑘 = [

0 −𝜔𝑧 𝜔𝑦

𝜔𝑧 0 −𝜔𝑥

−𝜔𝑦 𝜔𝑥 0
] (2.17) 
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𝐶𝑘 = 𝐶𝑘−1 =
2𝐼3𝑋3 + Ω𝑘∆𝑡

2𝐼3𝑋3 − Ω𝑘∆𝑡
(2.18) 

Because the orientation frame of the sensor is different from the navigation frame 

of pedestrian, the sensor frame data need to be converted to navigation frame data. The 

next step is to transfer the measured accelerations from the sensor frame to navigation 

frame and to calculate the skew-symmetric acceleration rate matrix, which shows the 

changes in velocity and orientation errors:  

𝑎𝑘
𝑛𝑎𝑣 =

(𝐶𝑘 + 𝐶𝑘−1)𝑎𝑘
𝑠𝑒𝑛𝑠𝑜𝑟

2
(2.19) 

 

𝐴𝑘 = [

0 −𝑎𝑧 𝑎𝑦

𝑎𝑧 0 −𝑎𝑥

−𝑎𝑦 𝑎𝑥 0
] (2.20) 

 

After the navigation frame acceleration 𝑎𝑘
𝑛𝑎𝑣  is determined, take the integrate 

calculation to obtain the estimated velocity: 

𝑉𝑘 = 𝑉𝑘−1 +
(𝑎𝑘

𝑛𝑎𝑣 + 𝑎𝑘−1
𝑛𝑎𝑣 − 2(0 0 𝑔)𝑇)∆𝑡

2
(2.21) 

 

After the velocity is determined, the position can be estimated by: 

𝑃𝑘 = 𝑃𝑘−1 +
𝑡

2
((𝑉𝑘 + (𝑉𝑘−1) (2.22) 

 

Update the error covariance matrix: 

𝑝𝑘 = 𝐹𝑘𝑝𝑘−1𝐹𝑘
𝑇 + 𝑅𝑎𝑅𝜔∆𝑡 (2.23) 

 

𝐹𝑘 = [

𝐼3𝑥3 03𝑥3 03𝑥3

03𝑥3 𝐼3𝑥3 𝐼3𝑥3∆𝑡
−𝐴𝑘∆𝑡 03𝑥3 𝐼3𝑥3

] (2.24) 
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Detect the stance phase or swing phase: 

                                                        𝜔𝑘 ≤ 𝜎𝑡𝜔 (𝑠𝑡𝑎𝑛𝑐𝑒 𝑝ℎ𝑎𝑠𝑒)                                       (2.25) 

 

Compute the Kalman gain 𝐾𝑘: 

𝐾𝑘 = 𝑝𝑘𝐻𝑇(𝐻𝑝𝑘𝐻𝑇 + 𝑅𝑍)−1 (2.26) 

H is the zero-velocity measurement matrix: 

𝐻 = (03𝑥3 03𝑥3 𝐼3𝑥3) (2.27) 

 

Compute the state error from Kalman gain 𝐾𝑘: 

𝜀𝑘 = 𝐾𝑘𝑉𝑘 = (𝜀∁𝜀𝑃𝜀𝑉)𝑇 (2.28) 

 

𝜀∁  is the complete error vector of attitude, 𝜀𝑃  is the complete error vector of 

position, 𝜀𝑉 is the complete error vector of velocity. 

To show the complete error vector in the matrix: 

𝜀∁ = (𝜀∁,1 𝜀∁,2 𝜀∁,3)
𝑇

(2.29) 

𝜀∁,1 is roll error value, 𝜀∁,2 is pitch error value, and 𝜀∁,3is yaw error value. 

𝜀𝑃 = (𝜀𝑃,1 𝜀𝑃,2 𝜀𝑃,3)
𝑇

(2.30) 

 

𝜀𝑉 = (𝜀𝑉,1 𝜀𝑉,2 𝜀𝑉,3)
𝑇

(2.31) 

 

After the H and 𝐾𝑘 are both determined, the error covariance can be corrected:  

𝑝𝑘 = (𝐼9𝑥9 − 𝐾𝑘𝐻)𝑝𝑘 (2.32) 

 

And correct the velocity estimate and position estimate: 
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𝑉𝑘 = 𝑉𝑘 − 𝜀𝑉 (2.33) 

 

𝑃𝑘 = 𝑃𝑘 − 𝜀𝑃 (2.34) 

  

𝐶𝑘 =
2𝐼3𝑋3 + Ω𝜀𝑘

2𝐼3𝑋3 − Ω𝜀𝑘
𝐶𝑘 (2.35) 

 

Ω𝜀𝑘 = [

0 𝜀∁,3  −𝜀∁,2

−𝜀∁,3 0 𝜀∁,1

𝜀∁,2 −𝜀∁,1 0
] (2.36) 

After completing the PDR algorithm, the data collected by the IMU sensor can be 

imported for pedestrian route estimation. The data selected for the test is the 25 s 

walking test data used in the data expression section. The next page will display and 

compare, based on the INS stage algorithm, the output results of the system that does 

not include the KF stage and the ZUPT stage, as well as the output results after adding 

these two stages. 
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 Map Plots of Basic PDR Algorithms 

To facilitate the analysis of the calculation and estimation results of each part of 

the PDR algorithm, only the PDR system based on the INS algorithm is used to first 

draw the 25 s of data and see what kind of graph will be obtained. The Figure 2.15 

below is the one obtained from MATLAB. Test 25 s data on a rectangular indoor area 

of 5 m * 1.5 m. 

Figure 2.15 shows the estimated path on a map. The blue line represents the 

estimated pedestrian walking route. The testing area is a rectangular area, but the path 

shown by the plot has serious drifting error. Therefore, in the case of only the INS phase 

algorithm, the PDR system does not have precise navigation functions and cannot 

effectively correct the errors. 

 

Figure 2. 15: Estimated walking path for 25 s based on INS phase algorithm only. 
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Next, a Kalman filter and a single-threshold ZUPT method were added to the PDR 

algorithm, and the same data was used to draw a path diagram in MATLAB. The Figure 

2.16 below shows the figure obtained from MATLAB. As can be seen from Figure 2.16, 

due to the addition of the filter and the conventional single-threshold ZUPT method, 

the drift of the pedestrian’s walking path has been greatly improved compared with the 

previous figure. The tested area is rectangular, and, this time, the PDR system maintains 

a good walking shape in the first straight line and the first corner after the walking starts. 

Due to the accumulation of errors, however, drift occurred after the first corner. As a 

result, the system was unable to complete the accuracy path estimation and only forms 

a drift-shaped triangular route on the map.  

 

 

Figure 2. 16: Estimated walking path for 25 s based on INS phase algorithm with conventional 

single threshold ZUPT method. 
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Comparing Figure 2.15 with Figure 2.16, after the KF filter and ZUPT method are 

added to the PDR system algorithm, the pedestrian trajectory becomes clearer. 

Although there are still drift errors, the overall shape of the pedestrian walking area can 

be roughly determined. To solve the drift error that still exists after the Kalman filter 

and the traditional ZUPT method were added to the PDR system, a solution is proposed: 

without changing the Kalman filter algorithm structure, it is planned to conduct a 

detailed analysis of the traditional ZUPT judgment and to try developing the 

conventional ZUPT methods and improving the accuracy of path estimation on the map. 

 

 Benchmark Summary  

After completing the device setup and calibration and completing the algorithm 

design of the basic PDR system, this thesis requires a benchmark for the further 

experiments, and compares the experimental results with the benchmark setup, 

summarizing the advantages and disadvantages of different methods. 

At current stage, this thesis can use the basic KF phase and ZUPT phase to 

eliminate drifting errors in PDR’s INS phase, and a certain error elimination ability is 

reflected in the results of the map plot in Figure 2.16. And the method used in Figure 

2.16 is also the conventional method in this thesis. Therefore, this thesis will use this 

method device setup data and walking test result as the benchmark data, which will be 

used for the further experiment results’ comparison.    

Table X shows the benchmark data for different specifications of the IMU sensor 

and device setup used in this thesis. In the following algorithm redesign and experiment 

comparison, the benchmark will be used as a reference for experimental results for 

comparison and analysis.  
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TABLE X 

Motherboard  Raspberry pi 3B 

IMU sensor SparkFun LSM9DS1 

Operating voltage 3.3 V 

Operating frequency 100 Hz 

Mounted type Shoe-mounted 

Acceleration noise 0.05 𝑚/𝑠2 

Gyroscope noise 0.01 𝑟𝑎𝑑/𝑠 

ZUPT measurement noise 0.01 𝑚/𝑠 

Algorithms KF filter + single gyroscope 

threshold ZUPT method 

Gravity 𝑔 = 9.8 𝑚/𝑠2 

Table X: Device benchmark data 
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Chapter 3: Development of Pseudo-Zero 

Velocity Re-Detection Double Threshold 

Zero-Velocity Update Method 

 Conventional ZUPT Methods  

3.1.1 Introduction to Two Conventional ZUPT Methods 

In this study, two conventional ZUPT methods were used, PDR walking 

experiments were carried out, and the performance of each method in the experiment 

was recorded. 

The first conventional ZUPT method used is the single-threshold ZUPT method. 

This ZUPT method is based on the gyroscope threshold. The gyroscope threshold value 

is 0.6 rad/s, as mentioned in the previous section. The ZUPT method only uses one-

threshold detection, and, based on the detection, the error correction of the pedestrian 

path is performed. Because of the limitations of single-threshold detection, it cannot 

accurately determine the zero-speed interval when pedestrians are walking, so the 

pedestrian’s gait changes cannot be accurately analyzed. 

The second method is based on the first method, adding the analysis of variance. 

Based on the threshold judgment, variance judgment is performed on the judged zero-

velocity interval, which can effectively detect abrupt data, eliminating and 

compensating for misjudgment caused by errors. 

Next, these two conventional methods will be tested separately, with analysis of 

the performance of these two methods in judging the zero-velocity intervals and 

comparison of the results to analyze the advantages and disadvantages of each. 
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3.1.2 Pseudo-Zero-Velocity Interval and False Detection 

Because the error and noise of a low-cost IMU sensor is usually very high, these 

vibrations can easily cause errors and false detection in pedestrian walking and step 

data. Also, due to the impact of noise on the IMU, the conventional ZUPT cannot form 

continuous intervals. Additionally, due to the incompleteness of the threshold, the phase 

conversion interval is not correctly detected [55]. Although the variance can well 

maintain the stability of the data, the large calculation volume of the variance will 

overload the IMU sensor with work. To better compare the performance of different 

ZUPT methods, this paper uses the same 25 s pedestrian walking data for analysis. 

As shown in Figure 3.1 and Figure 3.2, the data used this time is the relationship 

between magnitude acceleration and time. Figure 3.1 is the result of the conventional, 

single-threshold ZUPT, while Figure 3.2 is the conventional single threshold-with-

variance ZUPT method’s result, based on the listed gyroscope threshold. The ZUPT 

judged numbers are 10 and 0 (10 meaning the stable phase and 0 meaning the swing 

 
Figure 3. 1: Conventional method false detection of zero-velocity. 
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phase). As shown in Figure 3.1, there are three black blocks, and the first is pseudo-

zero velocity. In the first black block, there are two detected stance phase results: the 

first is a very short interval, and the second is the normal red interval block. Comparing 

it with the blue curve, we can see the second red block corresponding to the curve is at 

a stable level – the stance phase – so this is a correct detection. The first short red block 

corresponding to the blue curve, however, is still in swing phase, and the ZUPT detects 

this data as stance phase; this is a pseudo-zero-velocity interval. The second black block 

is zero velocity detected earlier. The red block has a thick line in the front because, 

when a pedestrian switches from swing phase to stance phase, there will be a buffer 

period. The data in the buffer period may meet the threshold detection conditions due 

to the influence of vibration, but it is not the stance phase. The third block is a missed 

detection. When the blue curve maintains a stable level, which means it is in stance 

phase, the red block is not continuous. This is also due to the influence of external 

factors. During the pedestrian’stance phase, the data will fluctuate and the condition of 

the ZUPT threshold is not met. It is judged to be the swing phase, so a continuous red 

block cannot occur. 

 
Figure 3. 2: Single-threshold-with-variance method false detection of zero-velocity. 
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Figure 3.2 shows the single-threshold-with-variance ZUPT method. The variance 

can better maintain the data in a stable level, so the non-continuous interval does not 

occur in the figure, but the pseudo-zero velocity and earlier detection cannot be better 

removed. In the swing phase, the data changes have always been in a relatively large 

state, so the variance cannot handle this part of the data, though it can play a good role 

in the relatively stable state of the stance phase data. 

Figure 3.3 is the foot trajectory diagram in a 3D space coordinate system when the 

pedestrian is walking at a constant speed in the 25 s walking experiment. Figure 3.3 

shows the step length of each step of the pedestrian, which is used to calculate the 

displacement of the pedestrian. To determine the number of steps when pedestrians are 

walking, it is necessary to accurately judge the stance phases and swing phases through 

ZUPT. 

The determination of the zero-velocity interval can better recognize the pedestrian’ 

phase changes during walking, and, by using the ZUPT method, the pedestrian’ motion 

state can be divided into two parts – swing phase and stance phase. The two parts 

calculate the displacement and direction separately. If there is no way to accurately 

determine the zero-velocity interval, it is impossible to accurately use the pedestrian 

walking data to calculate the pedestrian’s displacement and direction. Therefore, 

 
Figure 3. 3:  Identification of pedestrian’s foot 3D walking trajectory. 
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without the use of additional equipment, the conventional ZUPT method is redesigned 

to develop a more accurate ZUPT method, which can better help the PDR system 

eliminate errors generated during walking. 

 

 Pseudo-Zero-Velocity Re-Detection Double-Threshold ZUPT 

Method 

3.2.1 Implementation Algorithm of Proposed ZUPT Method 

To better solve these existing problems, the proposed method can reduce the 

calculation steps, better remove pseudo-zero velocity, and account for the error effect 

caused by walking vibrations, thus improving the accuracy of the step count. 

The following is the operating principle of this proposed method. The frequency 

of the IMU sensor used in the experiment is between 100 Hz and 120 Hz. To avoid the 

load operation of the IMU sensor, 100 Hz has been chosen as the basis frequency for 

experimental data collection, so the data collecting speed is limited at 100 sets per hour: 

𝑓 = 100 𝐻𝑧 

Table XI and Table XII show the data samples collected by three experimenters 

walking in two different speed ranges. Each sample represents a complete ZUPT 

judgment interval, which is a complete walking step. As the walking speed increases, 

the time of one step becomes shorter and the corresponding collected data decreases. 

Taking Table XII as an example, Pedestrian #1 needs 19 data to complete a stance phase, 

and the number of data needed to complete a swing phase is 27. Pedestrian #3, who has 

different running postures, needed 25 data to complete a stance phase, and 20 data to 

complete a swing phase. Compared with the speed of 3-4 km/h, more data is needed to 

complete the corresponding phase.  
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TABLE XI 

Pedestrian Phase Sub-Phase Number of Data Percentage 

 

 

1 

 

Stance 

 

Full contact 32  

58 

 

41.1% 
Pre-swing 12 

Pre-stance 14 

 

Swing 

Acceleration 43  

83 

 

58.9% 
Deceleration 40 

 

 

2 

 

Stance 

 

Full contact 43  

67 

 

44.1% 
Pre-swing 11 

Pre-stance 13 

 

Swing 

Acceleration 48  

85 

 

55.9% 
Deceleration 37 

 

 

3 

 

Stance 

 

Full contact 64  

98 

 

59% 
Pre-swing 16 

Pre-stance 18 

 

Swing 

Acceleration 37  

68 

 

41% 
Deceleration 31 

Table XI:  The amount of data collected for foot phases at 3-4 km/h. 
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TABLE XII 

Pedestrian Phase Sub-Phase Number of Data Percentage 

 

 

1 

 

Stance 

 

Full contact 12  

19 

 

 

41.3% 

 

Pre-swing 3 

Pre-stance 4 

 

Swing 

Acceleration 15  

27 

 

58.7% 
Deceleration 12 

 

 

2 

 

Stance 

 

Full contact 13  

22 

 

 

48.8% 

 

Pre-swing 3 

Pre-stance 6 

 

Swing 

Acceleration 10  

23 

 

51.2% 
Deceleration 13 

 

 

3 

 

Stance 

 

Full contact 14  

25 

 

 

55.3% 

 

Pre-swing 7 

Pre-stance 4 

 

Swing 

Acceleration 12  

20 

 

44.7% 
Deceleration 8 

Table XII: The amount of data collected for foot phases at 8-10 km/h. 

Next, we perform data analysis on the pseudo-zero-velocity interval and failed 

detection interval, as seen in Figure 3.1. Table XIII shows the results of ZUPT judgment 

from the 6th to the 10th second in Figure 3.1 and the amount of data in each phase result. 

From the phase conversion results in the table, there are two completely phase 

conversions within 7.4 s-7.5 s. The first is from 7.4 s to 7.43 s, which completes the 

conversion from swing phase to stance phase, and the second is from 7.43 s to 7.5 s, 

completing the conversion from stance phase to swing phase. According to the figure, 
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the data result in this time should be the pseudo-zero-velocity interval; moreover, by 

summarizing the walking habits of pedestrians, pedestrians cannot complete phase 

conversion within 3 or 7 data. From this, it can be judged that the phase conversion 

between 7.4 s-7.5 s does not exist, likely the result of errors. According to the previous 

phase state of 6.7 s-7.4 s, we can infer that 7.4 s-7.5 s should be a swing phase. Through 

multiple walking experiments and the judgment result of ZUPT, it can be concluded 

that, at a frequency of 100 Hz, pedestrians cannot complete a complete phase 

conversion within 10 data. Therefore, we choose 10 as the judgement threshold in the 

proposed ZUPT method. 

TABLE XIII 

Time Data Samples Phase Results Corrected  

6.00 s-6.30 s 30 Swing Swing 

6.30 s-6.70 s 41 Stance Stance 

6.70 s-7.40 s 69 Swing Swing 

7.40 s-7.43 s 3 Stance Swing 

7.43 s-7.50 s 7 Swing Swing 

7.50 s-8.10 s 60 Stance Stance 

8.10 s-9.10 s 100 Swing Swing 

9.10 s-9.17 s 7 Stance Swing 

9.17 s-9.18 s 1 Swing Swing 

9.18 s-9.20 s 2 Stance Swing 

9.20 s-9.24 s 4 Swing Swing 

9.24 s-9.70 s 46 Stance Stance 

9.70 s-10.0 s 30 Swing Swing 

Table XIII: ZUPT Detected results from 6 s-10 s. 
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After determining 10 as the judgment threshold, we summarize the principle of 

the proposed ZUPT method and list the formula algorithm. Figure 3.4 shows the 

flowchart of the single threshold ZUPT implementation algorithm, while Figure 3.5 

shows the pseudo-zero-velocity re-detection double-threshold ZUPT implementation 

algorithm. After ZUPT completes the first double threshold determination, the re-

detection algorithm will re-detect the determined results. 

 

Figure 3. 4: Flowchart of the single-threshold ZUPT implementation algorithm [25]. 

 

 

Figure 3. 5: Flowchart of the pseudo-zero-velocity re-detection double-threshold ZUPT 

implementation algorithm. 
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3.2.2 The Formula Implementation Algorithm 

Initialize the swing phase interval: 

𝐼𝑠𝑤,𝑛 = [01, 02, 03 … 0𝑛−1, 0𝑛] (3.1) 

ZUPT judges that the data is in swing phase and is represented by the number 0. n 

represents the amount of data in the swing interval. 

Initialize the stance phase interval: 

𝐼𝑠𝑡,𝑚 = [11, 12, 13 … 1𝑚−1, 1𝑚] (3.2) 

ZUPT judges that the data is in stance phase and is represented by the number 1. 

m represents the amount of data in the stance interval. 

𝑇𝑑𝑎𝑡𝑎 = 10  

𝑇𝑑𝑎𝑡𝑎  is the re-detection interval size threshold. (For different 𝑇𝑑𝑎𝑡𝑎  step 

detection test results are in chapter 4.1) 

If one interval is formed in the double-threshold detection part, and it is determined 

as the swing phase interval, which is composed of 𝑛1 data: 

𝐼𝑠𝑤,𝑛1
= [01, 02, 03 … 0𝑛1−1, 0𝑛1

]  

Then re-detect this swing phase interval: 

𝑤ℎ𝑒𝑡ℎ𝑒𝑟 𝑛1 >  𝑇𝑑𝑎𝑡𝑎 (3.3) 

If true, the judgment of the previous step is correct, which means the interval is a 

swing phase interval. So, keep the phase result and interval, and proceed to the next 

interval. 
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If the next interval – which formed in the double-threshold detection part – is 

determined as the stance phase interval, and is composed of 𝑚1 data: 

𝐼𝑠𝑡,𝑚1
= [11, 12, 13 … 1𝑚1−1, 1𝑚1

]  

Then re-detect this stance phase interval: 

𝑤ℎ𝑒𝑡ℎ𝑒𝑟 𝑚1 >  𝑇𝑑𝑎𝑡𝑎 (3.4) 

If false, the judgment of the previous detection is incorrect. Then convert the 

stance phase interval into the swing phase interval, and combine it with the previous 

swing phase interval: 

𝐼𝑠𝑤,𝑛1
= 𝐼𝑠𝑤,𝑛1+𝑠𝑡,𝑚1

= [01, 02, 03 … 0(𝑛1+𝑚1)−1, 0𝑛1+𝑚1
] (3.5) 

After completing the new ZUPT method algorithm, this 25 s of data will be re-

analyzed, and the estimated pedestrian’s trajectory will be plotted by using this new 

algorithm; the performance of this new ZUPT method in judging zero-velocity intervals 

will be compared with the two conventional ZUPT methods. For the selection of 𝑇𝑑𝑎𝑡𝑎 

value, there is a detailed analysis in the step detection test of Chapter 4.1.   
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3.2.3 New ZUPT Method’s Performance and Testing Results 

Through this proposed ZUPT method, all intervals can be re-detected, and the 

interval with errors can be corrected, which improves the accuracy of ZUPT judgment. 

As shown in Figure 3.6, our proposed ZUPT method solves the problem that the 

pseudo-zero-velocity interval cannot be detected correctly, removes the early false 

detection, and makes every detected phase interval a continuous interval. 

The proposed ZUPT method has excellent performance in the detection of 

pedestrian stance phase and swing phase. Next, we need to test whether the detection 

result can help the PDR system to improve the accuracy of the pedestrian walking path 

in the navigation map. The PDR system is used in conjunction with the proposed ZUPT 

method algorithm to replot the 25 s data on the map. Figure 3.7 below shows the 

estimated path map from MATLAB. 

 

Figure 3. 6: The proposed ZUPT method with no false detection. 
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As can be seen from Figure 3.7, the tested 5 m * 1.5m rectangular indoor area can 

be better estimated on the map plot. This walking path has the closest similarity to the 

ground truth. Therefore, comparing the results of a PDR system with a single-threshold 

ZUPT method, the proposed ZUPT method can significantly improve the accuracy of 

the PDR system in estimating the walking path. 

 

 

 

 

 
Figure 3. 7:  Estimated walking path for 25 s based on the proposed ZUPT method. 
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 Low-Pass Filter 

After using the PDR system with the proposed ZUPT method to plot the path on 

map, we can get a more accurate result. From the map plot, however, we can see that 

the blue line representing the walking path is sharp. Different from the smooth line, the 

sharp walking path line reduces the acceptability of the appearance of the walking path 

and increases the difficulty of comparison to ground truth. Therefore, an additional filter 

needs to be used to correct the plot results so that the lines in the plot will become 

smoother.  

Through the analysis of the data, the pedestrian will continuously switch between 

the stance phase and the swing phase while walking, and ZUPT ensures that each data 

can accurately correspond to the walking state of the pedestrian. During the ZUPT 

method’s working time, sharp corrections exist due to the error-state corrections being 

applied at each stance phase. We need to add filters to reduce the impact of sharp 

correction on the path line. 

A low-pass filter is an electronic filtering device that allows signals below the cut-

off frequency to pass but signals higher than the cut-off frequency cannot pass. There 

are many different forms of the low-pass filter concept, including electronic circuits 

(such as hiss filters used in audio equipment), digital algorithms for smoothing data, 

acoustic barriers, image blurring, etc. Both tools provide a smooth form of signal by 

eliminating short-term fluctuations and retaining long-term development trends. The 

role of the low-pass filter in signal processing is equivalent to that of other fields, such 

as the moving average in the financial field. If we combine both low-pass filter and the 

moving average’s working principles together, we will get a type of filter: moving 

average filter. The essence of moving average is a kind of low-pass filtering. Its purpose 

is to filter out high-frequency disturbances in the time series and to retain useful low-

frequency trends. The moving average filter is used to directly calculate the average 

weight of the time series, so it is simple to use.  
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The principle of the moving average filter is that the moving average filter is based 

on statistical rules and regards continuous sampled data as a length fixed to N. After a 

new measurement, the first piece of data of the above values is removed. The remaining 

N-1 pieces of data are moved forward in turn, the new sampled data is linked and 

inserted, arithmetic operations are performed on this variable, and the connected result 

is used as the result of this measurement. 

After using the moving average filter on the 25 s walking test data, the following 

figure is obtained. As we can see from Figure 3.8, the blue line becomes very smooth, 

and the filter helps create a more natural-looking walking path.  

 

Figure 3. 8: Estimated walking path for 25 s based on the proposed ZUPT method with moving 

average filter. 
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In the moving average filter algorithm, the window size N is fixed to 200 to test if 

this window size N is suitable for long distance walking and will not cause the lag in 

data analysis process. Therefore, additional tests were performed in a rectangular indoor 

area of 5 m * 20 m. Using the same algorithm to process the moving average filter of 

this set of data, the results are shown in Figure 3.9 and Figure 3.10. The estimated path 

line in Figure 3.10 has been smoothed by the moving average filter. The estimated path 

is basically the same as the actual walking path, so there is no hysteresis effect. 

Experiments have proved that, with the increase of walking data sets, the moving 

average filter can adapt to long-distance walking requirements without increasing the 

 
Figure 3. 9: Estimated walking path based on the proposed ZUPT method. 
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window size N. Therefore, N = 200 is suitable for long-distance tests. 

 

 

 

 

Figure 3. 10: Estimated walking path based on the proposed ZUPT method with moving average 

filter. 
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Chapter 4: Results and Discussion 

 Step Detection 

The most direct impact of ZUPT on PDR is detecting the number of steps 

pedestrians walk and the time interval between each step [56]. When the number of 

steps and the time are determined, the walk distance and speed of the pedestrian can be 

determined. Therefore, accurately detecting the number of steps taken by a pedestrian 

can better help to improve the PDR. By recording the actual number of steps in a certain 

walking period, the accuracy of the two ZUPT methods in calculating the number of 

steps can be found, as shown in Table XIV to Table XVII. In the different speed step 

detection experiments, the results of different re-detect threshold values were also 

compared. Three threshold values are selected based on the 100 Hz frequency of IMU 

sensor. These three threshold values are 𝑇𝑑𝑎𝑡𝑎 = 10, 𝑇𝑑𝑎𝑡𝑎 = 20, and 𝑇𝑑𝑎𝑡𝑎 = 5. 

Table XIV shows the step detection results of walking speed at around 3-4 km/h. 

After one minute of walking, the single-threshold method can maintain an average 

accuracy of 72.36%, while the proposed ZUPT method at 𝑇𝑑𝑎𝑡𝑎 = 10 maintained an 

average accuracy above 92.12%. After five minutes of continuous walking results 

shown in Table XV, the average accuracy of the threshold method fell to 63.40%, while 

the proposed ZUPT method at 𝑇𝑑𝑎𝑡𝑎 = 10 could still maintain an average accuracy of 

92.12%. For fast walking tests, the pedestrian walking speed was maintained at 4-6 

km/h for 120 s. The step detection results are shown in Table XVI. After 120 s of 

walking, the single-threshold method can maintain an average accuracy of 61.21%, 

while our proposed ZUPT method at 𝑇𝑑𝑎𝑡𝑎 = 10  maintained an average accuracy 

above 85.50%. For the running test, the pedestrian running speed was maintained at 8-

10 km/h for 120 s. The step detection results are shown in Table XVII. After 120 s of 

running, the single-threshold method could maintain an average accuracy of 37.97%, 

while our proposed ZUPT method at 𝑇𝑑𝑎𝑡𝑎 = 10  maintained an average accuracy 

above 79.86%. 
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The Table XIV, Table XV, and Table XVI show the results of method at 𝑇𝑑𝑎𝑡𝑎 =

10 and method at 𝑇𝑑𝑎𝑡𝑎 = 20 are almost the same in speed range 3-4 km/h and 4-6 

km/h. Because in these two speed ranges, the pseudo intervals’ size is generally less 

than 10, and the complete phase intervals’ size is generally larger than 20. However, as 

the walking speed increases, the accuracy of step detection result at 𝑇𝑑𝑎𝑡𝑎 = 20 will 

decrease. In Table XVII, the proposed ZUPT method at 𝑇𝑑𝑎𝑡𝑎 = 20 only has 76.41% 

average accuracy which is less than the method at 𝑇𝑑𝑎𝑡𝑎 = 10. This is because when 

the walking speed increase, the time to complete each step is reduced, and the 

corresponding data amount for completing a phase will also be reduced. The result is 

that a large threshold will replace the correct phase intervals with the wrong one. This 

will lead to error detection. When 𝑇𝑑𝑎𝑡𝑎 = 5 , there are more error detections than 

𝑇𝑑𝑎𝑡𝑎 = 10 and 𝑇𝑑𝑎𝑡𝑎 = 20, this is because 𝑇𝑑𝑎𝑡𝑎 = 5  cannot correctly distinguish 

the pseudo intervals with the size around 6-10, which leads to the missed detection of 

pseudo zero velocity intervals. This is the reason 𝑇𝑑𝑎𝑡𝑎 = 5 has the lowest average 

accuracy in these three re-detect threshold methods.   

TABLE XIV 

Method Test 1 

Counted 

Steps  

Test 2 

Counted 

Steps 

Test 3 

Counted 

Steps 

Test 4 

Counted 

Steps 

Average 

Accuracy 

Real steps 40 43 42 40 ━ 

Conventional ZUPT  28 31 27 33 72.36% 

Proposed ZUPT (1) 

𝑇𝑑𝑎𝑡𝑎 = 10 

36 38 41 37 92.12% 

Proposed ZUPT (2) 

𝑇𝑑𝑎𝑡𝑎 = 20 

36 38 40 37 91.53% 

Proposed ZUPT (3) 

𝑇𝑑𝑎𝑡𝑎 = 5 

34 36 37 37 87.33% 

Table XIV: 60 s, 3-4 km/h Step Detection Results. 
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TABLE XV 

Method Test 1 

Counted 

Steps  

Test 2 

Counted 

Steps 

Test 3 

Counted 

Steps 

Test 4 

Counted 

Steps 

Average 

Accuracy 

Real steps 188 194 183 186 ━ 

Conventional 

ZUPT  

117 126 121 113 63.40% 

Proposed ZUPT (1) 

𝑇𝑑𝑎𝑡𝑎 = 10 

164 171 169 175 90.46% 

Proposed ZUPT (2) 

𝑇𝑑𝑎𝑡𝑎 = 20 

164 171 169 175 90.46% 

Proposed ZUPT (3) 

𝑇𝑑𝑎𝑡𝑎 = 5 

151 167 148 145 81.31% 

Table XV: 300 s, 3-4km/h Step Detection Results. 

 

TABLE XVI 

Method Test 1 

Counted 

Step 

Test 2 

Counted 

Step 

Test 3 

Counted 

Step 

Test 4 

Counted 

Step 

Average 

Accuracy 

Real steps 137 138 135 142 ━ 

Conventional 

ZUPT  

84 87 79 88 61.21% 

Proposed ZUPT (1) 

𝑇𝑑𝑎𝑡𝑎 = 10 

115 119 115 123 85.50% 

Proposed ZUPT (2) 

𝑇𝑑𝑎𝑡𝑎 = 20 

115 118 115 120 84.79% 

Proposed ZUPT (3) 

𝑇𝑑𝑎𝑡𝑎 = 5 

103 101 108 101 74.88% 

Table XVI: 120s, 4-6 km/h Step Detection Results. 
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TABLE XVII 

Method Test 1 

Counted 

Step  

Test 2 

Counted 

Step 

Test 3 

Counted 

Step 

Test 4 

Counted 

Step 

Accuracy 

Real steps 269 251 266 273 ━ 

Conventional 

ZUPT  

98 102 107 94 37.97% 

Proposed ZUPT (1) 

𝑇𝑑𝑎𝑡𝑎 = 10 

208 211 209 217 79.86% 

Proposed ZUPT (2) 

𝑇𝑑𝑎𝑡𝑎 = 20 

203 206 202 197 76.41% 

Proposed ZUPT (3) 

𝑇𝑑𝑎𝑡𝑎 = 5 

174 168 171 156 63.26% 

Table XVII: 120s, 8-10 km/h Step Detection Results. 

Because the diversity of samples in step detection tests is limited, the data in this 

experiment can only show the experimental results of the samples participating in the 

experiment. In terms of the current testing sample size and the experimental results, 

step detection experiments have shown that the proposed ZUPT method can better 

maintain the accuracy of step detection during long-term pedestrian walking and 

running tests which plays a key role for PDR in judging pedestrian gait changes. Also, 

the step detection experiments shows that when the working frequency of the IMU is 

100 Hz, the re-detect threshold value equal to 10 is suitable for all the walking speeding 

ranges. 
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 Navigation Map Plot 

We have tested the performance of the proposed ZUPT method when walking a 

short distance of 25 s in indoor environment, and the proposed ZUPT method has 

obtained good position tracking results. To test the stability of this method during long 

periods of walking, two test experiments have been designed.  

The first experiment is a short-term multi-action experiment, with a testing time of 

60 s, and the area of the experiment is a 5 m * 4 m rectangle in indoor environment. In 

this experiment, pedestrians need to walk around the area within 60 s, and the walking 

involves multiple turning movements. The purpose is to test the stable performance of 

the proposed ZUPT method compared with the single-threshold ZUPT method. Figure 

4.1 shows the performance of the conventional ZUPT method in this experiment. We 

can see from Figure 4.1 that, in the experiment with fast cadence, the error accumulation 

 
Figure 4. 1: Estimated walking path for 60 s based on single-threshold ZUPT method. 
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of the conventional ZUPT method is extremely fast, and the head drifting error has 

already occurred at the first turn. After many turns, the conventional method can no 

longer maintain the pedestrian path in the rectangular area shape.  

Figure 4.2 shows the performance of the proposed ZUPT method. Because the 

proposed ZUPT method has more accurate phase judgment, this method is more 

accurate in the estimation of the pedestrian’s path. In the Figure 4.2, this method better 

maintains the path of pedestrians and maintains the rectangular shape of the route, even 

after many turns. 

By comparing the proposed ZUPT method with conventional methods in an indoor 

environment, it is found that the proposed ZUPT method can better maintain the 

walking path shape and is not limited to the influence of indoor environmental factors. 

The result proves that in indoor environment, the proposed ZUPT method has better 

position tracking ability.  

After proving that the proposed ZUPT method can maintain good tracking 

 

Figure 4. 2: Estimated walking path for 60 s based on proposed ZUPT method. 
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performance in indoor environments, to test the performance of the proposed ZUPT 

method in a large area, a open outdoor environment filed will be selected as the test 

space for the next stage. 

To analyze the performance difference between the proposed ZUPT method and 

the conventional ZUPT methods more intuitively, we selected a road intersection for a 

 
Figure 4. 3: The 3-7 km/h walking test based on satellite map background. 
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walking test location. The test will use a Google satellite map as the background for 

pedestrian walking path estimation. The map scale is 1:20m. The testing speed will be 

freely switched by the pedestrian between 3-7 km/h during the testing time, as shown 

in Figure 4.3. In this test, the total testing time is 610s, and the total number of actual 

walking steps is 408 steps. Different ZUPT methods will process the same set of 

walking data, output the result of step detection, and estimate the walking path on the 

satellite map. 

 The red line indicates the proposed ZUPT method, the black line indicates single-

threshold-variance ZUPT method, the green line indicates single- threshold ZUPT 

method, and the yellow line indicates no ZUPT method. As can be seen from Figure 

4.3, the proposed method can better adapt to the complex terrain of the intersection, 

including the four arc-shaped roadsides [57]. The white arrows show the pedestrian real 

walking direction during the test. For the no ZUPT method, which is shown by the 

yellow line, because of the lack of algorithms and filters to control errors, the heading 

drift error and the walking path error are out of control, this method performed the worst 

in this test. For the single-threshold method shown by the green line, the detection of 

the pedestrian walking phase is not accurate due to the limitation of the single threshold, 

and the position drift error appears very early in this speed switching test. Therefore, 

the single-threshold method performed very badly in this test. The variance method 

benefits from the variance algorithm’s ability to maintain data stability, and the 

performance in this test is better than the single-threshold method which is shown by 

the black line in Figure 4.3.  

The Table XVIII shows the step detection results for this test. The proposed ZUPT 

method has 92.15% accuracy compared with the actual counted step numbers. The 

variance ZUPT method has 79.17% and the single threshold ZUPT method has only 

62.25%.  
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TABLE XVIII 

Method Counted Step Accuracy 

Real steps 408 ━ 

Proposed ZUPT 376 92.15% 

Variance ZUPT 323 79.17% 

Single Threshold ZUPT 254 62.25% 

Total Testing Time 610 s 

Sensor Accelerometer Bias 0.00383 𝑚/𝑠2 

Sensor Gyroscope Bias -0.0072 𝑟𝑎𝑑/𝑠 

Map Scale 1:20 m 

Table XVIII: The step detection results in satellite map test. 

The results of the test show that in the case of processing a same set of pedestrian 

walking data, the proposed ZUPT method has the best performance in this test and can 

better maintain the estimated shape of the pedestrian walking path when switching 

between different speeds under different road conditions. 

Then, to test the performance of the method in the long-time walking test, a more 

open area was selected for the next experiment. The purpose of this experiment is to 

test whether the proposed ZUPT method can maintain the accuracy of step detection in 

long-time experiments, and whether it can completely estimate the walking path of 

pedestrians on satellite maps. 

Figure 4.4 shows the results of the walking test at a speed of 3-4km/h for 35 
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minutes and 28 seconds by using the proposed ZUPT method. The map scale is 1:20 m. 

The experiment has walked a total of two laps. The first lap is marked with a red line 

in Figure 4.4. The duration of this lap is 16 minutes and 8 seconds. The second lap is 

marked with a blue line in Figure 4.4, and the duration of this lap is 19 minutes and 20 

seconds. In the first lap of walking, to avoid vehicles and other pedestrians, there are 

three obvious avoidance behaviors, which shown in the figures. The avoidance behavior 

was also recorded and fully reflected on the map results, which also showed that this 

proposed method has practical application capabilities.  

Table XIX shows the testing data of the IMU sensor and the step detection results 

for proposed ZUPT method, variance ZUPT method and single threshold ZUPT method. 

From Table XIX, the proposed ZUPT method can still maintain 90.41% accuracy in the 

whole walking test, which help PDR to better detect the walking gait and eliminate 

errors. Compared with the other two conventional methods, the proposed ZUPT method 

maintains better accuracy and maintains the same level as in previous shorter distance 

testing. And on the satellite map, the PDR which using the proposed ZUPT method can 

completely track the positioning information of pedestrians. 

 

Figure 4. 4: 3-4 km/h long-time walking test 
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TABLE XIX 

Method Counted Step Accuracy 

Real steps 1836 ━ 

Proposed ZUPT 1660 90.41% 

Variance ZUPT 1531 83.39% 

Single Threshold ZUPT 1097 59.75% 

Total Testing Time 35min 28 s 

First Lab Time 16 min 8 s 

Second Lab Time 19 min 20 s 

Total Distance 2.36 km 

Sensor Accelerometer Bias 0.00219 𝑚/𝑠2 

Sensor Gyroscope Bias -0.00343 𝑟𝑎𝑑/𝑠 

Map Scale 1:20 m 

Table XIX: 3-4km/h long-time walking test. 
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 Eight-Point Error Method 

The eight-point error method is used to calculate the error between the estimated 

data and the real data [25]. Eight actual measured ground truth points are set in a 

specified area as reference coordinates, marked in the simulation area plot. Then, the 

pedestrian carries the device and does the walking experiment in the specified area, 

along the designated route. Through the collection and processing of walking data, the 

pedestrian’s walking path is estimated, and, then, the estimated coordinates of the 

pedestrian’s location when passing these eight measured points are marked. The 

coordinates of the eight estimated points are compared to the coordinates of the eight 

measured points, then the error values are calculated on both X-axis and Y-axis. In this 

thesis, a rectangular space of about 30 m * 20 m was selected for the error experiment.  

As shown in Figure 4.5 and Figure 4.6, the eight red star marks are the measured 

coordinate points, and the eight green star marks are the estimated coordinate points. 

 

Figure 4. 5: Eight-point error method for single-threshold ZUPT method. 
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Due to the different ZUPT methods, the drift error of eight points is also different. 

Table XX shows all the eight coordinate points for the two methods, calculates the mean 

error, and compares them with each other. 

By analyzing the path map of the conventional, single-threshold ZUPT method 

and comparing the eight estimated coordinates with the actual eight measured ground 

truth coordinates, the error value of the eight points in the path map is obtained, which 

is represented by a line chart, shown in Figure 4.7. In the conventional ZUPT method 

error plot, the mean error is 3.33 m, and the peak error is 6.36 m. 

By analyzing the path map of the proposed ZUPT method and comparing the eight 

estimated coordinates with the actual eight measured ground truth coordinates, the error 

value of the eight points in the path map is obtained; the error value is represented by a 

line chart shown in Figure 4.8. In the proposed ZUPT method error plot, the mean error 

 

Figure 4. 6: Eight-point error method for the proposed ZUPT method. 
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is 0.61 m, and the peak error is 1.18 m, a reduction of 81.69% and 81.44%, respectively.  

TABLE XX 

Ground Truth 

Points 

Proposed ZUPT  Error 

(m) 

Conventional 

ZUPT 

Error 

(m) 

(0,0)/(0,0) (0,0)/(-0.13,0.13) 0.130 (0,0)/(4.07, -4.19) 5.839 

(15,0) (15.2,0.88) 0.904 (14.44,1.49) 1.594 

(32,0) (31.4, -0.06) 0.592 (31.57,2.05) 2.096 

(32,10) (32.2,10) 0.200 (30.45,10.68) 1.693 

(32,18) (32.9,17.28) 1.152 (29.25,19.34) 3.059 

(15,18) (15,16.82) 1.180 (12.66,15.08) 3.742 

(0,18) (0.79,18.26) 0.772 (-2.18,12.03) 6.357 

(0,10) (0.55,10) 0.550 (1.09,4.55) 5.558 

Mean of Total 

Error (m) 

0.609 3.326 

Percentage 0.609% 3.326% 

Table XX: Eight-point coordinates comparison. 
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Figure 4. 7: Error line graph for the conventional ZUPT method. 
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Figure 4. 8: Error line graph for the proposed ZUPT method. 
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Table XX shows the experimental results comparison between the proposed ZUPT 

method-based PDR system and other PDR systems which introduced before. The Table 

XXI shows that compared with other systems, the proposed method has better error 

control ability in walking experiments, and the error range is smaller than most PDR 

system results.  

Therefore, the proposed ZUPT method-based PDR system achieves the goal of 

improving the positioning accuracy by re-detect and correct the pseudo zero velocity 

intervals. It has a significant effect of error control without additional equipment 

assistance, showing comparable accuracy achieved with the proposed PDR system.  

Table XXI: Comparison between different PDR methods. 

 

 

TABLE XXI 

Method Experiment Error Percentage 

Quaternion vector-based PDR 380 m walking route 2.57 m 0.68% 

Waist-mounted PDR 64.48 m walking route 1.934 m 2.99% 

Dual-mounted PDR (foot- 

and leg-mounted) 

23 m walking route 0.286 m 1.24% 

Ultrasonic sensor foot-

mounted PDR 

120 m walking route 0.53 m 0.44% 

The proposed ZUPT method-

based PDR 

100 m walking route 0.609 m 0.609% 
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Chapter 5: Summary and Conclusions 

 Summary 

Nowadays, since the pedestrian inertial navigation system has a real-time 

autonomous navigation function and does not require external information such as 

satellite signals, it occupies a place in personal information navigation systems. More 

precise positioning functions and error correction functions, as well as higher reliability 

and flexibility, have always been the characteristics pursued by pedestrian inertial 

navigation systems. These are also the goals which are pursued in this thesis. By 

studying the conventional ZUPT methods in the pedestrian dead reckoning system and 

proposing a new ZUPT method, the positioning accuracy of the pedestrian dead 

reckoning system is improved, which brings more possibilities for applications of the 

pedestrian dead reckoning in the future.  

Within this thesis is the definition, and validation of such a method that based on 

not adding additional sensors, the proposed ZUPT method is used to perform secondary 

detection and correction of the pseudo zero velocity intervals in the PDR system to 

strengthen the ability to track the walking phase of pedestrians, improve the accuracy 

of step detection, and achieve the purpose of controlling drift errors.  

Among the work completed at the current stage, step detection experiments have 

been completed under different speeds and different time range conditions, and for 

different re-detect threshold values, the experimental data are also compared. For 3-6 

km/h walking speed step detection tests, the accuracy of the proposed ZUPT method 

has an average 23.7% higher than the conventional methods. In a long-distance walking 

path tracking test, the mean error of the estimated path for our method is 0.61 m, which 

is an 81.69% reduction compared to the conventional ZUPT methods. The proposed 

ZUPT method performed well in these experiments. In addition, in the satellite map 

walking experiment, this method also estimated the same walking trajectory as the 
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actual walking path. The proposed ZUPT method has certain potential in the field of 

pedestrian inertial navigation and can be applied to further navigation projects. It can 

replace the conventional ZUPT methods. 

 

 Future Work 

To advance the work outlined in this thesis, further investigation into other uses of 

the proposed ZUPT method is recommended. The current experiments are based on the 

2D coordinate system. In reality, if want to make more accurate estimation for 

pedestrians' walking phases and path, the calculations in the 3D coordinate system must 

be developed. In this thesis, the thresholds of all motion states have been summarized, 

including jumping, climbing stairs, etc., and these thresholds can help complete the 

construction of the pedestrian state in the 3D coordinate system. Moreover, due to the 

limitations of the threshold test at this stage, the base number of the sample size is small, 

which may cause the threshold to be unable to adapt to more people after the expansion 

of the method. In future work, the extension of the threshold sample size required in 

the method will be of great help to the generalization of this method. For the re-detect 

threshold, increasing the size of the test sample at 100 Hz will help narrow the range of 

the re-detect threshold and better analyze the work efficiency of different re-detect 

thresholds under different walking test conditions, such as different walking speeds.  

In addition to the method of expanding the sample size and calculate more 

accuracy threshold ranges, there are other methods that can help the proposed method 

to better expand the scope of application. The machine learning method could be 

another way of helping the threshold adapt to the pedestrian who has a highly unusual 

gait patterns [58]. Machine learning would allow the system to gleam insight into the 

user’s gait, and adapt accordingly, reduce unnecessary errors, and increase the 

population size of the individuals who can use this device for navigation purposes.  
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The proposed method has a small-volume algorithm structure, which can be 

expanded in the future, such as by adding more targeted filters to achieve the purpose 

of improving accuracy or combining with other sensors to improve the tracking ability 

of pedestrian trajectories. This method has better compatibility than traditional ZUPT 

methods. 

The development of GNSS has greatly matured in modern times. GNSS has 

always been in a leading position in positioning services. Pedestrian inertial navigation 

systems do not exist to seize the market with GNSS but can be combined with a GNSS 

system to complement each other. In future work, we can combine the proposed ZUPT 

method-based PDR system with GNSS system to further expand the application range 

of pedestrian inertial navigation systems. 

 Conclusions  

This thesis provides a new type of ZUPT method to help the shoe-mounted PDR 

system to locate and navigate pedestrians. Analyze the gait data of pedestrians collected 

by IMU through the conventional PDR system, and summarize the data changes during 

pedestrian walking, the new ZUPT method was proposed that uses information 

collected from these data.  Under the premise of not adding additional sensors, this 

method improves the gait tracking ability of pedestrians during walking by adding the 

re-detect algorithm for correcting pseudo zero velocity intervals, controls the drift error, 

and meets the requirements of improving pedestrian positioning accuracy. This method 

provides a foundation for the future design and programming of pedestrian inertial 

navigation system augmentation using low-cost IMU device. This method shows strong 

potential for indoor pedestrian navigation systems augmentation providing the basis for 

future services and applications where an accurate user location is required. 
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