154 research outputs found

    Distributed, Low-Cost, Non-Expert Fine Dust Sensing with Smartphones

    Get PDF
    Diese Dissertation behandelt die Frage, wie mit kostengĂŒnstiger Sensorik FeinstĂ€ube in hoher zeitlicher und rĂ€umlicher Auflösung gemessen werden können. Dazu wird ein neues Sensorsystem auf Basis kostengĂŒnstiger off-the-shelf-Sensoren und Smartphones vorgestellt, entsprechende robuste Algorithmen zur Signalverarbeitung entwickelt und Erkenntnisse zur Interaktions-Gestaltung fĂŒr die Messung durch Laien prĂ€sentiert. AtmosphĂ€rische Aerosolpartikel stellen im globalen Maßstab ein gravierendes Problem fĂŒr die menschliche Gesundheit dar, welches sich in Atemwegs- und Herz-Kreislauf-Erkrankungen Ă€ußert und eine VerkĂŒrzung der Lebenserwartung verursacht. Bisher wird LuftqualitĂ€t ausschließlich anhand von Daten relativ weniger fester Messstellen beurteilt und mittels Modellen auf eine hohe rĂ€umliche Auflösung gebracht, so dass deren ReprĂ€sentativitĂ€t fĂŒr die flĂ€chendeckende Exposition der Bevölkerung ungeklĂ€rt bleibt. Es ist unmöglich, derartige rĂ€umliche Abbildungen mit den derzeitigen statischen Messnetzen zu bestimmen. Bei der gesundheitsbezogenen Bewertung von Schadstoffen geht der Trend daher stark zu rĂ€umlich differenzierenden Messungen. Ein vielversprechender Ansatz um eine hohe rĂ€umliche und zeitliche Abdeckung zu erreichen ist dabei Participatory Sensing, also die verteilte Messung durch Endanwender unter Zuhilfenahme ihrer persönlichen EndgerĂ€te. Insbesondere fĂŒr LuftqualitĂ€tsmessungen ergeben sich dabei eine Reihe von Herausforderungen - von neuer Sensorik, die kostengĂŒnstig und tragbar ist, ĂŒber robuste Algorithmen zur Signalauswertung und Kalibrierung bis hin zu Anwendungen, die Laien bei der korrekten AusfĂŒhrung von Messungen unterstĂŒtzen und ihre PrivatsphĂ€re schĂŒtzen. Diese Arbeit konzentriert sich auf das Anwendungsszenario Partizipatorischer Umweltmessungen, bei denen Smartphone-basierte Sensorik zum Messen der Umwelt eingesetzt wird und ĂŒblicherweise Laien die Messungen in relativ unkontrollierter Art und Weise ausfĂŒhren. Die HauptbeitrĂ€ge hierzu sind: 1. Systeme zum Erfassen von Feinstaub mit Smartphones (Low-cost Sensorik und neue Hardware): Ausgehend von frĂŒher Forschung zur Feinstaubmessung mit kostengĂŒnstiger off-the-shelf-Sensorik wurde ein Sensorkonzept entwickelt, bei dem die Feinstaub-Messung mit Hilfe eines passiven Aufsatzes auf einer Smartphone-Kamera durchgefĂŒhrt wird. Zur Beurteilung der Sensorperformance wurden teilweise Labor-Messungen mit kĂŒnstlich erzeugtem Staub und teilweise Feldevaluationen in Ko-Lokation mit offiziellen Messstationen des Landes durchgefĂŒhrt. 2. Algorithmen zur Signalverarbeitung und Auswertung: Im Zuge neuer Sensordesigns werden Kombinationen bekannter OpenCV-Bildverarbeitungsalgorithmen (Background-Subtraction, Contour Detection etc.) zur Bildanalyse eingesetzt. Der resultierende Algorithmus erlaubt im Gegensatz zur Auswertung von Lichtstreuungs-Summensignalen die direkte ZĂ€hlung von Partikeln anhand individueller Lichtspuren. Ein zweiter neuartiger Algorithmus nutzt aus, dass es bei solchen Prozessen ein signalabhĂ€ngiges Rauschen gibt, dessen VerhĂ€ltnis zum Mittelwert des Signals bekannt ist. Dadurch wird es möglich, Signale die von systematischen unbekannten Fehlern betroffen sind auf Basis ihres Rauschens zu analysieren und das "echte" Signal zu rekonstruieren. 3. Algorithmen zur verteilten Kalibrierung bei gleichzeitigem Schutz der PrivatsphĂ€re: Eine Herausforderung partizipatorischer Umweltmessungen ist die wiederkehrende Notwendigkeit der Sensorkalibrierung. Dies beruht zum einen auf der InstabilitĂ€t insbesondere kostengĂŒnstiger LuftqualitĂ€tssensorik und zum anderen auf der Problematik, dass Endbenutzern die Mittel fĂŒr eine Kalibrierung ĂŒblicherweise fehlen. Bestehende AnsĂ€tze zur sogenannten Cross-Kalibrierung von Sensoren, die sich in Ko-Lokation mit einer Referenzstation oder anderen Sensoren befinden, wurden auf Daten gĂŒnstiger Feinstaubsensorik angewendet sowie um Mechanismen erweitert, die eine Kalibrierung von Sensoren untereinander ohne Preisgabe privater Informationen (IdentitĂ€t, Ort) ermöglicht. 4. Mensch-Maschine-Interaktions-Gestaltungsrichtlinien fĂŒr Participatory Sensing: Auf Basis mehrerer kleiner explorativer Nutzerstudien wurde empirisch eine Taxonomie der Fehler erstellt, die Laien beim Messen von Umweltinformationen mit Smartphones machen. Davon ausgehend wurden mögliche Gegenmaßnahmen gesammelt und klassifiziert. In einer großen summativen Studie mit einer hohen Teilnehmerzahl wurde der Effekt verschiedener dieser Maßnahmen durch den Vergleich vier unterschiedlicher Varianten einer App zur partizipatorischen Messung von UmgebungslautstĂ€rke evaluiert. Die dabei gefundenen Erkenntnisse bilden die Basis fĂŒr Richtlinien zur Gestaltung effizienter Nutzerschnittstellen fĂŒr Participatory Sensing auf MobilgerĂ€ten. 5. Design Patterns fĂŒr Participatory Sensing Games auf MobilgerĂ€ten (Gamification): Ein weiterer erforschter Ansatz beschĂ€ftigt sich mit der Gamifizierung des Messprozesses um Nutzerfehler durch den Einsatz geeigneter Spielmechanismen zu minimieren. Dabei wird der Messprozess z.B. in ein Smartphone-Spiel (sog. Minigame) eingebettet, das im Hintergrund bei geeignetem Kontext die Messung durchfĂŒhrt. Zur Entwicklung dieses "Sensified Gaming" getauften Konzepts wurden Kernaufgaben im Participatory Sensing identifiziert und mit aus der Literatur zu sammelnden Spielmechanismen (Game Design Patterns) gegenĂŒbergestellt

    Crowdsourcing geospatial data for Earth and human observations: a review

    Get PDF
    The transformation from authoritative to user-generated data landscapes has garnered considerable attention, notably with the proliferation of crowdsourced geospatial data. Facilitated by advancements in digital technology and high-speed communication, this paradigm shift has democratized data collection, obliterating traditional barriers between data producers and users. While previous literature has compartmentalized this subject into distinct platforms and application domains, this review offers a holistic examination of crowdsourced geospatial data. Employing a narrative review approach due to the interdisciplinary nature of the topic, we investigate both human and Earth observations through crowdsourced initiatives. This review categorizes the diverse applications of these data and rigorously examines specific platforms and paradigms pertinent to data collection. Furthermore, it addresses salient challenges, encompassing data quality, inherent biases, and ethical dimensions. We contend that this thorough analysis will serve as an invaluable scholarly resource, encapsulating the current state-of-the-art in crowdsourced geospatial data, and offering strategic directions for future interdisciplinary research and applications across various sectors

    Reputation-aware Trajectory-based Data Mining in the Internet of Things (IoT)

    Get PDF
    Internet of Things (IoT) is a critically important technology for the acquisition of spatiotemporally dense data in diverse applications, ranging from environmental monitoring to surveillance systems. Such data helps us improve our transportation systems, monitor our air quality and the spread of diseases, respond to natural disasters, and a bevy of other applications. However, IoT sensor data is error-prone due to a number of reasons: sensors may be deployed in hazardous environments, may deplete their energy resources, have mechanical faults, or maybe become the targets of malicious attacks by adversaries. While previous research has attempted to improve the quality of the IoT data, they are limited in terms of better realization of the sensing context and resiliency against malicious attackers in real time. For instance, the data fusion techniques, which process the data in batches, cannot be applied to time-critical applications as they take a long time to respond. Furthermore, context-awareness allows us to examine the sensing environment and react to environmental changes. While previous research has considered geographical context, no related contemporary work has studied how a variety of sensor context (e.g., terrain elevation, wind speed, and user movement during sensing) can be used along with spatiotemporal relationships for online data prediction. This dissertation aims at developing online methods for data prediction by fusing spatiotemporal and contextual relationships among the participating resource-constrained mobile IoT devices (e.g. smartphones, smart watches, and fitness tracking devices). To achieve this goal, we first introduce a data prediction mechanism that considers the spatiotemporal and contextual relationship among the sensors. Second, we develop a real-time outlier detection approach stemming from a window-based sub-trajectory clustering method for finding behavioral movement similarity in terms of space, time, direction, and location semantics. We relax the prior assumption of cooperative sensors in the concluding section. Finally, we develop a reputation-aware context-based data fusion mechanism by exploiting inter sensor-category correlations. On one hand, this method is capable of defending against false data injection by differentiating malicious and honest participants based on their reported data in real time. On the other hand, this mechanism yields a lower data prediction error rate

    Exploring Computing Continuum in IoT Systems: Sensing, Communicating and Processing at the Network Edge

    Get PDF
    As Internet of Things (IoT), originally comprising of only a few simple sensing devices, reaches 34 billion units by the end of 2020, they cannot be defined as merely monitoring sensors anymore. IoT capabilities have been improved in recent years as relatively large internal computation and storage capacity are becoming a commodity. In the early days of IoT, processing and storage were typically performed in cloud. New IoT architectures are able to perform complex tasks directly on-device, thus enabling the concept of an extended computational continuum. Real-time critical scenarios e.g. autonomous vehicles sensing, area surveying or disaster rescue and recovery require all the actors involved to be coordinated and collaborate without human interaction to a common goal, sharing data and resources, even in intermittent networks covered areas. This poses new problems in distributed systems, resource management, device orchestration,as well as data processing. This work proposes a new orchestration and communication framework, namely CContinuum, designed to manage resources in heterogeneous IoT architectures across multiple application scenarios. This work focuses on two key sustainability macroscenarios: (a) environmental sensing and awareness, and (b) electric mobility support. In the first case a mechanism to measure air quality over a long period of time for different applications at global scale (3 continents 4 countries) is introduced. The system has been developed in-house from the sensor design to the mist-computing operations performed by the nodes. In the second scenario, a technique to transmit large amounts of fine-time granularity battery data from a moving vehicle to a control center is proposed jointly with the ability of allocating tasks on demand within the computing continuum

    Proceedings of Abstracts 12th International Conference on Air Quality Science and Application

    Get PDF
    © 2020 The Author(s). This an open access work distributed under the terms of the Creative Commons Attribution Licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.Final Published versio

    Crowdsourcing Methods for Data Collection in Geophysics: State of the Art, Issues, and Future Directions

    Get PDF
    Data are essential in all areas of geophysics. They are used to better understand and manage systems, either directly or via models. Given the complexity and spatiotemporal variability of geophysical systems (e.g., precipitation), a lack of sufficient data is a perennial problem, which is exacerbated by various drivers, such as climate change and urbanization. In recent years, crowdsourcing has become increasingly prominent as a means of supplementing data obtained from more traditional sources, particularly due to its relatively low implementation cost and ability to increase the spatial and/or temporal resolution of data significantly. Given the proliferation of different crowdsourcing methods in geophysics and the promise they have shown, it is timely to assess the state‐of‐the‐art in this field, to identify potential issues and map out a way forward. In this paper, crowdsourcing‐based data acquisition methods that have been used in seven domains of geophysics, including weather, precipitation, air pollution, geography, ecology, surface water and natural hazard management are discussed based on a review of 162 papers. In addition, a novel framework for categorizing these methods is introduced and applied to the methods used in the seven domains of geophysics considered in this review. This paper also features a review of 93 papers dealing with issues that are common to data acquisition methods in different domains of geophysics, including the management of crowdsourcing projects, data quality, data processing and data privacy. In each of these areas, the current status is discussed and challenges and future directions are outlined

    Energy-efficient Continuous Context Sensing on Mobile Phones

    Get PDF
    With the ever increasing adoption of smartphones worldwide, researchers have found the perfect sensor platform to perform context-based research and to prepare for context-based services to be also deployed for the end-users. However, continuous context sensing imposes a considerable challenge in balancing the energy consumption of the sensors, the accuracy of the recognized context and its latency. After outlining the common characteristics of continuous sensing systems, we present a detailed overview of the state of the art, from sensors sub-systems to context inference algorithms. Then, we present the three main contribution of this thesis. The first approach we present is based on the use of local communications to exchange sensing information with neighboring devices. As proximity, location and environmental information can be obtained from nearby smartphones, we design a protocol for synchronizing the exchanges and fairly distribute the sensing tasks. We show both theoretically and experimentally the reduction in energy needed when the devices can collaborate. The second approach focuses on the way to schedule mobile sensors, optimizing for both the accuracy and energy needs. We formulate the optimal sensing problem as a decision problem and propose a two-tier framework for approximating its solution. The first tier is responsible for segmenting the sensor measurement time series, by fitting various models. The second tier takes care of estimating the optimal sampling, selecting the measurements that contributes the most to the model accuracy. We provide near-optimal heuristics for both tiers and evaluate their performances using environmental sensor data. In the third approach we propose an online algorithm that identifies repeated patterns in time series and produces a compressed symbolic stream. The first symbolic transformation is based on clustering with the raw sensor data. Whereas the next iterations encode repetitive sequences of symbols into new symbols. We define also a metric to evaluate the symbolization methods with regard to their capacity at preserving the systems' states. We also show that the output of symbols can be used directly for various data mining tasks, such as classification or forecasting, without impacting much the accuracy, but greatly reducing the complexity and running time. In addition, we also present an example of application, assessing the user's exposure to air pollutants, which demonstrates the many opportunities to enhance contextual information when fusing sensor data from different sources. On one side we gather fine grained air quality information from mobile sensor deployments and aggregate them with an interpolation model. And, on the other side, we continuously capture the user's context, including location, activity and surrounding air quality. We also present the various models used for fusing all these information in order to produce the exposure estimation

    Self-management and Optimization Framework. OpenIoT Deliverable D512

    Get PDF
    This deliverable describes the OpenIoT self-management and optimization framework, in terms of algorithms and mechanisms that it comprises as well as in terms of their implementation over the OpenIoT platform and associated cloud infrastructure. As a first step the main operations and functionalities of the OpenIoT self-management and optimization infrastructure are described and related to the structure of management operations defined in state-of-the-art frameworks for autonomic computing and self-management. Along with a brief description of the optimization techniques that are employed in OpenIoT, an initial mapping of the various techniques on the OpenIoT architecture is performed
    • 

    corecore