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ABSTRACT OF THE DISSERTATION
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Professor Niki Pissinou, Co-Major Professor

Internet of Things (IoT) is a critically important technology for the acquisition of

spatiotemporally dense data in diverse applications, ranging from environmental

monitoring to surveillance systems. Such data helps us improve our transportation

systems, monitor our air quality and the spread of diseases, respond to natural dis-

asters, and a bevy of other applications. However, IoT sensor data is error-prone

due to a number of reasons: sensors may be deployed in hazardous environments,

may deplete their energy resources, have mechanical faults, or maybe become the

targets of malicious attacks by adversaries. While previous research has attempted

to improve the quality of the IoT data, they are limited in terms of better realization

of the sensing context and resiliency against malicious attackers in real time. For

instance, the data fusion techniques, which process the data in batches, cannot be

applied to time-critical applications as they take a long time to respond. Further-

more, context-awareness allows us to examine the sensing environment and react to

environmental changes. While previous research has considered geographical con-

text, no related contemporary work has studied how a variety of sensor context (e.g.,

terrain elevation, wind speed, and user movement during sensing) can be used along

with spatiotemporal relationships for online data prediction.

vii



This dissertation aims at developing online methods for data prediction by fus-

ing spatiotemporal and contextual relationships among the participating resource-

constrained mobile IoT devices (e.g. smartphones, smart watches, and fitness track-

ing devices). To achieve this goal, we first introduce a data prediction mechanism

that considers the spatiotemporal and contextual relationship among the sensors.

Second, we develop a real-time outlier detection approach stemming from a window-

based sub-trajectory clustering method for finding behavioral movement similarity

in terms of space, time, direction, and location semantics. We relax the prior as-

sumption of cooperative sensors in the concluding section. Finally, we develop a

reputation-aware context-based data fusion mechanism by exploiting inter sensor-

category correlations. On one hand, this method is capable of defending against

false data injection by differentiating malicious and honest participants based on

their reported data in real time. On the other hand, this mechanism yields a lower

data prediction error rate.
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CHAPTER 1

INTRODUCTION

1.1 Background

The rapid development of mobile sensing technologies (e.g., smart devices embedded

with various powerful sensors such as temperature, accelerometer, humidity, and gy-

roscope) has encouraged the proliferation of Internet of Things (IoT). Mainstream

smartphones and recently popular wearable devices such as smart watches, fitness

tracking devices, and narrative clip are equipped with many sensors. Recently there

has been a significant increase in smartphone usage (45.6% increase from 2015 to

2019), making these devices abundant resources of raw data [STA16][HXL+17]. Re-

cent improvements in wireless technology and an increase in smartphone usage, a

new mode of data collection (a.k.a. mobile IoT) has emerged [AL17]. Mobile IoT

has several practical applications: intelligent transportation systems, air quality

monitoring, epidemic disease surveillance, disaster management and environment

monitoring [CDW+15], [FZ16], [RGB+17].

HazeWatch [SCHL13], for example, depends on participation by citizens for air

pollution monitoring. Agencies such as National Environment Agency of Singapore

is now using HazeWatch every day. These applications are typically open to the pub-

lic and receive sensor data from multiple participants, which influences the reduc-

tion of data sparsity at lower costs in comparison with traditional sensor networks.

With various advantages, mobile IoT’s people-centric architecture contributes to

both more inaccurate and corrupted data [MMH+15]. Malicious participants can

easily disrupt the IoT data collection process. These entities can interrupt a system

by reporting fabricated or erroneous data, making trust evaluation an important

1



consideration in these applications. Therefore, validating the accuracy of data is

essential to ensure the reliability of the application system.

1.2 Motivation

In the air quality monitoring application, the sensed pollution data is used to create

a pollution map. Because many people rely on the pollution information provided

by these applications, imprecise pollution information about an area will mislead

people. For example, an asthma patient who prefers a pollution-free route for a walk

might be directed to a polluted area to the detriment of his or her physical well-

being. In noise monitoring applications, erroneous noise data sensed by participants

may result in a wrong noise map for that geographic location. Sick or elderly people

who need tranquility may end up in a noisy location due to falsified information.

Furthermore, in remote health care monitoring applications, patients carry sensors

for glucose monitoring that can communicate with IoT devices and enable real-time

medical treatment, known as telemedicine. Without any intelligent data cleaning

mechanism, incorrect or missing sensor data received by the healthcare provider will

result in wrongful treatment.

The rapid development of mobile sensing technologies (e.g., accelerometer and

GPS) embedded in smartphones has dramatically increased the amount of position-

ing data (also known as trajectories). Discovering various movement relationships

(e.g., leader-follower and flock) among trajectories has practical applications in en-

suring public safety, transportation, and location-based services. For example, peo-

ple can be notified immediately about a crime (such as the presence of a stalker)

taking place in the vicinity.
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Another motivating application is for traffic monitoring: nowadays, Waze [MG13],

a driving direction map, is a widely-used crowdsensing application. Drivers receive

information from the traffic center as well as from nearby drivers about road and

traffic conditions. If the sensing participants report incorrect traffic information,

instead of going to a less crowded road, people may be directed to a heavy traffic

route wasting time and gasoline. In a more serious scenario, critical information

regarding a natural disaster does not reach people due to data error, potentially at

a cost of lives. Therefore, we need to detect and correct the data imprecision to im-

prove the data reliability of the applications. Data reliability refers to the condition

when data attains enough completeness to be considered for its goal and context

[ME14], [MW04].

1.3 Research Problem

Existing data prediction techniques, specifically developed for the IoT, focus on

using post-processing data cleaning at the server end [ZSS14], [ZSS15], [ZCWL07],

[GL15]. These methods cannot ensure real-time data accuracy, as they process

data in batches after long intervals of time. Consequently, the methods cannot

take immediate action when required. On the other hand, limited research has

focused on the geographical context of the sensors [GLN15], [GL15], [LZW+17].

Other contextual information (e.g., wind speed, weather) or semantics have not

been considered in state-of-the-art techniques. The dynamism of the experimental

environment cannot be exploited while selecting the correlated sensors for data

prediction; hence, there does not exist much work in the area of real-time data

stream mining.
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The problem we are trying to solve in this dissertation is how to enhance the data

accuracy in real-time to ensure data reliability in the IoT. We study this problem

specifically in terms of missing data prediction, movement behavior-based outlier

detection, and data recovery against false data injection attacks for both homoge-

neous and heterogeneous IoT sensor types. From this perspective, we divide the

problem into the following sub-problems: 1) Predict missing data in real time more

accurately , 2) Identify movement similarity and detect trajectory outlier in real

time, 3) Exploit the correlation between different sensor types to improve the ac-

curacy of the data fusion mechanism, and 4) Predict data more accurately in the

presence of malicious participants who inject false data to vandalize the system.

1.4 Research Objectives

This dissertation aims to devise novel solutions to ensure robust systems, enhancing

data reliability and integrity. Specifically, we investigate the following objectives.

Context-aware data prediction

Data streams display varied inconsistency and imprecision in mobile IoT applica-

tions. The mobility of the sensors causes more data inaccuracy and loss due to short-

term network connectivity and data collision [SBB13], [PGWC16]. We hypothesize

that spatiotemporal and context correlations will decrease data prediction errors

and hence ensure more accurate data stream cleaning. Therefore, our objective is to

design and develop a context-aware data prediction model to predict missing data

in sensor data streams in a more accurate manner.
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Real-time identification of movement similarity

Data streams demonstrate several unique properties of big data (e.g., volume, ve-

locity, variety, and veracity) and add challenges to data stream mining [CSK+14].

A major challenge is to detect anomalies/outliers in rapid, voluminous streams of

data. Our objective is to identify the movement similarity and detect trajectory

outliers in real-time.

Reputation-aware data fusion

Mobile crowdsensing is an emerging sensing paradigm that promotes scalability and

reduction in the deployment of specialized sensing devices for large-scale data col-

lection in a decentralized fashion. It also has several practical applications: traffic

monitoring, logistics tracking, epidemic disease monitoring, reporting from disaster

situations and environment monitoring. Due to its open structure, it allows mali-

cious users to interrupt a system by reporting fabricated or erroneous data, making

trust evaluation an important issue in these applications. Our objective is to design

and develop a reputation-aware correlated sensor-based data fusion method that is

resilient against malicious attackers.

1.5 Research Contributions

Our contributions in developing reputation-aware trajectory based data mining

methods are summarized as follows.
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Context-aware Data Prediction

While researchers have considered geographical context, no related contemporary

work has studied how a variety of sensor context (e.g., terrain elevation, wind speed,

user movement during sensing) can be used along with spatiotemporal relationship

for online data prediction. We develop online methods by fusing spatiotemporal and

context relationships among the participating mobile sensors. To do so, we develop

a novel data cleaning mechanism wherein, based on the sensed data and the context

relationship of each sensor, we update the credibility of the sensed data [Section 3.3].

Through simulations, we evaluate the performance of our proposed approach, and

compare our proposed sensor data stream cleaning method with two state-of-the-

art approaches: influence mean cleaning (IMC) [ZSS14] and mean-based cleaning

[JAF+06], [SGG10]. Simulation results show up to 24% reduction in root mean

square error (RMSE) over IMC and up to 30% over mean-based cleaning [Section

3.4]. Parts of this section has been published in [TPI17].

Semantic-aware Outlier detection

Semantics is a piece of information that allows us to add meaningful value to the

data. For example, GPS coordinates consist of latitude and longitude. The semantic

annotation provides these points with a human-readable label such as “restaurant”,

“school”, “bank”, etc. Adding semantic annotation facilitates various movement and

behavioral patterns identification in mobile trajectory data. In this work, our main

contributions are as follows. We propose a method to incorporate geographic domain

knowledge to raw trajectory data [Section 4.3]. Additionally, we propose a window-

based online sub-trajectory clustering method for finding movement similarity. Our

method is able to successfully identify trajectory outliers in the clustering process
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with average recall [SL09] 0.92 and F1 score of 0.8 [Section 4.4]. This value of F1

score insinuates the higher classification accuracy of our method. This content was

published during my Ph.D. study in [TCP+18].

Correlated Sensor-based Data Fusion

Smartphones are equipped with different sensors such as humidity, light, accelerom-

eter, and proximity sensor. Amitangshu et al. [PK16] defined a smartphone as a

contemporary heterogeneous sensor network. We exploit inter-sensor type correla-

tions while developing our data prediction mechanism, which has the added benefit

of being resilient against data corruption attacks. We evaluate our Correlated data

and Reputation-Aware data fusion (CDR) method’s efficacy in different scenarios

based on two datasets: Rome crowdsensing temperature [BBL+14] and Beijing Air

quality datasets [ZLH13] [Section 5.4]. The contents of this chapter have been pub-

lished in [TPI+18].

Reputation-based Context-aware Data Fusion

We design a reputation-aware data fusion mechanism to ensure data integrity, and

develop an online method for data quality prediction in mobile IoT that considers

the spatiotemporal, inter-sensor categorization and context relationship among the

participants [Section 6.4]. We consider the users who are willing to participate

in sensing at the same time. The inter-node distance at a specific instance, as

well as user context (e.g., wind speed, sensor model, and user movement during

sensing), are considered in correlated sensor selection. We consider differences in

spatial granularity while defining the correlated participants for data fusion based

on two application types: spatially stable or variable, which was not considered in
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the earlier research. Our methodology is resilient against on-off and data corruption

attack behavior of a malicious participant. We implement our method on real-world

dataset [ZLH13], which we test with the presence of different high numbers (55, 65,

75 and 85 out of 145) of participants injecting false data [Section 6.5]. Our method

was able to receive 74% accuracy in the worst case scenario (60% malicious users),

exhibiting the quality of resilience [Section 6.5]. In this case, our reputation-based

context-aware data fusion (RCoD) outperform the closest competitor reputation

system to evaluate participants (RSEP) [AHZ16] by incurring 45.58% less RMSE

on average. This research content has been submitted to [TPI+19].

1.6 Dissertation Outline

The remainder of this dissertation is organized as follows. We survey the related

work in Chapter 2. The context-based data cleaning method is presented in Chapter

3. We focus on addressing the movement similarity identification and trajectory

outlier detection in Chapter 4. Then we described the correlated sensor-type based

data fusion method and its performance in Chapter 5. In Chapter 6, we present

the reputation-based context-aware data fusion mechanism that is resilient against

malicious participants. Finally, we present our concluding remarks and provide

direction for future work in Chapter 7.

8



CHAPTER 2

RELATED WORK

In this section, we discuss the works that are most pertinent to our research. First,

we discuss the data mining techniques dealing with static wireless sensor networks

(SWSN). With the advent of better wireless technology, mobility of the devices are

common in recent days. The works developed for mobile wireless sensor networks

are discussed after that. To deal with the trajectory of mobile devices, varied tra-

jectory data mining methods have been invented. We discuss those state-of-the-art

techniques in the next subsection. Finally, the different methods developed for mo-

bile IoT data management have been described. We explored the works on data

fusion, data reduction, and missing data prediction.

2.1 Data Mining in Static Wireless Sensor Networks

Data mining is a crucial part of data management. It is the process used by the

user to discover meaningful information in vast data repositories. Appiece et al.

[ACFM14] presents the three most popular data mining techniques: predictive mod-

eling, clustering analysis, and anomaly analysis. Data management for wireless sen-

sor networks has been a topic of interest. Data management covers a wide range

of issues such as storage, compression, prediction, optimization and data cleaning.

Currently, there is a wide range of algorithms that deal with data management.

Jeffrey et al. [JAF+06] explained why data cleaning is a crucial step for data man-

agement.

In [ZCWL07], cleaning was performed both in sensor level and sink level. Mul-

tiple sampling was performed in order to eradicate noise that can be found in data

randomly. When the sensor data is regular, few sampling is performed. Their al-
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gorithm considered static wireless sensor networks. Participatory sensing is an ap-

proach of collecting sensor data using mobile devices. H. Kurasawa et al. [KSY+14]

proposed a method to estimate the value of an infrequently used sensor data from

frequently used but correlated sensors (e.g., dust limit from temperature, humidity,

atmospheric pressure etc.). Along with finding out the missing values, they also ap-

pended some data in the training data set for future use by using a locally weighted

multiple regression technique. This method performs best when there is a bounty of

correlated sensors. Zafeiropoulus et al. [ZSA+09] further discussed the advantages

of adding a semantic component to the data, how those semantic annotations enrich

the data and ultimately allow for more specific queries. For example, a museum

worker would be able to search for the location of the paintings of a specific artist

or a specific time period. In contrast, discretization was applied on the continuous

numerical values of each sensor to get some categories [IMR14], and inter attribute

relationship was calculated by observing the co-appearance of a pair of categories.

The data cleaning was performed online by energy-rich entity mobile data collec-

tors (MDC) that move to the polling points of the static wireless sensor networks

(WSN) in a periodic fashion. The inter-pole traveling time of MDC was utilized in

data cleansing. However, only the spatial relationship among the sensors has been

considered, and this method will not work when the sensor nodes are mobile.

In order to detect outliers, both temporal (historical) and spatial correlation

among the nodes have been considered [GKD+10] on top of a clustered network

structure with two levels of hashing: intra-cluster and inter-cluster. In the first level,

a hashing technique based on localization has been used where a cluster head finds

out outlier nodes. In the second hashing step, intra-cluster communication takes

place where possible outliers can achieve support from measurements performed at

nodes belonging to other clusters, resulting in less processing and communication
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load for cluster head. However, this method fails to perform when the network

structure changes due to the mobility of the sensor nodes. On the other hand,

the extended Kalman Filter (EKF) based mechanism was used to predict the future

value of neighbors as well as to detect false injected data in online fashion [SSWX13].

A node silently observes its neighbor’s transmitted cumulative value and compares

it with their own predicted range.

2.2 Data Mining in Mobile Wireless Sensor Networks

A context-aware algorithm [SRM+14] was proposed to find out the optimal number

of mobility patterns for mobile group formation in decentralized fashion without any

prior knowledge about the network. The iterative k-means++ technique was used

to find out the optimal group number, and ballot mechanism is used for determining

the threshold value. This algorithm does not work in sparse mobile networks.There

are some static virtual sensors (VS) located in the center of each square region

[PP10]. The term VS insinuates some temporarily allocated memory space at the

base station dedicated for storing some value that is being calculated from sensed

data of a particular region. To estimate missing VS data, NLMS adaptive filter run

prediction model at the base station. In [KXL+13], the authors used compressive

sensing to reconstruct missing data. Both temporal stability and spatial correlation

feature were used for data reconstruction mechanism.

Pumpichet et al. [PPJP12] developed a centralized method where data cleaning

was performed in the base station. In this work, the authors assumed that the

trajectory information was accurate, and the data inconsistencies were pre-identified.

The authors proposed a method for filling out the previously identified blanks. For

each sub-area, a belief table was maintained for the spatiotemporally correlated
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mobile sensors. The belief table is global storage of belief measurement for every

grid. The belief values were used as a weight in the missing value prediction method.

However, the sensor context was not included in this paper. In contrast, the sketch-

based data cleaning method [PJP13] was developed for applications (e.g., blood

pressure and heart rate monitoring) where inter-sensor correlation did not work.

Thus, a method similar to peer to peer was proposed for cleaning data streams that

is not dense. A mobile sensor and the base station were the peers in this scenario.

However, this method required a high storage space. Also, due to a high rate of data

transmission, the power consumption was high for such a sketch-based method.

2.3 Trajectory Data Mining

Zhixian Yan et al. [YS+09] presented a multi-stage model to cope with the com-

plexity of trajectory semantics. The multi-stage model took raw movement data

and created raw trajectories which were later converted to structured trajectories.

Mingqi et al. [LCC12] presented a framework that discovers the users’ semantic

places from their GPS data. This framework included a multi-layered model that

extracts physical places by using a density-based algorithm.

There are some works on the clustering of mobile objects based on the whole tra-

jectory of the movement nodes [NP06, PKK+11, VKG02]. In these cases, the whole

lifetime of the trajectories was assessed for discovering cluster. In [LHW07], the

authors considered sub-trajectory based clustering of trajectories considering only

spatial relationship. However, since the inclusion of time was missing, it was not ca-

pable of finding out the exact relationship between various mobile trajectories. Spa-

tial clustering was used for moving object activity discovery. Silva et al. [dSZdM16]

used sub-trajectory based clustering considering space and time. Though, they did
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not include semantics in their trajectory clustering method. Palma et al. [PBKA08]

used a density-based clustering algorithm to find important places from the trajec-

tory. There is also research on shape-based clustering that looks into the shape of

the trajectory for similarity finding. A shape-based similarity query was defined in

[YAS03]. In contrast, there is significant work based on time-dependent clustering.

In this type of works, periodic patterns among movement trajectories are analyzed

[NP06, YP12]. Ying et al. [YCL+14] proposed a prediction model based on cluster-

based prediction strategy to find out the probable location that a user may move

towards based on a similar user’s semantic trajectory analysis.

2.4 Data Mining in the Internet of Things (IoT)

Chen et al. [CDL+19] proposed a deep learning-based model for urban air quality

monitoring. Even though the authors were able to predict and forecast air qual-

ity index values exploiting spatial as well as temporal models, it required higher

processing time and capability. Also, it is completely supervised, cannot work on

unlabeled data. On the contrary, a multi linear regression model was used for fore-

casting air pollution index [GYT10]. Kumar et al. [KJ10] utilized an autoregressive

integrated moving average model for predicting the air pollutant concentrations.

Furthermore, Cheng et al [CHZT19] focused on calibration error reduction in air

quality monitoring sensors by utilizing spatial correlation and multi-sensor fusion.

However, network structure was static, i.e., the densely deployed air quality moni-

toring sensors do not change their position.

Nowadays, instead of traditional static wireless sensor networks, sensing is dis-

tributed among a crowd of people. This brings heterogeneity in the sensor networks

and makes the computation more complex. The most recent work on data quality
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estimation in mobile crowdsensing is done by Shengzhong et al. [LZW+17]. The

authors introduced a context-aware method for data quality estimation in real time.

The limitation of this work is that the authors considered the presence of exactly

one mobile user at each point of interest (PoI). Kishino et al. [KTS+17] mounted

sensor nodes on garbage trucks that drive around the city. Their motivation was to

detect target events by analyzing vehicle-mounted sensor data streams. The authors

used machine learning methods to detect the target events. On the other hand, the

author [Kou18] broached a new sampling method named stratified sampling for cal-

culating the mean temperature of a linear area. In this article, only the random

waypoint mobility model was considered for the movement of the sensing devices.

Vitello et al. [VCF+18a] built a simulator for large scale mobile crowdsens-

ing. In this paper, the authors applied a procedure to augment the precision of

the graph describing the street network provided by OpenStreetMap (OSM). They

could not directly use OSM as dead ends as the intersections are included in the

map. They applied some algorithm to adjust the map input while generating large

scale mobile crowdsensing participants’ trajectories imitating real-world pedestrian

movements. Furthermore, Villeto et al. [VCF+18b] proposed an energy-efficient

collaborative data collection and delivery mechanism well suited for smart city ap-

plications. Based on the proximity of the mobile devices, groups are formed who

can communicate through Wi-Fi rather than 3G/4G communication. As a result,

the phone’s battery is saved. One of the members is elected as group owner who

forwards the collected group data to the data collector. However, the efficiency

of the proposed method lies in the proper selection of the owner. The authors

proposed three policies compliant with current Android implementation of Wi-Fi

Direct for this purpose. In the first policy, each grid is termed as a group and, in

the second policy, users located around a point of interest are grouped together.
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The third policy declares pedestrians walking in the same direction along the street

as a group. By using their own developed CrowdSenSim simulator, Villeto et al.

showed that the collaborative method outperforms individual sensing methods. Due

to not considering the geographic context of the participants, the dynamism of the

evaluation environment has not been taken into account in the group formation for

collaborative sensing.

Different Real-world Applications

• Creekwatch [KRZ+11], a smartphone application, allows the monitoring of

the conditions of watershed using crowdsensed data. It was invented by the IBM

Almaden research center.

• An environmental air quality sensing system was deployed on street sweeping

vehicles to monitor air quality in San Francisco [AHM+09].

• Garbage Watch [RS11] employs citizens to monitor the content of recycling

bins to enhance the recycling program.

The research group from the University of Luxemburg developed one of the

first mobile crowdsensing simulators named CrowdSenSim [FCC+17]. It allows re-

searchers to perform simulations over urban environments. It has been successfully

applied in the performance evaluation of city-wide public street lighting [CFK+17a],

energy efficient data collection [CFKB17] and user recruitment in crowdsensing cam-

paigns [CFK+17b].

On the contrary, Chessa et al. [CGF+17] proposed a methodology capturing

urban morphology with arbitrary precision. It is an axial line method, not detailed

enough to capture the street map since the streets are not defined in terms of

latitude, longitude pairs.
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2.4.1 Data Fusion

There exist many approaches to sensor data fusion. In this section, we discuss some

of the major contributions.

Analyzing data obtained from Smart Santander, [JGB14] have proposed sen-

sor data fusion technique to comprehend behavioral pattern of humans. Applying

poison model, the method in the paper [JGB14] correlated traffic flows and tem-

perature. On the other hand, project [SBB+15] estimated the allurement of smart

cities to its tourists. The work collects large number of data in three categories (e.g.,

photos, tweets, and card transactions by tourists) and fuse sensor data to calculate

attractiveness of cities. A number of interesting conclusions were derived in the

project [SBB+15], such as contributing factors to tourists attraction to a particular

city, etc.

In the paper [AAB+14], authors presented a big data platform to collect, ag-

gregate and visually present smart city data flow. The work focused on identifying

city scale events (e.g., event duration and number of visitors) through sensor data

fusion and used various types of data sources (e.g., social media, traffic flow). Ope-

nIoT [SKH+15] is an IoT platform that provides semantic services in the cloud. It

provides common model platforms for representing sensors (virtual and physical)

and instigates various IoT protocols (e.g., CoAP, 6LoWPAN). Most importantly,

OpenIoT supports mobile sensors. Furthermore, The Padova project developed by

Zanella et al. [CZVZ14, ZBC+14] uses different network layer protocols (e.g., IPv4,

IPv6) and collects WS data through the sensor network infrastructure. A survey of

different architecture, techniques, and protocols for urban IoT is also presented in

the paper [ZBC+14] by Zanella et al. Smart Santander is a European smart city

project. The paper [TMC13] reports the various challenges and findings from the

Smart Santander project, including sensor data fusion employment at various smart
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city places (e.g., parking, home garden). Moreover, An urban information system

to build a smart city is presented by Lin et al. in the paper [JGMP14]. The paper

uses a noise mapping scenario to show the architecture.

2.4.2 Data Reduction

There are various works focusing on the cleaning of data streams. Most of the previ-

ous works on sensor data cleaning focused on the reduction of consumed energy. To

achieve this reduction, the authors [BGS+13], [DKV+09], [GKD+10] tried to reduce

the inter-node communication. In these works, it was assumed that sensor data

are always aggregated during submission. There have been significant works on us-

ing compressive sensing for data reconstruction in static sensor networks [CLK+13],

[KXL+13].

In recent days, researchers [GLN15], [KWW+16], [LJS+17], [LTTH16], [LZW+17],

[TCP+18] are designing frameworks to deal with big data services. In the past, the

data size was not as big as present days, which influences researchers to design and

develop scalable mechanisms to correct any kind of inaccuracy in data streams. For

instance, Liu et al. [LTTH16] designed a framework for big data cleaning. This

paper gives direction on how to achieve a reliable database in big data applications.

They used context to find similarity between data items. Moreover, the authors

exploited the usage pattern to classify and group data items that are not related

contextually. One of the daunting tasks in dealing with big data is to shrink the data

size by extracting the irrelevant subset. Dong et al. [DSS12], in contrast, debated

that having more data does not always provide more information. During data in-

tegration, proper selection of reliable source among all available sources results in

higher data accuracy.
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2.4.3 Missing Data Prediction

Zhang et al. [ZSS14] proposed data cleaning method for environmental sensing.

Depending on the sensed value, the authors tuned each sensor’s reliability value on

an incremental basis. On the contrary, Peng et al. [PWC15] used unsupervised

learning for data quality estimation. This method works after the collection of

historical data from all the users; hence it is not an online method.

Trustworthiness was considered as a measure of data quality estimation [LMB10,

MMH+15, YSS18]. However, Mousa et al. [MMH+15] used synthetic data set for the

experimentation. Huang et al. [HKH14] showed that using a reputation framework

helped to weed out non-colluding malicious attackers. Their reputation framework

produced more accurate results than not using a reputation framework. However,

the authors assumed that data is coming from every discrete block of space-time

which is not practical in real-world scenarios. Moreover, Alswailim et al. [AHZ16]

proposed a method named Reputation System to Evaluate Participants (RSEP) to

cluster participants into three groups based on the sensed data. If the data was

within 10% error of the ground truth, it was considered as correct. The winner

group was given reward in terms of increased reputation, and the reputation value

of members belonging to the remaining two groups were reduced. However, the

maximum error that RSEP could identify was only 30%. Also, they assumed that

ground truth data is known a priori, which is not practical in real-life applications.

CHMM has been used in the area of computer vision [YFW15],[PKL12], wavelet

domain [CB97] and image recognition [ZWL07]. Target appearance change dur-

ing tracking is always a challenging problem for tracking visual objects [YFW15].

CHMM was also used in dynamic behavior analysis of power distribution networks,

equipped with phasor measurement units (PMU), with the aim of providing ade-

quate assistance to diagnostic and control application [ZAS16]. Moreover, Bushra
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et al. [AS16] incorporated autoregressive hidden Markov model to detect malicious

nodes in static wireless sensor networks. Since it is an autoregressive model, it re-

quired high processing capabilities. This method fails to identify malicious nodes

when the nodes move.

Another aspect of literature focuses on finding outliers in sensor data streams. In

order to find global outliers in the data, Branch et al. [BGS+13] proposed a distance

based ranking method. The other existing methods for finding outliers in sensor

data are geometry-based [BD12], polygon-based spatial outlier detection [FG09],

clustering-based [KZX10], kernel density-based [SPP+06] and histogram approach

[SLMJ07]. Bosman et al. [BIT+17] tried to answer the question if adding more

neighbors makes the anomaly detection perform better. This paper considered static

sensor nodes and it varied the neighborhood size by changing the communication

range of the sensors.
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CHAPTER 3

CONTEXT-AWARE DATA CLEANING IN MOBILE WIRELESS

SENSOR NETWORKS

In mobile Wireless Sensor Networks (mWSN), uncertainty is a common phenomenon

where nodes change their positions rapidly and unpredictably. Although reliability

and accuracy are of utmost importance in many sensor applications, it is often

difficult to ensure these properties. For example, energy scarcity, frequent movement

of the sensor nodes and instability of the communication channel often contribute to

the imprecise or dirty data [Eln03, JAF+06]. To recover the lost data, researchers

need to find out the correlated sensor data that can be used in the prediction method.

In this chapter, we present our novel context-aware method for cleaning mobile

wireless sensor networks data streams.

We organize this chapter as follows. In section 3.1, we discuss the background

information and challenges. In section 3.2, we discuss the problem and our hypoth-

esis. In section 3.3, we describe different modules of our overall system and present

algorithm for efficient data cleaning. Next, in section 3.4, first, we discuss the sim-

ulation setup, and then we present our results and analysis. Finally, discussion and

summary are offered in section 3.5.

3.1 Introduction

Data cleaning deals with missing values, noisy data, inconsistent data, etc. [HPK11].

Recent research works have focused on using post-processing data cleaning at the

server end. There also exist some efforts on using online data stream cleaning

method in mWSN [PP10]. In static sensor networks, it is sufficient to consider the

temporal relationship [EN03, PS07, MB12]. In many previous works, spatiotemporal
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relationship among the sensor nodes have been considered to select the candidate

sensor for data cleaning [KSY+14, JAF+05, JAF+06, WLT10]. However, not much

work has focused on how sensor context can be used in sensor selection for data

cleaning.

In environmental sensing, different sensors are deployed to sense various environ-

mental properties (e.g., humidity, temperature, and ozone ) [JJLB12] The sensors

are mounted on top of different vehicles (e.g., bicycle, bus, private car, and tram)

or carried by a human being, which change their positions very frequently and

unpredictably. Therefore, the network structure for these sensor nodes changes dy-

namically; making it imperative to consider the mobility pattern for sensor data. In

some cases, real-time significant decision is made based on the sensed value which

raises the necessity of data cleaning. In our work, we focus on both context and

mobility of the sensor.

Zhang et al. [ZSS14] proposed data cleaning method for environmental sensing.

Depending on the sensed value, the authors tuned each sensor’s reliability value on

an incremental basis. The reliability measurement does not require prior hardware

knowledge. With the advance of time, they incrementally adjusted the reliability of

each sensor based on their sensing data accuracy. In many cases, if only the spatial

and temporal relationship among the sensing nodes are considered, then the data

inaccuracy is not identified. For example, a pair of sensors may be located in a

nearby location. The GPS co-ordinate (longitude, latitude) value might be quite

close. If only spatial and temporal relationship is incorporated, these pair is an ideal

candidate to be declared co-related sensors. However, there is a thin wall separating

these two nodes. Due to this wall, one node is at indoor while the other is placed at

outdoor. As a result, there is a high possibility that the sensed value will vary for

this pair of nodes. If data from one of this pair is used to clean the missing value of
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the other, the accuracy will degrade. Given the mentioned limitation, we propose an

algorithm to efficiently calculate the credibility of each sensor during the execution

period. In our method, we considered not only the sensed data value but also the

context of the sensor along with the mobility pattern of the mobile sensors. With

the combination of both of these comparisons, our method performs better cleaning

and helps in ensuring higher accuracy in environmental sensing.

3.2 Problem Statement

Data streams display varied inconsistency and imprecision in mobile IoT applica-

tions. The mobility of the sensors causes more data inaccuracy and loss due to

short-term network connectivity and data collision. Thus, it is needed to correct

those data imprecision for ensuring the data reliability. The research question that

we want to answer is: how can the missing data in sensor data streams be predicted

in a more accurate manner in mobile sensor networks?

Existing data prediction techniques, specifically developed for the IoT, focus on

using post-processing data cleaning at the server end. These methods cannot en-

sure real-time data accuracy, as they process data in batches after long intervals

of time. Consequently, the methods cannot take immediate action when required.

Our hypothesis is that spatiotemporal and context correlations will decrease data

prediction errors and hence ensure more accurate data stream cleaning. We include

contextual correlation along with spatiotemporal correlation. This is needed to take

care of the dynamism of the experimental environment caused by the mobility of

the sensor nodes.
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Figure 3.1: Overall Architecture Design

Figure 3.2: Cleaning Unit

3.3 Architecture

In our system, we calculate sensor credibility according to the historical sensing

performance as well as considering the context of the sensor. Data credibility or al-

ternatively reliability is defined as a state that exists when data attains enough com-

pleteness and error-free to be considered for its goal and context [ME14], [MW04].

We have used a sliding window based weighted moving average mechanism. By con-

text, we mean the environmental space, time, physical condition around the sensor,

the carrier of the sensor etc. We have considered Dynamic data-driven application

method where there is an interaction between the prediction model and data ac-

quisition. Fig. 3.1 depicts the feedback loop from the cleaning unit towards the

data collection unit. The credibility calculation module evaluates different weight

values corresponding to sensed data, sensor context and mobility pattern of the sen-
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sor nodes. The cleaning unit has been shown in Fig. 3.2. The data streams from

heterogeneous mobile devices are input to the cleaning unit. External context data

is added before performing the cleaning. In the end, the cleaned data is produced

from this unit.

Sensor Credibility Module

Sensor credibility is the ratio of the number of times a sensor senses data correctly

and the total number of sensing performed by that sensor during the desired time

period [ZSS14]. The weight is dependent on the closeness of the sensed data and

predicted value. For all the data samples that a sensor senses during a particular

time window, the difference is compared with the predicted value. The mean value

of all data samples from spatially correlated sensors is calculated and used as the

predicted value. If the difference is in a tolerable range, the sensed data is considered

correct. The number of correct is divided by the number of samples to attain the

credibility (or reliability) of the sensor. The sensor with higher credibility has a

higher impact during correlation.

Context Credibility Module

This module takes care of any change in the context of the mobile sensor. Context

is a vector of multiple properties of the sensor (table 3.1), that is taking part in

physical environment sensing. In mobile environments, sensor context is of high

importance. In static sensor networks, sensor context alters rarely. Due to mobility

and heterogeneity of the nodes, there is a high probability that sensor context may

vary as time proceeds.
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Table 3.1: Factors considered for data cleaning
External Factor Dust, Snow
Internal Factor Battery level, hardware malfunction

Context Terrain elevation, wind speed, uneven road
Mobility Pattern Random Waypoint, Nomadic

We calculate context credibility by comparing the context value of the sensor with

the neighboring sensors co-located during a similar time window. If the difference

is within a tolerable limit, then the higher weight is being assigned. We have added

context information (e.g., land elevation, population density) by using API [War13].

By incorporating context, we bring dynamism in area classification. Two nodes

located nearby in the same square region attain different levels of importance due

to their context value (e.g., change in terrain elevation, height above sea level).

Mobility Pattern-based Credibility Module

We need this module due to the mobility of the sensor nodes. We assume that every

trajectory has been recorded in an environment with good position accuracy, and

therefore the location information is correct.

We have analyzed the movement patterns of the sensor nodes. Higher weight is

being assigned to the sensor nodes that tend to move in close correspondence with

the sensor that needs data cleaning during the desired time window. Sensors that

move in a group are given more importance. In the random waypoint model, nodes

move independently to a randomly chosen destination with a randomly selected

velocity. It includes pause times between changes in direction and/or speed [CBD02].

In the nomadic mobility model, a group of nodes moves from one place to another

[CBD02].
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Algorithm 1 Cleaning Algorithm

Input : sensor id

1: block = region[sensor id]
2: context val← context[sensor id]
3: S ← for each si ∈ block during tw
4: for all Si ∈ S do
5: for all ri ∈ Si do
6: w1 ← Equation (3.2)
7: w2 ← CalcContextwt(Si,context val)
8: w3 ← MobilityAffinity(Si,sensor id)
9: end for
10: sum← ri ∗ w1 ∗ w2 ∗ w3

11: weight← w1 ∗ w2 ∗ w3

12: totalSum← totalSum + sum
13: totalWeight← totalWeight + weight
14: end for

15: cleanedData← totalSum

totalWeight

Data Cleaning Module

This module performs the cleaning of dirty data. We have designed a centralized

online data cleaning mechanism. We assume that there is a pre-processing mecha-

nism that identifies the values that need to be cleaned. Our novel algorithm predicts

the replacement value. To do so, we considered different correlations to find out the

desired sensor data to be used for data stream cleaning.

Pred =
1

n

∑
R. (3.1)

Now, we explain our cleaning algorithm (given in Algorithm 1). Each sensor

samples the sensed value and sends the sensed data along with their location to the

central unit. For example, sensor node i samples the sensed values, rit11 , rit12 ,

. . . , rit1m, in the first time window [T
(s)
1 , T

(f)
1 ]. Similarly, all sensors sense and

transmit their data during the whole time cycle. In order to predict the missing or

corrupted data value of a particular sensor, first, the data credibility value of the
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sensors co-located at the region of that sensor during that time window is considered.

During each time window, the mean value of all readings made by sensors located

in the square region is calculated according to Eqn. 3.1. This mean value is used

as the predicted value while calculating data credibility. If the difference between

a sensed value (e.g., rit11) and the predicted value is within the threshold limit, we

assign higher credibility for this sensed value. On the other hand, if the difference

is greater, that sensed value is not considered for the cleaning of the dirty data

according to Eqn. 3.2.

cred(data) =

{
1, |data− predicted| ≤ thresholdd,

0, otherwise.
(3.2)

To calculate the context credibility, we compare the context of spatially co-

located nodes and the node that needs data replacement. This procedure is called

CalcContextwt in Algorithm 1.

The procedure MobilityAffinity evaluates the mobility relationship between

two sensor nodes. The sensor id of the node requiring data cleaning and the sensor id

of the co-located node is input to this procedure. If this pair of nodes show nomadic

movement behavior, wmob obtains a higher weight to indicate high mobility affinity

between them.

For all data of a sensor, the three weight values (w1, w2, w3) are calculated by

calling Eqn. 3.2, CalcContextwt and MobilityAffinity respectively. We calculate

the product of these three weight values and assign it to weight. These three

weight values control the significance of each sensed data value in the prediction

of the clean data. The product of the weights and sensed data (ri) is stored in

sum. totalSum stores cumulative sum value for all sensors and totalWeight stores
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cumulative weight. These variables are used for the weighted moving average based

cleanedData calculation.

3.4 Performance Evaluation

3.4.1 Simulation Setting

We simulated a scenario of 10 mobile sensors moving in an area of 200m ∗ 200m

using ns-2 [KF11] and BonnMotion [AEGPS10]. The simulation duration was 1000s.

Some of the mobile nodes moved in nomadic mobility pattern, and others followed

random waypoint mobility. Our proposed algorithm (along with IMC and Mean-

based cleaning) was tested on a dataset of Smart City project in Melbourne [CoM18].

Environmental data consisted of humidity and temperature values. Terrain elevation

was added as context information using API [War13].

We used faulty data injection mechanism to introduce an impurity into the sensed

data. We applied an intense spike similar to Fig. 3.3 on the data to introduce error.

Usually, hardware malfunctioning or battery exhaustion causes this type of intense

spike [NRC+09]. When the spike is applied, each data has a 50% chance of replaced

by spike value.

During each iteration, sensor nodes sensed the humidity of the region it is located.

The whole region is divided into 100 equally sized blocks each having dimension of

20m ∗ 20m. The readings having a spatial position within the same block were

considered as a singular group. We considered fixed and variable speed for the

mobile nodes. For the case of walking, the speed value was set to 2 mph. On the

other hand, we used 30 mph speed value for the case when the mobile sensor is

assumed to be attached over a slow-moving car.
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Figure 3.3: Spike Data.
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Figure 3.4: Positioning of different nodes.

3.4.2 Results and Analysis

We calculated RMSE and used it as a performance measurement criteria of our

algorithm. RMSE is a standard metric to evaluate the accuracy of the prediction

model [ZSS14].

RMSE =

√√√√ 1

n

n∑
i=1

(V̂i − Vi)2, (3.3)
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where V̂i is the predicted value and Vi is the original value. The Mean Square Error

(MSE) is the average of squared deviations of the predictions from the true values.

RMSE is calculated by finding the square root of MSE. Since we knew the true

values from the original dataset before applying the spike value, we could calculate

the RMSE value from the predicted values.
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Figure 3.5: RMSE comparison for (a) continuous walking of the nodes, and (b)
variable movement speed.

Fig. 3.5 (a) depicts the case of all the mobile nodes moving continuously in

walking speed (e.g., 2mph) and sensing the humidity values. A sudden rise in the

RMSE value can be seen at the initial stage. High error values from all participating

sensors at that region caused that sudden rise at the initial stage. Our proposed

method can recover from that error situation faster and stabilize quicker than both

IMC and Mean-based cleaning methods. The reason behind this is, IMC considers

individual sensor reliability. We along with that look at the context relationship

and mobility affinity between the candidate sensors for data cleaning. This facili-

tates better candidate selection for data cleaning and ensures more accurate data

prediction. As a result, the difference between original data and predicted data is

less resulting in achievement of lower RMSE value for our algorithm. Simulation

30



10 20 30
0

2

4

6

8

% of impurity

R
M

S
E

 

 
Proposed
IMC
Mean−based

Figure 3.6: Performance comparison for different level of data impurity.

result shows up to 24% reduction in root mean square error (RMSE) over IMC and

up to 30%compared to Mean-based cleaning during the considered time period

In Fig. 3.5 (b), we show RMSE comparison for nodes moving in variable speed

and sensing humidity. Even though the node speed varies, our algorithm can pre-

dict the missing value with lower error than the compared algorithms. In Fig. 3.6,

performance for a different level of impurity has been shown. The average RMSE

incurred by our method was only 3.9. In the case of 10% impurity, our proposed

method outperformed our IMC and Mean-based cleaning method by incurring on

average 10.6% and 22.59% less RMSE, respectively. Our algorithm performs con-

sistently by predicting the missing data value closest to the original value. For all

tested level of data impurity, the level of error in missing data prediction was less

for our algorithm in comparison to other algorithms.
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3.5 Discussion and Summary

In this chapter, we proposed a novel mechanism for cleaning environmental sensing

data streams that consider not only the sensed value, but also the sensor context

and movement affinity for data cleaning. Because of the low quality and mobility

around various environments, the data received from the tiny sensors are error-prone.

We compared performance of our algorithm with a recently-proposed algorithm

in cleaning data streams (i.e., IMC) and a widely-used method (i.e., Mean-based

cleaning). We evaluated the approaches based on Smart City project in Melbourne

factual dataset, to demonstrate our proposed method’s efficacy in different rates of

data impurity. The success of our approach lies in the integration of sensor context

in correlated sensor identification for missing data prediction in environmental data

streams. Our proposed method can predict the missing data value more accurately

even when there is higher fluctuation in the data streams. The average RMSE

incurred by our method was only 3.9 at varied data impurity rates. Simulation

result shows up to 24% reduction in root mean square error (RMSE) over IMC and

up to 30% compared to Mean-based cleaning during the considered time period.
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CHAPTER 4

SEMANTIC-AWARE TRAJECTORY DATA MINING

In chapter 3, we presented our context-aware data cleaning algorithm. Although

the performance of our context-aware data cleaning method outperforms the related

contemporary works (IMC [ZSS14] and mean-based [JAF+06, SGG10]) by achieving

less root mean square error in the data prediction, there are nevertheless problems

to address. The scalability test has not been performed. The algorithm was tested

using simulated mobility traces. However, working with factual big data set is more

challenging. The intrinsic 4V quality [CSK+14] of big data make data mining more

intractable. Therefore, in this chapter, we develop a novel clustering-based method

of trajectory data mining considering varied semantics of mobile trajectory. We

organize this chapter as follows. In section 4.1, we discuss the background of this

work. The detailed problem description is presented in section 4.2. Next, in section

4.3, we present different modules of our overall system and present algorithm for

stop point identification and semantic-aware trajectory clustering. In section 4.4, we

describe the experimental setup and discuss the evaluation results. Final discussion

has been presented in section 4.5.

4.1 Introduction

Due to the growth of various mobile devices, there is also growth in mobile tra-

jectories. As a result, there comes the research opportunity to find the movement

relationship between these mobile nodes. In some relationships, only one entity

is being considered; in others, inter-trajectory relationships are considered. For

example, stop and go behavior can be found in a single trajectory. Some group

movement behaviors include moving together, flock, and leader-follower. There ex-
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ist some efforts on using the whole trajectory in order to find clusters of mobile

nodes [NP06, VKG02].

We need to deal with an enormous amount of trajectory data generated by

mobile devices that change their positions frequently to discover various movement

relationships. In order to analyze their movement behavior, offline methods are

not suitable. The consideration of the entire data stream might not be very useful,

because the information to be extracted may be outdated at the time of processing

[dSZdM16]. To handle this issue, we develop an online method that operates on the

input data streams in real-time rather than traditional offline trajectory clustering

and analysis methods. By looking at the recent time windows, we apply clustering

on sub-trajectories to discover similarity in movement behaviors as well as identify

outliers in real-time. Outliers have been defined as observations inconsistent with

the remainder of that set of data [BL+94]. The identification of outliers can lead

to the discovery of useful and meaningful knowledge and has a number of practical

applications (e.g., transportation, location-based services, public safety etc.).

Semantics is the piece of information that allows us to give a meaningful value

to the data; for example, GPS coordinates consist of latitude and longitude, the

semantic annotation will give those points a human-readable label such as “restau-

rant”, “school”, “bank” etc. Adding semantic annotation facilitates various move-

ment and behavioral pattern in mobile trajectory data. In this chapter, we propose

a Semantic-Aware Clustering-based (SACB) approach for trajectory data stream

mining. We use DBSCAN [EKS+96] as our baseline algorithm.
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4.2 Problem Statement

The rapid development of mobile sensing technologies (e.g., GPS, accelerometer) em-

bedded in smartphones has dramatically increased the number of positioning data

(also known as trajectories). Trajectory data streams demonstrate several unique

properties that together conform to the characteristics of big data (i.e., volume, ve-

locity, variety, and veracity) and add challenges to data stream mining. A daunting

challenge is to analyze movement behavior and detect outliers in rapid, voluminous

streams of data. The research question that we want to answer in this chapter is:

how can we identify the movement similarity and detect trajectory outlier in real-

time?

Our hypothesis is that trajectory similarity based on time, space, direction, and se-

mantics will facilitate real-time movement behavior analysis and trajectory outlier

detection. We propose a method of adding geographic domain knowledge to raw

trajectory data. Additionally, we propose a window-based online sub-trajectory

clustering method for finding movement similarity based on space, time, direction

and semantics.

4.3 Methodology

4.3.1 Add Geographic Domain Knowledge

In the raw data as shown in Table 4.1, only latitude and longitude values of the

movement points are available. This module takes care of adding geographic domain

knowledge to the points. As a result, the point receives a human understandable

format. We add the type of place that the mobile object visited using this module.

We consider the places that are in 15 m radius (which is common sensing range)
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of the trajectory points. Table 4.2 presents the addition of geographic domain

knowledge on the raw data as shown in Table 4.1. We used the reverse GeoCoding

API [goo19] to get places within a pre-determined radius.

Table 4.1: Sample raw data

Latitude Longitude

37.78574 -122.4146

37.64401 -122.45264

37.79434 -122.39983

Table 4.2: Sample data after addition of geographic information

Place Type Latitude Longitude

atm 37.78574 -122.4146

restaurant 37.64401 -122.45264

bank 37.79434 -122.39983

4.3.2 Distance Calculation

In this section, we measure the distance between sub-trajectories that are con-

currently present in the considered time window (t, t + |window|). We map the

trajectory points (latitude, longitude) into Euclidean space in order to measure

the distance between sub-trajectories in spatiotemporal dimension. If the sampling

rates of a pair of sub-trajectories vary, we used linear interpolation to approximate

the missing location point. The Euclidean distance between two objects that move

within the same time window is calculated using Eqn. 4.1.
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Algorithm 2 CreateClusters
Input : Trajectories, range

1: ListOfClusters = []
2: for all point p ∈ Trajectory do
3: for all clusterx ∈ ListOfClusters do
4: if Latitude in range & Longitude in range then
5: ListOfClusters[x].append(p)
6: else
7: ListOfClusters.newCluster(p)
8: end if
9: end for
10: end for
11: return ListOfClusters[]

√
(x1 − x2)2 + (y1 − y2)2 (4.1)

4.3.3 Direction Calculate

Forward azimuth is used to calculate the direction of movement for the trajectory

points [Hed19]. Based on the calculated angle, the direction is defined. Different

directions are : E, N, S, W, NE, NW, SE, SW, where ‘E’ is for the EAST direction,

‘N’ for the NORTH, ‘S’ for SOUTH, ‘W’ is for WEST, ‘NE’ is for NORTH-EAST,

‘NW’ is for NORTH-WEST, ‘SE’ is for SOUTH-EAST, and ‘SW’ is for SOUTH-

WEST. The Cosine function is applied to the angle to calculate the directional

distance.

4.3.4 Stop and Move Annotation

We find episodes in the trajectory. Based on the movement speed and duration of

staying at a particular point, Algorithm 3 finds out the stop points in the trajectory.

We have used a clustering-based method in order to annotate stops and moves in
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Algorithm 3 Find Stops
Input : Trajectory

1: ListOfClusters = CreateClusters(Trajectories, rng)
2: Stops = [ ]
3: for all point p ∈ Trajectory do
4: for all cluster x ∈ ListOfClusters do
5: if time in range & speed in range then
6: stops[x].append(p)
7: else
8: moves[x].append(p)
9: end if
10: end for
11: end for
12: return stops[],moves[]

the trajectory. If the speed of a certain number of trajectory points is less than a

threshold for a certain duration, then it is considered as a stop.

4.3.5 Group Formation

This module considers the semantic relationship between the mobile nodes. We

follow a window-based mechanism in order to find out the group of trajectories that

have similar behavior. There are a few steps that are maintained in order to identify

the trajectories with similar behavior, such as:

(i) collect the trajectory data stream at each time window

(ii) apply a similarity measure

(iii) maintain the group(s)

(iv) discover the mobility

Algorithm 4 describes the formation of a group of trajectories that are similar

based on time, space, direction and semantics. We use string matching in order to

find the semantic distance. It is a window based density clustering algorithm where
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we look at the sub trajectories of all moving trajectories that are present during

that time period.

We use linear interpolation to align the points in time in order to measure the

distance between a pair. The three weights for calculating distance has equal weight

value in Eqn. 4.2 . If for some particular scenario spatiotemporal distance needs

more emphasis than direction, then the weight value w1 will receive a higher value.

These three weight values are application dependent.

dist(SubTj,i, SubTk,i) = w1 ∗ distance(SubTj,i, SubTk,i)+

w2 ∗ direction(SubTj,i, SubTk,i)+

w3 ∗ semantic(SubTj,i, SubTk,i) (4.2)

Now, we briefly explain the Algorithm 4. First, we select a sub-trajectory of a

moving object (objj, SubTj,i) that is unvisited. It is a random selection. Then, we

mark this sub-trajectory as visited and check if it can be a representative trajectory.

The representative trajectory is identified following Gaussian kernel based voting

method [PPK+12]. If it has minimum ω − 1 neighbors in α radius, then a new

group “g” is created including itself and the neighbors that are represented by (objj,

SubTj,i). Else, objj is marked as ungrouped, because it cannot be represented by

another representative that belongs to an existing group or it can be an outlier. At

the end of the while loop, the ungrouped objects are declared as outliers. Algorithm

4 outputs a set of groups. By applying a post-processing mechanism on the groups,

the leader among the group members is detected.
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Algorithm 4 Group Formation

Input : Si sub-trajectory set for the time windowi = [t, t + |windowi|], α distance
threshold, ω the size threshold, ρ representativeness threshold

1: Gi ← empty
2: mark all the sub-trajectories in Si as unvisited
3: while ∃(objj, SubTj,i) ∈ Si unvisited do
4: mark(objj, SubTj,i) as visited
5: get neighborlist Nα(oj)
6: if |Nα(objj)− 1| ≥ ω then
7: for all objk ∈ Nα(objj) not visited do
8: dist← Equation (4.2)
9: if e−dist

2÷2σ2
> ρ then

10: g ← g ∪ {ok}
11: mark (objk, SubTk,i) as visited
12: end if
13: end for
14: representative← (objj, SubTj,i)
15: Gi ← Gi ∪ {g}
16: else
17: mark SubTj,i as ungrouped
18: end if
19: end while
20: for all SubTj, i ungrouped do
21: mark objj as outlier
22: end for
23: return Gj

4.4 Performance Evaluation

In this section, we describe our experimental setup and environment. We also de-

scribe the data set we used and different performance measures that we considered

to evaluate the accuracy of our proposed method. We implemented our algorithm

using the real dataset [PSDG09]. The dataset consists of GPS positions of taxi cabs

that move around the city of San Francisco. The area of consideration has the size of

42.5 km X 62.5 km. There is a total of 160 taxis that were moving around different

parts of the city. Fig. 4.1 depicts the raw point of movement taxis.
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Figure 4.1: Taxi trajectory points on the map of San Francisco

Figure 4.2: Stop points identified from all the taxi trajectories
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Figure 4.3: Stop points identified from all the taxi trajectories

After the clustering-based stop and go Algorithm 3, we get the stop and go

episodes. We used the reverse GeoCoding API [goo19] to get places within a pre-

determined radius. After adding geographic information to the raw GPS points, we

get the semantically annotated trajectory. These semantically annotated trajectories

are used as input in Algorithm 3 and Algorithm 4. As a result, we can find stop

episodes and group formation among trajectories, respectively. The stop points

identified from all the taxi trajectories are shown on the map in Fig. 4.2.

Due to adding semantic information, we could classify the data based on weekend

and weekdays. We analyzed the semantics of the stop points and the categorization

on the weekend is shown in Fig. 4.3.

recall =
SACB outlier ∩DBSCAN outlier

|SACB outlier|
(4.3)
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Figure 4.4: Recall for detecting outlier

precision =
SACB outlier ∩DBSCAN outlier

|DBSCAN outlier|
(4.4)

After applying Algorithm 4, we identified the cluster of taxis as well as outlier taxis.

The taxi that does not belong to any group is declared as an outlier. We captured

timestamps from 9 : 42 : 00 to 10 : 22 : 09 in May 17, 2008 as the experimental

dataset to be used in implementing Algorithm 4. We set the time window as 5

minutes and tracked the clusters for 4 consecutive time windows. In Fig. 4.4, we

show the performance of our algorithm in detecting outlier taxis. The recall values

achieved during outlier identification at various time windows are shown. Three

different clustering radius (eps, 2eps, 3eps) have been tested. We used 250 as the

eps value. Here, we consider the outliers identified by DBSCAN as the perfect

list. The recall and precision is calculated using Eqn. 4.3 and Eqn. 4.4 [SL09].

SACB outlier is the list of taxis identified as an outlier by our algorithm and

DBSCAN outlier contains the outlier taxis identified by the widely used density-

based clustering algorithm: DBSCAN.

We tested with different density requirement (ω) and representativeness thresh-

old (ρ) values. In Fig. 4.5, we show recall values with respect to different node
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Figure 4.5: Recall for detecting outlier

density as well as representativeness threshold value. The range of ρ is between 0

and 1.0. ρ = 1 means the highest similarity between a pair of objects, the best can-

didate to be declared as representative among the group members and later leader

in the moving group. Even in high ρ value, which demands close correspondence

among the trajectories based on their spatiotemporal, directional and semantic re-

lationship, our method was able to detect outlier taxis almost similar manner as

DBSCAN by maintaining recall value over 0.85. The average recall value achieved

was 0.92 for the different combination of ω, α and ρ.

Fig. 4.6 shows the F1 score achieved at time window 1−4. F1 score is calculated

using eqn. 4.5 [SL09]. The average F1 score encountered thoughout the experiments

was 0.8, which indicates the classification accuracy of our SACB method.

F1 = 2 ∗ Precision ∗Recall
Precision+Recall

(4.5)
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Figure 4.6: F1 score for detecting outlier

4.5 Discussion and Summary

In this chapter, we introduced a semantic-aware online clustering-based method for

finding movement relationships in mobile trajectories. We used semantic annotation

to annotate the movement trajectories. After adding the geographic information to

raw GPS points, window-based online clustering is applied to find sub-trajectory

groups. Ours is an online method that performs the operation on the input streams

in real-time rather than traditional offline trajectory clustering and analysis meth-

ods. We conducted experiments on a real-world data set. Along with the added

advantage of semantic-aware movement behavior analysis, our method was able to

successfully identify outliers in the clustering process with an average recall of 0.92

and F1 score of 0.8.
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CHAPTER 5

CORRELATED SENSOR-BASED DATA FUSION IN MOBILE

CROWDSENSING

In the previous chapters, we assumed that all mobile devices are honest. They co-

operate in the data collection procedure. However, malicious participants can report

false data in mobile crowdsensing applications. Also, the sensors used in the previous

chapters were homogeneous, they sensed similar data. In contrast, nowadays due

to technology advancement, a smartphone contains varied sensors. To exploit these

resources intelligently in the missing data prediction, in this chapter, we develop a

data fusion mechanism utilizing the inter sensor-category correlation. We organize

this chapter as follows. In section 5.1, we discuss the background information and

challenges. In section 5.2, we discuss the problem and our hypothesis. In section 5.3,

we describe different modules of our overall system. Next, in section 5.4, first, we

discuss the simulation setup, and then we present our results and analysis. Finally,

discussion and summary are offered in section 5.5.

5.1 Introduction

With the advent of better wireless technology and an increase in smartphone usage,

a new mode of data collection named mobile crowdsensing (MCS) has emerged.

Mobile crowdsensing has a number of practical applications: traffic monitoring,

epidemic disease monitoring, reporting from disaster situations and environment

monitoring [CDW+15], [FZ16], [RGB+17]. For example, an environmental air qual-

ity sensing system was deployed on street sweeping vehicles to monitor air quality

in San Francisco [AHM+09]. These applications are usually open to the public and

receive sensor data from multiple participants. This influences the reduction of

data sparsity at lower costs in comparison with traditional sensor networks. With

46



various advantages, MCS’s people-centric architecture allows both more inaccurate

and corrupted data [MMH+15]. Malicious participants can manipulate the MCS

data collection process at ease. These entities can interrupt a system by reporting

fabricated or erroneous data, making trust evaluation a highly important issue in

MCS applications. Therefore, validating the accuracy of contributions is essential

to ensure the reliability of the application system.

In this paper, we consider data corruption attack behavior of a malicious partic-

ipant. By malicious we mean a participant who sends incorrect data either inten-

tionally or unintentionally. The unintentional error can arise because a participant

carelessly performed the sensing task, or due to a sensor error. On the contrary,

a malicious participant can deliberately fabricate the sensed data to infiltrate the

system. For example, in air quality monitoring, a malicious participant may hold

the sensor beside a burning cigarette or place it over sand instead of facing to the

air. Thus, the reported data will not represent the actual air quality. In the related

contemporary works [KLM16], [Kou18], [SPP+06], [TPI17], the authors did not

consider the participants’ malicious behavior. Thus, these works were not able to

distinguish the sensing data reported by malicious or careless users. This limitation

of the existing works motivates us to design reputation-aware real-time data fusion

algorithms for MCS to ensure data integrity. Our method can detect malicious

participants and prevent them from infiltrating the system in real time.

We develop an online method for data quality prediction in MCS considering the

heterogeneous trust level of the participants. We took into account spatiotemporal

and inter sensor-category correlations. We consider the users who are willing to

participate in sensing at the same time. The terms participant or node are used to

denote a user with sensing capability.
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Figure 5.1: Three-dimensional Tensor

We implement our Correlated Data and Reputation-aware Data Prediction (CDR)

method on two real-world datasets [BBL+14], [ZLH13]. The sensing was performed

for four days, and there are 289 taxi values in the first real dataset. The taxis move

around different parts of Rome sensing temperature. The second data set consists

of Beijing’s air quality data. One hundred and forty-nine taxis with four types of

sensors collect PM2.5, PM1.0, NO2 and humidity data from Beijing for seven days.

5.2 Problem Statement

Smartphones are an example of a contemporary heterogeneous sensor network. They

are equipped with different sensors like humidity, light, accelerometer, and proximity

sensor. In the presence of varied sensors, designing an appropriate fusion mechanism

is essential. The goal of this chapter is to develop a method of accurately estimat-
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ing a missing value from incomplete sensor data. Therefore, we plan to answer the

following question: How to utilize the correlation between different sensor types to

improve the accuracy of the data fusion mechanism?

We investigated different factual data sets to observe the correlation between differ-

ent data types. For example, it can be observed from an air quality monitoring ap-

plication that it contains particulate matter with a diameter under 2.5µm(PM2.5),

PM1.0, NO2, temperature, pressure and humidity data. Thus, observing the cor-

relation between these sensor types and utilizing in the development of data fusion

mechanism is the goal of this chapter. Our hypothesis is exploiting sensor category

correlations in the Least square fit-based data fusion mechanism will facilitate better

data prediction by reducing the data prediction error.

5.3 Methodology

In this section we first present an overview of the proposed mechanism, Correlated

Data and Reputation-aware Data Prediction (CDR), then a detailed description of

the components, and finally how we fit them together to create our full structure.

5.3.1 Overview

CDR consists of two parts: a reputation calculation method and correlated data

[KLM16]. The reputation method considers two types of trust for each sensor,

cooperation and reputation, and both parameters are calculated at the application

server level. The reputation calculation method is applied to multiple types of sensor

data streams. These varied sensors are correlated with each other. It is important

for our mechanism to take the granularity of time and space into account. We

discretized our time into epochs, and space into equal-sized grids. The framework is
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applied only on data from sensors within the same region and the same epoch. CDR

is applied to each different type of data and then the final, discretized space-time

blocks are used to produce a least-square regression on the target data type. This

regression can be used to predict both future data and missing data. We borrow

the concept of three-dimensional tensors shown in Fig. 5.1 from [KLM16]. The

authors considered temporal interpolation for the sparse regions. However, Kang et

al. [KLM16] assumed that all incoming data from sensors was accurate.

5.3.2 Cooperation

Cooperation scores of sensors are measured per epoch; they measure the proportion

of the inverse square root error of the data from the sensor over the sum of the

proportion of the inverse square root error from all sensors. For our cooperation

parameter, we used an inverse proportion of the square root of the absolute error

so as not to punish small deviations from the average as much. In the data sets we

tested, temperature data and air quality data, small variations from the average are

common. The equation for cooperation score is shown in Eq. 5.1.

pi =

1√
|xi−r|∑n

i=1

√
|xi−r|∑n

j=1
1√
|xj−r|∑n

i=1

√
|xi−r|

(5.1)

Where r is the robust average of the data in that epoch and xi is the measurement

from sensor i. The robust average of the data provides an idea of where the data

clusters, and this increases the accuracy of the data by assigning more weight to

values that occur more frequently. We calculate robust average using Eq. 5.2.

r =
n∑
i=1

pi ∗ xi (5.2)
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5.3.3 Reputation

Reputation scores are updated at the end of each epoch; it measures how accurate

the crowdsensing participant has been over time. To calculate reputation from

cooperation scores, first, the cooperation scores are normalized [HKH14] using Eq.

5.3. Here, Pi is the cooperation score of participant i. min(p) and max(p) denote

the minimum and maximum cooperation score among all the participants during

that epoch. After normalization, the cooperation scores belong to the range [−1, 1].

pnormi =
2(pi −min(p))

max(p)−min(p)
− 1 (5.3)

We want to maximize the impact of the most recent epochs and minimize the

impact of the least recent ones. To make the aging effective, we age the normalized

cooperation scores with Eq. 5.4.

p
′

i,k =
k∑
k′

λk−k
′
pnormi,k (5.4)

Here, k denotes the current epoch and k′ has the value from 1 to current epoch.

Aging parameter λ has the value [0, 1] Finally, reputation is calculated using the

Gompertz function [HKH14], shown in Eq. 5.5.

Ri,k = aebe
cp
′
i,k

(5.5)

5.3.4 Full Structure

We discretize the space into regions and the time into epochs, then we run CDR on

every discrete block of space-time.

First, we run an Expectation Maximization Algorithm (EM), shown in Algorithm

5, on the “reputable” sensors. To be classified as reputable sensors, the participant
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must have a reputation higher than the threshold. This threshold is an application

dependent. Initially, all sensors are classified as reputable with equal cooperation

score.

Algorithm 5 Expectation Maximization on Cooperation Scores for Robust Average

Input: Robust Average (r) , Cooperation Scores (pi)
Output: Robust Average (r)
Initialize: all pi to 1/n, where n is the number of sensors, and l = 0, where l is the
iteration
while pli and p

l+1
i don’t converge do

Compute rl+1 from pli’s using Eq. 5.2
Compute pl+1

i ’s from rl using Eq. 5.1
l = l + 1

end
return rl+1

After running the EM algorithm once on only the reputable sensors, we then

check the reported values from “disreputable” sensors, or sensors with a reputation

lower than the threshold. If the reported value from any of these sensors is within an

acceptable error range of the robust average calculated from the reputable sensors’

reported data, then it is added as a faux reputable sensor in that block of space-time.

After finding all the sensors from the set of disreputable sensors that contributed

acceptable data in the block of space-time, EM is then run again on the new set

of reputable sensors. The reason that we run EM twice is to provide sensors in

the disreputable set a chance to move into the reputable set if they consistently

contribute accurate data because only sensors with a cooperation score for the epoch

will have their reputations updated. The second EM run gives a new reputable

average as well as update reputation scores for each sensor.

The new reputation scores are then normalized to the range [−1, 1] using Eq.

5.3. The normalized cooperation scores are then aged based on their cooperation

rating. Sensors with a cooperation score above a certain threshold are labeled as
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“cooperative” and sensors with a cooperation score below that threshold are labeled

as “uncooperative”. Depending on the sensor’s classification for the latest block, the

normalized cooperation is multiplied by a different aging parameter, λ. Cooperative

sensors are multiplied by a lower aging parameter than uncooperative sensors. This

means that the growth and decay rates of reputation will be different; the decay

rate will be higher, and this provides higher punishment for bad data and thus

helps quickly detect malicious users. Finally, the aged cooperation score is inputted

to Eq.5.5.

Once all the blocks are processed for each data type, then we use the processed

data to create a least-square fit with the non-target data as the coefficient matrix,

A, and the target data type as the dependent matrix, b as shown in Eq. 5.6.

Ax̂ = b (5.6)

The regression, x̂, is then used to predict the target value given knowledge of all the

other data values.

5.4 Performance Evaluation

We used the percentage absolute difference and Root Mean Square Error (RMSE)

as performance metrics of data prediction accuracy. We compared the performance

of our CDR method against mean-based and temporal linear regression-based data

prediction models. We tested using two real-world data sets. In the first data set,

our target type is temperature and uses two types of simulated correlated data. In

the second data set, our target type is particulate matter with a diameter under

2.5 µm (PM2.5) and uses three types of real correlated data (PM1.0, NO2 and

humidity).
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Figure 5.2: Prediction results for test set 1: out of 612 predictions, CDR performed
better in 466 and was within 5% of the true value in 290 cases

Temperature

The temperature data was from an area of roughly 22km by 23km and was taken over

four days. The experimental area was split into 25 regions using a 5x5 equal-sized

grid. We split the execution time into 96 epochs with each epoch being one hour

long. We tested the performance of our CDR method against the existing mean-

based method in three test data sets. To imitate the data impurity, continuous

or random errors were applied on the temperature data streams. The data error

from malicious participants ranged from 25% to 75%. Figures 5.2 through 5.4 show

CDR’s percentage improvement over the mean-based method, and each figure shows

612 predictions.

On average CDR was 16% more accurate and performed better in 77 percent of

cases. Our CDR method incurred a cumulative percentage error of 9.3%.
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Figure 5.3: Prediction results for test set 2: out of 612 predictions, CDR performed
better in 453 and was within 5% of the true value in 261 cases

Figure 5.4: Prediction results for test set 3: out of 612 predictions, CDR performed
better in 498 and was within 5% of the true value in 213 cases
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PM2.5

The air quality data was collected from an area of roughly 120km by 150km. The

duration was seven days (149 hours). CDR was tested against the existing mean-

based and temporal linear regression-based data prediction methods on five test

data sets. To imitate the data impurity, continuous or random errors were applied

on the crowdsensing data streams. The data error ranged from 25% to 75%.

We tested the performance of our algorithm for different levels of erroneous

data from malicious users. We also varied the knowledge level of the participants in

regards to the experimental environment to imitate sophisticated data manipulation

by a malicious crowdsensing participant. The test set 1 (Fig. 5.5, Fig. 5.10, Fig.

5.15) was used for missing data prediction. We tested with sequential and random

data loss patterns. In the first experiment with erroneous data from malicious users

(Fig. 5.6, Fig. 5.8, Fig. 5.11, Fig. 5.13, Fig. 5.16, Fig. 5.18), we assumed the

participants did not have any prior knowledge about the experimental environment.

The data error ranged from 25% to 75%. One group of malicious participants

reported a fixed percentage of error throughout the experiment. In the second

experiment, we considered that the malicious participant has extended knowledge

about the sensing area (Fig. 5.7, Fig. 5.9, Fig. 5.12, Fig. 5.14, Fig. 5.17, Fig.

5.19). Thus, these participants try to change the sensing data by adding noise to

the air quality data of that particular spatiotemporal unit.

Percent Error per Prediction

Figures 5.5 through 5.9 show CDR’s percentage improvement over the mean-based

method, and each figure shows 640 predictions. On average CDR performed better

in 70% of cases and is 70% more accurate.
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Figure 5.5: Prediction results for test set 1: out of 640 predictions, CDR performed
better in 379 cases

Figure 5.6: Prediction results for test set 2: out of 640 predictions, CDR performed
better in 445 cases
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Figure 5.7: Prediction results for test set 3: out of 640 predictions, CDR performed
better in 442 cases

Figure 5.8: Prediction results for test set 4: out of 640 predictions, CDR performed
better in 454 cases
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Figure 5.9: Prediction results for test set 5: out of 640 predictions, CDR performed
better in 533 cases

Root Mean Square Error by Epoch

Figures 5.10 through 5.19 show CDR’s improvement of the root mean square error

(RMSE) normalized by epoch. We calculated RMSE and used it as a performance

measurement criteria of our algorithm. RMSE is a standard metric to evaluate the

accuracy of the prediction model [ZSS14].

RMSE =

√√√√ 1

n

n∑
i=1

(V̂i − Vi)2, (5.7)

where V̂i is the predicted value, Vi is the original value and n is the number of

epochs.

On average CDR had a lower RMSE than the mean-based method in 64 percent

of the epochs and had a lower RMSE by 25%. CDR’s average RMSE was 0.66,

the average value of the target data type, PM2.5, was 79 with a range of [4, 244].

Figures 5.15 through 5.19 show CDR’s improvement in RMSE over a temporal

linear regression-based data prediction model. On average CDR incurred a lower
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Figure 5.10: Prediction results for test set 1: out of 149 epochs, CDR performed
better in 88 epochs

Figure 5.11: Prediction results for test set 2: out of 149 epochs, CDR performed
better in 88 epochs
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Figure 5.12: Prediction results for test set 3: Out of 149 epochs, CDR performed
better in 90 epochs

Figure 5.13: Prediction results for test set 4: Out of 149 epochs, CDR performed
better in 96 epochs
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Figure 5.14: Prediction results for test set 5: out of 149 epochs, CDR performed
better in 115 epochs

Figure 5.15: Prediction results for test set 1: out of 149 epochs, CDR performed
better in 119 epochs
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Figure 5.16: Prediction results for test set 2: out of 149 epochs, CDR performed
better in 119 epochs

Figure 5.17: Prediction results for test set 3: out of 149 epochs, CDR performed
better in 105 epochs
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Figure 5.18: Prediction results for test set 4: out of 149 epochs, CDR performed
better in 93 epochs

Figure 5.19: Prediction results for test set 5: Out of 149 epochs, CDR performed
better in 95 epochs
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RMSE than the linear regression model by 59%, and performed better in 71 percent

of epochs.

5.5 Discussion and Summary

In this chapter, we proposed a novel method, named as CDR, for reputation-aware

data fusion for mobile crowdsensing data streams. We showed that the proposed

mechanism outperforms the existing mean-based and temporal linear regression-

based data prediction models. We evaluate the approaches based on two datasets:

Rome crowdsensing temperature and Beijing Air quality datasets, to demonstrate

CDR’s efficacy in different scenarios. For the Rome crowdsensing dataset, we

achieved 16% better accuracy. Specifically, the 9.3% prediction error in temper-

ature measurements of our approach equates to roughly 1 degree difference, which

is negligible in real-life applications. With this in mind, we can say that our mech-

anism predicts temperature values with high accuracy. In case of the air quality

dataset, our CDR method incurred on average 25% and 59% less RMSE than

mean-based and temporal linear regression models, respectively. Our data fusion

method incurred an average RMSE of 0.66 per epoch, which insinuates higher data

prediction accuracy. The success of our approach lies in the integration of dynamic

trust evaluation of the sensed data which allows us to defend data corruption attack

and identify malicious or honest participants based on their reported data in real

time.

65



CHAPTER 6

REPUTATION-BASED CONTEXT-AWARE DATA FUSION

RESILIENT AGAINST MALICIOUS ATTACKERS IN IOT

In chapter 5, we presented a data fusion method utilizing inter sensor-category

correlations. However, the on-off attack behavior of a malicious participant was

not considered. Also, it was assumed that the majority of the participants are

honest. In the experiments, the method could tolerate up to 30% of malicious

participants. Moreover, equal-sized grid-based spatial discretization was used in the

previous chapter. In this chapter, we consider dynamic spatial granularity which is

suitable for location sensitive applications (caused due to diffusion and dispersion).

Moreover, the participants did not have additional knowledge. To overcome the

limitations, in this chapter, we develop a context-aware reputation-based data fusion

method that is resilient against on-off and data corruption attackers. Even in the

presence of a high number of sophisticated malicious participants, the proposed

method is able to ensure data reliability in the mobile IoT application. We organize

this chapter as follows. In section 6.1, we discuss the background information and

challenges. The problem formulation is presented in section 6.2. In section 6.3, we

discuss different modules of our overall system and present the reputation and trust

distribution mechanisms. After that, the reputation-aware missing data prediction

methodology is presented in section 6.4. In section 6.5, we discuss our performance

evaluation. First, the simulation settings and then the results and analysis are

discussed in section 6.5. Finally, discussion and summary are offered in section 6.6.

6.1 Introduction

Mobile internet of things (IOT) has been renowned as a state-of-the-art sensing data

gathering epitome [LZW+17]. The rapid development of mobile sensing technologies
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(e.g., smart devices embedded with various powerful sensors such as temperature,

accelerometer, humidity, and gyroscope) has encouraged the proliferation of Internet

of things (IoT). Mainstream smartphones and recently popular wearable devices

such as smart watches, fitness tracking devices, and narrative clip are equipped

with many sensors. These devices can be used as abundant sources of raw data

[HXL+17]. In recent years, mobile IoT has gained increased applications in different

areas, including transportation, air quality monitoring, epidemic disease monitoring,

reporting from disaster situations, environmental monitoring and so on [CDW+15],

[FZ16], [RGB+17], [PK19].

HazeWatch [SCHL13], a mobile IoT system, depends on citizen participation for

air pollution monitoring. Air pollution has a negative impact on public health. As

per the statistics published by World health organization (WHO), 4.2 million prema-

ture death occurs annually due to air pollution. High concentrations of particulate

matter with a diameter less than 2.5 µ m (PM2.5) in the pollutant air causes car-

diovascular or respiratory diseases, and cancers. Unfortunately, most people across

the world, specifically 91%, inhabit areas where the air pollution levels exceed WHO

defined limits [Org18]. Agencies such as National Environment Agency of Singapore

are now using HazeWatch every day.

Different from the traditional sensor networks, where a large number of sensors

are required to be deployed to sense data, mobile crowdsensing is open in nature,

allowing anyone to participate at any time. In mobile crowdsensing-based IoT appli-

cations, the task of sensing is assigned to a person. However, successful information

transmission largely depends on multiple factors. Some of these factors are behav-

ioral (lack of time or willingness), and others are due to the resource limitation (e.g.,

network bandwidth and smartphone battery) for performing the sensing task. Also,

this people-centric architecture allows both more inaccurate and corrupted data
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[MMH+15]. Malicious participants can easily manipulate the IoT data collection

process by reporting fabricated or erroneous data.

Although reliability and accuracy are of utmost importance in many sensor ap-

plications (e.g., air quality monitoring), it is often difficult to ensure these properties

in such applications. In the air quality monitoring application, the sensed pollution

data is used to create a pollution map. Imprecise pollution information about an

area will mislead people. For instance, due to erroneous pollution data, an asthma

patient who prefers a pollution-free route for a walk might be directed to a polluted

area. This misdirection will have a negative impact on his/her physical well-being.

Thus, trust evaluation is a major issue in these applications to ensure data reliabil-

ity and integrity. Data reliability refers to the condition when data attains enough

completeness to be considered for its goal and context [MW04].

While researchers [GLN15],[LZW+17],[GL15],[ACFM14],[KWW+16], [HKH14],

[TPI+18] have attempted to improve the quality of the received sensor data, limited

research has been done on how sensor context (e.g., sensor model, terrain elevation,

wind speed, population density, and user movement during sensing) can be used in

sensor selection for data cleaning. In related contemporary work [GLN15],[LZW+17],

[TPI17], [GL15], the authors considered user context for data quality estimation in

mobile IoT. However, Gill et al. considered either temporal [GL15] or spatial re-

lationship [GLN15] among the sensors while developing model-based data cleaning

mechanisms. Because only one type of relationship is considered, these methods

did not achieve decent cleaning accuracy and have limited practical impact. The

methods failed to exploit the dynamism of the experimental environment while se-

lecting the correlated sensors for data prediction. On the other hand, the authors

[LZW+17] considered the presence of exactly one mobile user at each point of interest

(PoI) which is a limited setting and not practical in real-world scenarios. Further-
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more, the authors did not consider the participants’ malicious behavior. Thus, these

works were not able to distinguish the sensing data reported by malicious or careless

users. This limitation of the existing works motivates us to design context-aware

reputation-based real-time data fusion algorithms for MCS to ensure data integrity.

Our method can detect malicious participants and prevent them from infiltrating

the system in real time. Even in the case of high false data injection, our method is

able to ensure data reliability.

In this chapter, we consider on-off and data corruption attack behavior of a mali-

cious participant. Data corruption attack occurs when a participant sends incorrect

data either deliberately or recklessly. The reckless error occurs when a participant

heedlessly performed the task of sensing or was caused by a sensor error. In contrast,

a malicious participant can intentionally fabricate the sensed data to penetrate the

system [TPI+18]. For example, in air quality monitoring, a malicious participant

may hold the sensor beside a burning cigarette or place it over sand instead of fac-

ing to the air. Thus, the reported data will not represent the actual air quality.

In contrast, on-off attack means that malicious participants behave good and bad

alternatively, hoping that they can remain undetected while hampering data quality

[SHYL06], [LGS15].

In this chapter, we develop an online method for data quality prediction in mo-

bile IoT considering the spatiotemporal, contextual and inter sensor-category corre-

lations among the participants. We consider the users who are willing to participate

in sensing at the same time. The inter-node distance at a specific instance, as well

as user context (sensor model, wind speed, and user movement during sensing), are

considered in correlated node selection. The terms participant, user or node are used

interchangeably to denote a user with sensing capability. We considered different

spatial granularity while defining the correlated participants for data fusion depend-

69



Figure 6.1: Overall Architecture: Air quality Monitoring application

ing on the application types: spatial stable or variable, which was not considered in

the earlier works. Our methodology is resilient against data corruption and on-off

attack behavior of a malicious participant. We implement our Reputation-based

Context-aware Data Fusion method on Beijing’s air quality dataset [ZLH13]. One

hundred and forty-nine taxis with four types of sensors collect PM25, PM10, NO2

and humidity data from Beijing for seven days. We are the first to use Contextual

Hidden Markov Model (CHMM) for online data prediction in mobile crowdsens-

ing for the IoT. CHMM has the unique capability of fusing temporal dependence

and contextual spatial relationships [ZWL07], [ZAS16], [CB97]. Also, it is a light-

weight method, and thus suitable for our big data application. This motivates us

to apply CHMM for data prediction in mobile IoT. We compared the performance

of our RCoD method against four state-of-the-art works and the results justify its

superiority.
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6.2 Problem Statement

There is data imprecision or missing values in the crowdsensing applications due to

frequent loss of communication, hardware error or malicious intention of the carrier.

Thus, it is important to detect those data imprecision and predict those incorrect

and/or missing values. The problem being addressed in this chapter is predicting

data in a more accurate manner in the presence of malicious participants who inject

false data to vandalize the system. Our goal is to recover those missing or imprecise

data values from the correlated data streams.

Let us assume that there are N participants identified as trusted from the rep-

utation system. Thus the whole data matrix has the size N × T , where T is the

duration. Matrix V (N×T ) represents all time series (T ) values from the N trusted

participating sensors. Matrix E keeps track of the missing data. If there is a missing

value or erroneous reading (Vi,j) from ith participant during a particular timestamp

j , Ei,j = 1, otherwise Ei,j = 0. The size of the error matrix is N × T , the same as

V . The problem of missing value prediction is defined as follows.

Given M = {V,E,C}, estimate Ṽij, for(i, j) ∈ (i, j) : Ei,j = 1. Where V ∈

RN×T represents the T timeseries data from N crowdsensing participants, E ∈

RN×T represents the error matrix and C ∈ RN×N is the contextual matrix. The

matrix C denotes the pairwise contextual correlation among the participants. The

data range of matrix C is [−1, 1]. Here, 0 denotes no correlation and a higher value

insinuates higher correlation. Hence, it has a size of N × N . Our hypothesis is a

context-aware reputation-based data fusion mechanism will facilitate the accurate

detection of malicious participants exhibiting on-off and/or data corruption attack,

and eventually ensure more accurate data prediction in terms of less data prediction

error.
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6.3 Reputation System

In this section, we describe our reputation and trust distribution mechanisms. We

discuss the attack model. Moreover, different components of the trust computation

module are discussed in detail.

6.3.1 Malicious Entities and Attacker Strategies

No encryption mechanism is applied in the mobile crowdsensing-based IoT applica-

tion during the data collection and transmission phases. Anyone can participate in

the sensor data collection procedure, making it light-weight, and more scalable at

lower cost. However, a malicious participant can disrupt the system by launching

on-off attack and/or data corruption attack. Due to the absence of an authentication

mechanism, a malicious participant can inject false data easily.

On-Off Attack

It is a sophisticated attack and harder to detect and prevent. On-off attack means

that malicious participants behave good and bad alternatively, hoping that they

can remain undetected while hampering data quality [SHYL06], [LGS15]. Most of

the state-of-the-art methods fail to detect the on-off attack and thus can not ensure

data accuracy in the presence of on-off attackers. In this type of attack scenario,

a participant is aware of honest behavior. In other words, s/he knows what the

original sensing data of a particular spatiotemporal unit is. They report the correct

information for a long time to attain higher reputation value. Then, these malicious

participants inject false data similar to high spike to manipulate the sensor data.

Their motivation is to change the aggregated data and as a result, resulting into

incorrect decision.
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Data Corruption Attack

Data corruption attack occurs when a participant sends incorrect data either de-

liberately or recklessly. The reckless error occurs when a participant heedlessly

performed the task of sensing or was caused by a sensor error. In contrast, a mali-

cious participant can intentionally fabricate the sensed data to penetrate the system

[TPI+18]. For example, in air quality monitoring, a malicious participant may hold

the sensor beside a burning cigarette or place it over sand instead of facing to the

air. Thus, the reported data will not represent the actual air quality. We considered

two types of false data injection rate. First, the malicious entities inject false data

in a constant rate throughout the experimental duration. In the second, the rate of

false data injection by a malicious user varies at different time instances. However,

in the data corruption attack, if a participant is malicious, s/he does not behave as

an honest participant any time. The false data injection rate is randomly selected

from the range of 30% to 75%.

We assume the devices are properly calibrated before the experimentation, i.e.,

participating in the sensing task. Thus, calibration error is out of the scope of this

article. We focus on the data inaccuracy caused by participants inadvertently or

intentionally.

6.3.2 RCoD Mechanism

Fig. 6.2 illustrates the main components of our RCoD mechanism. Sensed air

quality data are reported by various participants to the server. Afterwards, all

these contributions are inputted to the Trust and reputation module. Here the

contributions’ trustworthiness is analyzed considering different properties (Section

6.3.3 – Section 6.3.5). Each participant’s reputation is calculated which reflects
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Figure 6.2: Block scheme of RCoD

historical behavior (Section 6.3.6). Based on their reputation, trusted participants

are identified. Next, data from trusted participants (with higher reputation scores)

identified in the previous step (Section 6.3.6) are input to the contextual hidden

Markov model. Also, the data streams containing missing data are taken as input.

Finally, we describe the CHMM based data prediction methodology (Section 6.4).

This accurate predicted data is used to generate pollution maps as depicted in Fig.

6.1.

6.3.3 Dynamic set of Trusted Participants

In most of the state-of-the-art methods, the ground truth value is calculated from

the data reported by all the participants. In contrast, we dynamically update the

set of trusted participants. The ground truth value is calculated from the data

reported by the trusted participants. Since we periodically update this set of trusted

participants, it is ensured that the trusted set does not include malicious participants

who are trying to forge data. Thus, the data accuracy and robustness of the system

is maintained. Our mechanism can detect malicious users and mitigate the false

data injected by these users.

In the initialization phase, when there is no historical data, the similarity between

contributions received from multiple participants are calculated. If Ck
i is the sensor
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data of type k provided by participant i, then its similarity with all other data

of type k contributed by the other participants regarding the spatiotemporal unit

are calculated. The normalized average difference is calculated to be used in the

exponential-based initial contribution score generation. The contribution scores

range in between 0.36 (=e−1) and 1. This score is an input to the reputation table.

Then, these initial contribution scores are sorted in descending order. The top TP

participants are selected from the sorted list to be declared as the set of trusted

participants. The number TP is application dependent. We calculate the ground

truth value using Eq. 6.1 from the data reported by participants belonging to the

trustedSet.

Groundtruth =

∑
Ci

|trustedSet|
, ∀i ∈ trustedSet (6.1)

Here, i denotes the participant id, Ci is the contribution data provided by par-

ticipant i.

Now, we briefly describe Algorithm 6: the formation of the initial trusted set. It

takes the data contributions made by all the participants on the first day to return

an initial set of trusted participants. First, all the participants who contributed

data on day 1 are listed. Then the difference between the data reported by different

participants at the same epoch (temporal unit) is calculated (lines 6-9). In line 10,

the average difference value is calculated for a specific participant i and stored in

the array diff (line 10). Next, in line 14, the normalized difference is calculated. For

this purpose, the minimum and maximum values of the array diff are identified.

Moreover, the reputation for each participant is calculated and stored in the global

reputation table. This table contains three columns. The first column contains the

participant id, second contains the initial contribution score, and the final column

is dedicated to storing the reputation score. The reputation score is calculated

75



Algorithm 6 Formation of Initial Trusted Set

Input: day 1 Participant Contributions

1: Initial Trusted Set
2: for epoch = 1 : day1 end do
3: participantSet← id
4: participantLen = |participantSet|
5: for i = 1 : participantLen do
6: for j = 1 : participantLen do
7: Cij = abs(datai − dataj)
8: Total Cij = Total Cij + Cij
9: end for

10: diff(i) =
Total Cij

participantLen

11: end for
12: for p = 1 : participantLen do
13: reputation table(p, 1)← participantSet[p]

14: Norm(p)← diff(p)–min(diff)
max(diff)−min(diff)

15: reputation table(p, 2)← e−Norm(p)

16: reputation table(p, 3)← Algorithm 8(p, reputation table)
17: end for

18: Select Trusted Participants
19: trustedno = participantLen

2

20: sortedList = sort(reputaion table, descend)
21: trustedSet← top(reputaion table, trusted no)
22: end for

by calling Algorithm 8. In lines 13- 16, the reputation table is updated with the

calculated information regarding day 1 participants.

Next, in the Selected Trusted Participant method, the trusted set is defined.

First, the size of the set is defined as half of the total number of participants (line

19). Then, the participants are sorted in descending order based on their reputation

value. Finally, the top pre-defined number of participants are selected and assigned

in the trusted set.
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Table 6.1: Notations and Their Description
Notation Description
pc Participant count
Ck
i Sensor data of type k contributed by participant i

αji Contribution score of participant i with sensor type j
trustedSet Set of trusted participants
βi Proximity score of participant i
Rep(Pf ) Reputation of feedback provider
Rep(Pi) Reputation of participant i
NumFP Number of feedback providers
Feedf (Pi) Feedback from participant f regarding data reported by participant i
θi Feedback score of participant i

δji Willingness of participant i for sensor data type j
ContexttrustedSet Context value of the trusted set of participants

γji context score of participant i with sensor type j
tduration Application-dependent threshold
λi Timeliness score of participant i

Trust(Cj
i ) Trust of participant i with sensor type j

C Context matrix
N Number of participants
Y Reported data matrix
T Final epoch
OV Observation dependence vector
CV Hidden contextual dependence vector
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Figure 6.3: System Model

6.3.4 Trust Value Assignment

Contribution Score

In this section, a score is assigned for the recent data contribution made by a partic-

ipant. pc denotes the participant count, the number of participants who contributed

data. The data is compared with the reported data about the same spatiotemporal

unit from trusted participants. The sensor data of type j contributed by a par-

ticipant i is compared against the reports of the same type from the trusted set

of participants. The difference values are normalized using Eq. 6.4. Here, dif ji

is the absolute difference for participant i with sensor data type j. min(dif ji ) and

max(dif ji ) denote the minimum and maximum difference among all the participants

during that epoch. After normalization, the difference values belong to the range

[0, 1]. The value 0 means the contribution is the same as the trusted participants.
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The normalized score is input to the exponential equation Eq. 6.5 to calculate the

contribution score (αji ).

The output value of Eq. 6.5 has the maximum value of 1 and minimum value of

e−1.

datatrustedSet =

∑|trustedSet|
k=1 datak
|trustedSet|

(6.2)

dif ji = abs(dataji − datatrustedSet),∀i ∈ {1, 2, . . . , pc} (6.3)

Normdif ji =
dif ji −min(dif ji )

max(dif ji )−min(dif ji )
(6.4)

αji = e−Normdif
j
i (6.5)

Proximity Score

If the sensing data type does not fluctuate much based on distance, is stable through-

out a wide spatial area (e.g., grid), then the proximity score is of type Boolean with

having value either 0 or 1. If two of the participants’ (e.g., Pi and Pj) location

belongs to the same grid, then they will have similar sensed value. Here i and j

have the value from 1 to the total number of participants. The proximity score is

calculated using Eq. 6.6.

βi =

{
1, grid(Pi) ∩ grid(Pj) 6= φ,

0, otherwise.
(6.6)

On the other hand, some of the applications are location sensitive. The value

changes significantly with the increase of the distance between the source and the

participant who reports the sensed value. In reality, the nature of the applications
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such as diffusion and dispersion play a significant role in the data variation. For

example, in pollution detection or noise monitoring applications, a participant lo-

cating close to the data source will be able to render the most accurate data of the

phenomenon. For these highly location-sensitive sensing applications, we calculate

the inverse of the Gompertz equation for assigning proximity score to each data

contribution (Eq. 6.9). The L2-norm, calculated using Eq. 6.7, is input to the Eq.

6.8.

||L||2 =
√

(targetx − xi)2 + (targety − yi)2 (6.7)

exponenti = relevanceb × e−(relevancec×||L||2) (6.8)

βi = 1− relevancea × e−exponenti (6.9)

There are three parameters for the inverse Gompertz function relevancea, relevanceb

and relevancec. The parameter relevancea controls the higher asymptote on the y-

axis. The displacement on the x-axis is controlled by the parameter relevanceb. The

final parameter relevancec controls the function’s decay rate. (targetx, targety) is

the target sensing location and (xi, yi) denotes a current location of the participant.

Rating Score Validation

In a periodic manner, feedback from other participants is gathered for the verification

of contributions/sensed data provided by a participant about a particular geographic

location. While executing the verification task, the users having a higher reputa-

tion score than the target participant are selected. If the data variance is within a

tolerable range, then the system assures that the target participant is trustworthy

in that particular time instance. In contrast, if most of the higher reputable par-

ticipants report that the data contributed by the target participant does not match
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with the actual sensed value of that spatiotemporal unit, a negative feedback score

is assigned to the target participant. Since the aggregated feedback (Eq. 6.10) is

considered for assigning the final feedback score, it is resilient against unfair rat-

ing attack. An individual cannot successfully disrupt the system’s trustworthiness

by providing negative feedback to an honest participant. Consequently, the on-off

attack of malicious participants is prevented.

θi =

∑NumFP

f=1 Rep(Pf )× Feedf (Pi)∑NumFP

f=1 Rep(Pf )
∀f ∈ NumFP : Rep(Pf ) ≥ Rep(Pi)

(6.10)

Here, NumFP is the number of feedback provided, Pi denotes the participant for

whom the feedback is collected. In Eq. 6.10, the reputation value of the feedback

provider is used as a weight in the feedback score (θ) calculation. Feedback from a

higher reputable participant has a higher influence in the calculation of combined

feedback score.

Willingness

The number of non-missing data provided by the participant among all the con-

tributions during a certain duration. In the data set, if a participant is located

in a spatiotemporal unit but did not report data for consecutive time instances, it

means the participant is lacking the willingness to participate. We assume for this

work that battery level is not a reason for data inconsistency or missing data. The

smartphones used for the sensing purpose had enough energy storage during the

experiment.

δji =

∑curepoch
t=1 |Ct

i \ empty(Ct
i )|

|Ct
i |

(6.11)
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Here, the ratio of the number of non-empty contributions and total contributions

made by participant i of data type j during the previous t epochs is calculated. t

has the value from 1 to current epoch.

Context Score

We compare the similarity of the contextual value of a participant with the context

value of the trusted participants who reported the similar type of sensor data at

the same time instance. The context value of sensor data type j contributed by

a participant i is compared against the context value of the trusted set of partici-

pants. The difference values are normalized using Eq. 6.14. After normalization the

difference values (Contextdif ji ) belong to the range [0, 1]. The value 0 denotes that

the context value of the participant is the same as the trusted participants. Then,

the normalized score (ContextNormdif ji ) is input to the exponential equation Eq.

6.15 to calculate the context score.

ContexttrustedSet =

∑|trustedSet|
c=1 Contextc
|trustedSet|

(6.12)

Contextdif ji = abs(Contextji − ContexttrustedSet), ∀i ∈ {1, 2, . . . , pc} (6.13)

ContextNormdif ji =
Contextdif ji −min(Contextdif ji )

max(Contextdif ji )−min(Contextdif ji )
(6.14)

γji = e−ContextNormdif
j
i (6.15)

Where γji denotes the context score of participant i with sensor type j. pc is the

count of the participants co-located in the same spatiotemporal unit.
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Timeliness

This property checks if the participant reported data in a timely manner. The dif-

ference between the task assigned (ta) and the data reported (tr) is taken into con-

sideration. If the difference is greater than application-dependent threshold tduration,

then that data is stale and the timeliness score for the participant will be zero. On

the other hand, if the difference is low, it insinuates that the participant carried

out the sensing task expeditiously. We calculate the timeliness score (λ) using the

inverse Gompertz function. If ta is the task assignment time and tr is the time when

the data was reported then,

tdiff = tr − ta (6.16)

λi =

{
a× e−be

c×tdiff
, tdiff ≤ tduration,

0, otherwise.
(6.17)

There are three parameters for the inverse Gompertz function (Eq. 6.17 ) ‘a’,

‘b’ and ‘c’. The parameter ‘a’ controls the higher asymptote on the y-axis. The

displacement on the x-axis is controlled by the parameter ‘b’. The final parameter

‘c’ controls the function’s decay rate. When the value of tdiff is equal to tduration,

the timeliness score is almost equal to zero, such as 0.01. We calculate the value of

b using the equation.

6.3.5 Trust level mapping

The trust level of each contribution made by a participant is calculated. It is a

combined metric consisting of the above mentioned six property values: contribution

score, proximity score, rating score, context score, willingness, and timeliness. The
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Figure 6.4: Timeliness Score(λ) vs. Time difference using Inverse Gompertz Func-
tion

Algorithm 7 Heterogeneous Trust distribution System

Input:Participant Contributions,epoch begin, epoch end

1: for epoch = epoch begin : epoch end do
2: PList ← ID
3: for all Pi ∈ PList do
4: αji ← Eq. 6.5
5: reputation table[Pi, 2]← αji
6: if geo-stable application then
7: βi ← Eq. 6.6
8: else
9: βi ← Eq .6.8
10: end if
11: θi ← Eq. 6.10
12: γji ← Eq. 6.15
13: λ← Eq. 6.17
14: rep← reputaion table[Pi, 3]
15: reputation table[Pi, 3]← Algorithm 8(Pi, reputation table)
16: Trust(Cj

i ) = w1×αji +w2×βi+w3×θi+w4×γji +w5×δji +w6×λi+w7×rep
17: end for
18: end for

reputation value (rep) of the previous epoch is also included in the combined trust

level calculation.
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Trust(Cj
i ) = w1×αji +w2×βi+w3×θi+w4×γji +w5×δji +w6×λi+w7×rep (6.18)

where
∑7

i=1Wi = 1. We assign initial trust value of 0 to all participants. As a

result, a new participant can not simply inject false data.

The heterogeneous trust distribution method is summarized in Algorithm 7. It

takes data contributions made by participants, starting epoch and ending epoch as

inputs. It is an iterative process that calculates the trust score for all the participants

who reported data in that epoch. The iteration continues from the input value

epoch begin and finishes at the epoch end. First, all the participants that reported

data in the considerable epoch are included in a list. Then, for each participant

belonging to the list, the contribution score is calculated using Eq. 6.5 (line 5). In the

next step, based on the application type (e.g., location sensitive or location stable)

the relevance score (β) is calculated. For a geo-stable application, the equation

used is Eq. 6.6, otherwise Eq. 6.8 is used (lines 5-9) for β calculation. The rating

score (θ), context score (γ) and timeliness score (λ) are calculated calling Eq. 6.10,

Eq. 6.15 and Eq. 6.17, respectively (lines 11-13). Next, the reputation table is

consulted to obtain the reputation score of the participant. The value assigned to

rep is the old reputation value of the participant. To update the reputation table for

the current contribution, Algorithm 9 is called in line 15. Finally, the trust value of

the contribution made by a participant of type j is calculated in line 16. The total

aggregated value of w1, w2, w3, w4, w5, w6 and w7 is equal to 1.

6.3.6 Reputation Score

The reputation score is dependent on the contribution score and willingness of

a participant. It insinuates the historical behavior of a crowdsensing participant.
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Algorithm 8 Reputation computation

Input : Id, reputation table
Output : Reputation value (rep)

1: dataLen← |reputation table|
2: for l = 1 : dataLen do
3: if reputation table[l, 1] == Id then
4: oldreputation← reputation table[l, 3]
5: contribution← reputation table[l, 2]
6: if contribution ≥ threshold ∧ willingness ≥ wthreshold then
7: new reputation = min(1, (old reputation+ rewards val))
8: else
9: new reputaion = max(0, (old reputation− punish val))
10: end if
11: Reputation table[l, 3] = new reputation
12: end if
13: end for
14: return rep

In the reputation score calculation procedure, a higher punishing score for incorrect

contribution than reward score ensures the degradation of the reputation score of a

malicious participant trying to vandalize the system performance through exploiting

on-off attack. Even if s/he gained high reputation due to showing honest behavior

through providing correct sensor data, because of recent incorrect contributions,

her/his trust score, as well as the reputation score, will fall below the threshold

value. Hence, the participant will not be included in the trusted list for future time

instances. When the reputation score falls below the threshold, our system ensures

that the participant provides a longer period of correct contributions to regain the

honest status back.

Now we briefly describe Algorithm 9: Reputation Computation. It takes as an

input participant id, current reputation table and returns the updated reputation

value for that participant. The reputation value for each participant is initialized

at 0. First, iteratively the participant id is searched in the input reputation table

(lines 1-3). The old reputation value, which is obtained from the third column of the
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reputation table, corresponding to that participant is recorded in the old reputation

variable. Furthermore, the contribution value is accessed from the second column of

the reputation table and compared with the predefined threshold value (lines 5-6).

If the value is greater than the threshold, it insinuates the correct contribution made

by the participant. Thus, a reward value is added to the old reputation value. How-

ever, the reputation value cannot exceed the highest value of 1.0. To ensure this,

the minimum of new calculated reputation and 1 is selected as the new reputation

in lines 6-7. In contrast, if the contribution score is below the threshold, it insin-

uates that the participant reported incorrect data. Thus, a punishment score is

applied over the past reputation value. Again, to maintain the minimum reputation

score of 0, maximum of zero and calculated reputation is selected and assigned as

new reputation (lines 8-9). Otherwise, due to multiple punishments, a reputation

value achieves a negative value. Finally, the reputation table is updated with the

new reputation value.

6.4 Reputation-aware Data Prediction Methodology

In this section, the reputation-aware data prediction methodology is discussed. Data

from trusted participants identified by the reputation module, discussed in the earlier

section, are consulted in the contextual hidden Markov model based missing data

prediction methodology.

Contextual Hidden Markov Model

In the traditional hidden Markov model (HMM), there is only temporal relationship;

by adding the contextual layer represented by c1, c2, . . . , cN we incorporated spatio-

temporal and contextual dependence. According to the definition of HMM, there

87



Figure 6.5: Contextual hidden markov model graph diagram

exists a hidden Markov process xt and an observation yt is controlled by xt [Gha01].

Here s1, s2, . . . , sN denotes different participants who reported data. In Fig. 6.5,

the lower diagram enclosed by the rectangle is similar to traditional HMM. The

observation value (yt) is dependent on xt. Here, xt denotes hidden state at epoch

t. Epoch is the temporal unit used in this chapter. In Fig. 6.5, each row in the

lower enclosed box is dedicated to an individual participant who reported data.

For example, the second row from the bottom is dedicated to all the data samples

reported by participant id = 2 at different time instances (epoch=1, 2, . . . , T ). Here,

the final epoch is denoted by T . The reported data matrix Y has the dimension of

N×T . N is the number of participants who reported data during the time instances

commencing at 1 and ending at T . On the other hand, the size of the context matrix

C is N ×N .

We incorporate a new hidden observation dependence vector OV and hidden

contextual dependence vector CV . For all continuous data streams, the general

Markovian dependence (yt|xt) is replaced by (yt|xt, OV ). Here, the observed cor-

relation has a combined influence of OV and CV , and thus the context matrix C
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Algorithm 9 Missing Value Estimation

Input : time, participant id, TrustedSet

1: t ∈ time & s ∈ participant id
2: if data sen

(s)
t is available then

3: continue
4: else
5: ∀strusted ∈ TrustedSett
6: cm0 ← CHMM(sen

(strusted)
t , sen

(s)
t )

7: if cm0 = empty then
8: Predicted data = Temporal Interpolation
9: else
10: Estimated value of sen

(s)
t = cm0

11: end if
12: end if

can be represented using the following conditional probability p(C|CV,OV ). The

complete likelihood of our proposed CHMM can be noted as,

T∏
t=2

p(xt|xt−1)
T∏
t=1

p(yt|xt, OV )
N∏
j=1

p(Cj|CVj, OV )p(OVj)) (6.19)

In Eqn. 6.19, the first product depicts the temporal dependence, the second

represents observation and the final one is for context.

We calculate the missing data using algorithm 9. It takes epoch, participant

id and TrustedSet of participants as input. At first, it is checked if there is any

missing data. If the data stream is complete, no further action is required (lines

2-3). Otherwise, the missing data is predicted using the CHMM model. The CHMM

is applied to the set of trusted participants and the node that contains missing data.

The returned predicted value is assigned to the variable cm0 in line 6. Most of the

cases, CHMM is able to return the predicted value. If cm0 is empty, it means there

is no correlated sensor that contains data. In that case, temporal interpolation is

applied to predict the missing data. Finally, the missing data of the input participant

are replaced with the predicted value of cm0.
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6.5 Experimental Evaluation

In this section we describe our experimental setup and environment. We also de-

scribe the dataset we used and different performance measures that we considered

to evaluate the accuracy of our proposed method. We have used Beijing’s air quality

data [ZLH13] to implement our algorithm.

Dataset Description

One hundred and forty nine taxis with four types of sensors collect particulate

matter with a diameter under 2.5µm (PM2.5), PM1.0, NO2 and humidity data

from Beijing during seven days. The air quality data was collected from an area of

roughly 120km by 150km. The duration was seven days (149 hours). We assume

that the participants are aware of the area where the sensing will take place. Also,

the correlation between the different sensors are known. For our experiment, we

considered PM2.5 as target sensor data type and three types of real correlated

sensor data (PM1.0, NO2 and humidity). In Fig. 6.6 (a), the correlation between

PM2.5 and PM1.0 is shown. It can be observed that PM2.5 and PM1.0 displays

linear correlation. In contrast, PM2.5 and humidity are non-linearly correlated as

depicted in Fig. 6.6 (b).

However, the data distribution is not uniform in different areas. In Fig. 6.7 (a),

it can be seen that the sensed values follow Gaussian distribution which is denoted

by the dashed line. In contrast, the data distribution does not display such regular

behavior in other areas as shown in the Fig. 6.7 (b). Our method is dynamic enough

to incorporate such heterogeneity.
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(a) (b)

Figure 6.6: (a) Correlation of PM2.5 and PM1.0. (b) Correlation of PM2.5 and
humidity.

(a) (b)

Figure 6.7: Data Distribution in the area of (a) uniform values, and (b) non-uniform
values.

Simulation Setting

In the original data set, all the participants are honest. Thus, in order to introduce

impurity in the sensed data, we incorporate continuous or random errors in the

original data. We have considered two types of data impurity: in the first method,

the data error percentage for a taxi is unchanged throughout the time period. In

the second set of experiments, we consider a random error rate for a single node.

We used Python and Matlab programming languages for implementation of our

algorithms.
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Assumptions for false data injection

We considered data corruption and on-off attacks. Similar to the related contempo-

rary works that do not consider colluding among the participants, we had to assume

that the majority of the participants are honest for the reputation-based data pre-

diction mechanism. We assumed that malicious users inject false data individually.

Unlike most of the state-of-the-art methods, the requirement of the presence of a

fixed trusted participant for providing ground truth has been relaxed in our method.

Because, the presence of a trusted participant at all time instances is not realistic.

We synthetically injected false data in the original data streams to imitate the

false data injection attack. We did two different experiments. In first, the false data

injection rate for an individual participant remained unchanged throughout the

duration of the experiment. In contrast, the error rate has been varied at different

time instances for a participant in the other test cases. For the on-off attack, the false

data injection was performed after a long duration of time so that the participant

can gain a high reputation value to be considered as a trusted participant. After

that, the original data is intermittently replaced with false data to imitate malicious

behavior.

We assume the malicious participants do not collude among themselves to in-

filtrate the data collection procedure. Also, it is assumed that the participants do

not perform trial and error attacks, which is a sophisticated attack. In that type

of attack, malicious participants can learn different reputation parameters used in

the data trustworthiness analysis. Like most of the related contemporary works, we

assumed that the malicious participants do not get the chance or in other words do

not have enough time to guess the system parameters in order to fool the system.

Our method makes data injection attacks harder, but it is breakable by collusion

among the malicious participants. In our future work, we will consider collusion
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Table 6.2: Parameter Setting
Parameter Value Parameter Value

w1 0.4 w5 0.15
w2 0.15 w6 0
w3 0 w7 0.3
w4 0 threshold 0.5

reward val 0.2 punish val 0.5

attacks.

We tested the performance of our algorithm for different levels of erroneous data

from malicious users. We also varied the knowledge level of the participants in re-

gards to the experimental environment to imitate sophisticated data manipulation

by a malicious crowdsensing participant. In the first test, we assumed the partici-

pants do not have any prior knowledge about the experimental environment. The

data error ranged from 25% to 75%. One group of malicious participants reported

a fixed percentage of error throughout the experiment. This type of error occurs

when there is any technical issue in the sensors or the sensor is placed in a covered

area during the execution period. In the second experiment, we consider that the

malicious participant has extended knowledge about the sensing area. Thus, these

participants try to change the sensing data by adding noise to the air quality data

of that particular spatio-temporal unit. Moreover, to imitate on-off attack, we ap-

plied random data error ranging from 25% to 75% on a participant’s reported data

stream, after long display of honest behavior. To bring randomness in the behavior,

there was no data error in some of the epochs.

Results and Analysis

We calculated Mean Absolute Error, accuracy, precision, recall, F1 score, AUC,

specificity, and Root Mean Square Error for the performance evaluation. We tested
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Figure 6.8: Mean Absolute Error Trend in presence of On-off Attack

Figure 6.9: Change of Reputation for an on-off attacker

with the presence of different percentages of malicious participants. Most of the

state-of-the-art methods assume the presence of malicious participants ranging from

20% to 40%. However, we also tested the scenarios where the majority of the partic-

ipants are malicious, trying to vandalize the system performance through injecting

false data in varied rates.
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Figure 6.10: Mean Absolute Error and RMSE in presence of On-off Attack

Mean Absolute Error (MAE)

The mean absolute error is calculated as follows.

MAE = abs(Vi − V̂i) (6.20)

Where Vi is the original value and V̂i denotes the predicted value by a method.

In Fig. 6.8, we show the change of Mean Absolute Error (MAE) change per epoch

in presence of on-off attack. Our method RCoD incurred less MAE throughout time.

When the malicious participants inject false data after achieving the highest repu-

tation (=1.0), the MAE become immense for RSEP [AHZ16] and Huang [HKH14].

The reason behind this is the state-of-the-art methods were not able to detect the

data imprecision contributed by the malicious participant who continuously con-

tributed correct data in the past, thus assuming s/he is as an honest participant.

The false data injection began from epoch 80. Though at the beginning of the on-

off attack, our method incurred high MAE score, causing a sudden spike in Fig.

6.8, RCoD was able to detect the malicious behavior and remove the participant
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Figure 6.11: Mean Absolute Error and RMSE in presence of 55 Malicious partici-
pants

from the trusted participant list. In Fig. 6.9, the change of reputation for an

on-off attacker is depicted. It can be observed that the reputation value dropped

steeply after attaining the peak value (=1.0). Also, the growth of the reputation is

slower than the decay rate. Even after behaving well after around epoch 100, the

reputation value did not increase much to be included in the trusted participant

list. Moreover, Fig. 6.10 depicts the average MAE value incurred by the meth-

ods throughout the seven days. Throughout the seven-day experiment, our RCoD

method outperformed RSEP and Huang. Our method achieved 47.98% less MAE

than RSEP in the presence of the on-off attack. Also, RCoD incurred 62.82% less

MAE than Huang.

We also want to investigate the data corruption attack. RCoD achieved on

average 55.45% less MAE than Huang and 48.82% less than RSEP in the presence

of varied data corruption attackers. In Fig. 6.12, the prediction performance of

our method RCoD, Huang, and RSEP are shown. In this case, the majority of the

participants who reported data are malicious, and injected false data at a varied
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Figure 6.12: MAE Trend for 85 Malicious Nodes

Figure 6.13: Average MAE and RMSE where malicious node is majority
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Figure 6.14: Accuracy vs malicious node

error rate ranging from 25% - 75%. This is the worst-case scenario as the number

of malicious participants (60%) exceeds the number of honest participants. The

state-of-the-art methods fail to predict data accurately in this scenario such as our

data prediction performance. The reason behind this is in these works, the majority

malicious participants were able to manipulate the fused data in this scenario. On

average, from Fig. 6.13 it can be seen that our method incurred 42.61% and 48.33%

improvement in terms of less MAE over the RSEP and Huang, respectively.

Accuracy, Precision, Recall and F1 Score

We measure the performance of our data fusion mechanism quantitatively by calcu-

lating the accuracy, precision, recall, and F1 score. Accuracy is the ratio of correct

identification of honest or malicious participants among all the detection. A higher

value of accuracy insinuates the effectiveness of the method.

Accuracy =
TP + TN

TP + FP + TN + FN
[SL09] (6.21)
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Figure 6.15: Precision vs malicious node

Figure 6.16: Recall vs malicious node
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Figure 6.17: F1 Score vs malicious node

Table 6.3: Confusion Matrix for Data Corruption Attack
Number of Malicious Participants TP TN FP FN

55 85 33 22 5
75 64 39 31 6
85 56 51 34 4
88 19 53 35 38

Here TP denotes the number of participants correctly identified as honest, FP

denotes the number of participants identified as honest but originally malicious.

TN denotes the number of participants identified correctly as malicious and FN

is the number of honest participants detected as malicious. Our method was able

to receive 74% accuracy in the worst-case scenario (60% malicious). The state-of-

the-art methods were not able to predict data accuracy like RCoD since for them

the majority malicious participant was able to manipulate the overall data in this

scenario. Fig. 6.14 shows that our method achieved high accuracy. In comparison

to Huang [HKH14], our RCoD method achieved 49.82% better accuracy on average.

The average accuracy value achieved by RCoD is 80%.
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Precision =
TP

TP + FP
[SL09] (6.22)

Recall =
TP

TP + FN
[SL09] (6.23)

Fig. 6.15 shows the achieved precision values calculated using Eq. 6.22. On

average, our method achieved a precision value of 0.77, which is 35.58% higher than

Huang. Moreover, in Fig. 6.16 we can see the recall value in the presence of a differ-

ent number of malicious participants. In the presence of 85 malicious participants,

RCoD achieved the recall value of 0.93. The average recall value achieved by our

method is 0.94. It represents that our algorithm successfully identified the honest

participants with on average 94% cases. Our method outperformed Huang in terms

of recall by 78.8%.

Fig. 6.17 shows the F1 score achieved by RCoD and Huang at the presence

of a different number of malicious participants. F1 score is calculated using Eqn.

6.24. In the case of on-off attack, RCoD successfully detected the data anomaly,

thus achieving F1 Score of 0.98. Furthermore, our method was able to detect the

malicious participants with a decent F1 score (=0.75) in the scenario where malicious

participants supersede the number of honest participants. In this scenario, F1 score

incurred by Huang was only 0.21. Our method achieved at least 61.27% better F1

score than Huang. The average F1 score encountered through out the experiments

was 0.84, which indicates the high classification accuracy of our RCoD method.

F1 = 2 ∗ Precision ∗Recall
Precision+Recall

[SL09] (6.24)
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Figure 6.18: AUC vs number of malicious node

Figure 6.19: Specificity vs number of malicious node
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AUC and Specificity

We calculated AUC and specificity to measure the efficacy of malicious node detec-

tion performance of our method. AUC refers to the avoidance of false classification

of the classifier. On the contrary, specificity refers to the effectiveness of the method

in terms of correct identification of malicious participants [SL09].

AUC = 0.5× (
TP

TP + FN
+

TN

TN + FP
) (6.25)

Specificity =
TN

TN + FP
(6.26)

Fig. 6.18 shows the AUC value achieved at the presence of a different number

of malicious participants. AUC is calculated using Eqn. 6.25. RCoD outperformed

Huang in terms of AUC by 41.5% on average. It can be observed that in the

presence of 60% malicious participants, the AUC value is 0.76. It insinuates that

our algorithm was successfully able to avoid incorrect classification of participants

even where the majority of the participants are malicious. For the on-off attack, the

achieved AUC value is 0.84. Furthermore, Fig. 6.19 depicts the achieved specificity

values. Even though our main goal is proper identification of honest participants

for ensuring the data accuracy of the overall system, the algorithm could identify

the malicious participants accurately with an average specificity value of 0.61. In

the presence of on-off attacker, our method could properly identify the malicious

participants in 70% of cases.

Breaking point of RCoD

We experimented in the presence of 88 malicious participants among the total of

145 participants to show the breaking point of our method. Here the number of
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(a) (b)

Figure 6.20: (a) Precision value and (b) Recall value incurred by RCoD for various
number of malicious participants.

Figure 6.21: F1 Score incurred by RCoD for various number of malicious participants
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Table 6.4: Performance Metric in the presence of 88 (greater than 60%) malicious
participants

Precision Recall Accuracy F1 Score
0.3518 0.3333 0.4965 0.3423

Table 6.5: AUC and Specificity in the presence of 88 (greater than 60%) malicious
participants

AUC Specificity
0.4678 0.6022

malicious participants is over 60% of the total participants. Table 6.4 and Table 6.5

displays different performance metrics (e.g., Precision, Recall, Accuracy, F1 Score,

AUC, and Specificity) in the presence of 88 malicious participants. The performance

degrades a lot in comparison to the presence of less than 60% malicious participants.

Our Reputation-based context-aware data fusion (RCoD) method fails to identify

properly the honest participants when the number of malicious participants is 88.

The F1 Score, a measure of classification accuracy is only 0.34 (Fig. 6.22). From

Table 6.3, we can see that our method was able to identify 19 honest participants

accurately (TP) among the 57 original honest participants.

From Fig. 6.20, we can observe the degradation of the precision score in the

presence of 88 malicious participants in comparison to the presence of 85 malicious

participants. Similarly, it is noticeable that the recall value reduced 64.34% when

the number of malicious participants increased from 60% to 61%. Moreover, Fig.

6.21 depicts the F1 score values incurred in the presence of a different number

of malicious participants. We can observe a sharp decline in the F1 score in the

presence of 88 malicious participants in contrast to 85 participants. This insinuates

that our method failed to classify honest and malicious participants properly when

the number of malicious exceed 60% of the total participants. Similar observation

can be seen in Fig. 6.22 (b). With 1% increase over 60% malicious participants, the
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(a) (b)

Figure 6.22: (a) Accuracy value incurred by RCoD for various number of malicious
participants. (b) AUC value for various number of malicious participants.

performance degrades significantly. Thus, our RCoD is resilient against up to 60%

of malicious participants.

Root Mean Square Error (RMSE)

We calculated Root mean square error (RMSE) as a prediction metric. It insinuates

the prediction error of a method. RMSE is a standard metric to evaluate the

accuracy of the prediction model [ZSS14].

RMSE =

√√√√ 1

n

n∑
i=1

(V̂i − Vi)2 [ZSS14] (6.27)

where V̂i is the predicted value, Vi is the original value and n is the number of

epochs. In Fig. 6.10, we show the RMSE incurred by our RCoD and RMSE method

in case of on-off attack. Fig. 6.10 and Fig. 6.13 depict the RMSE value incurred

by the methods (RCoD, Huang, and RSEP) where 55 and 85 malicious attackers

among the total 145 participants performing data corruption attack. Our method
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Figure 6.23: Average MAE and RMSE vs malicious node

Figure 6.24: Average RMSE vs malicious node

107



outperformed Huang and RSEP by 45.81% and 28.6% respectively in the presence of

55 malicious participants. On the other hand, in the worst-case scenario where the

majority of the participants are malicious, the performance of RCoD is noteworthy.

Our method outperformed the closest competitor RSEP by 46.58%. Furthermore,

our method incurred 50.62% less RMSE than Huang. We make similar observations

for RCoD under a varied number of malicious participants infiltrating the system, as

shown in Fig. 6.23 the average prediction error incurred by our method is reasonably

low.

Next, Fig. 6.24 presents the RMSE value incurred by our RCoD, Huang[HKH14],

RSEP [AHZ16], mean-based [JAF+06], [SGG10] and temporal regression [ŽH13] for

on-off attack and data corruption attack. We tested against a different number

of malicious participants. Our method outperformed the closest competitor RSEP

by incurring 43.15% less RMSE on average. In the presence of varied malicious

participants, RCOD incurred at least 45.8% and at most 60.88% less RMSE than

Huang. The performance superiority over Temporal regression and mean-based

is noteworthy. The reason behind the poor performance of other methods can be

explained as they do not incorporate feedback from reputable participants to validate

the reported data. Also, our dynamic trusted set and the distribution of contribution

score highly reflect the ground truth data. Furthermore, the contextual hidden

Markov model exploits the contextual relationship among the participants in the

data prediction method. Hence, our RCoD method achieves better prediction than

the compared state-of-the-art methods in the presence of a high number of malicious

participants.
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6.6 Discussion and Summary

In this chapter, we developed an online method for data quality prediction in mobile

crowdsensing for IoT that considers the spatial, temporal and context relationship

among participants. We implemented our methods on Beijing air quality dataset.

Most of the state-of-the-art methods assume the presence of malicious participants

ranging from 20% to 50%. However, we also tested the scenarios where the majority

of the participants are malicious, trying to vandalize the system performance by

injecting false data in varied rates. We have tested with the presence of different

high numbers (55, 65, 75 and 85 out of 145) of participants injecting false data.

Our method was able to receive 74% accuracy in the worst-case scenario (60%

malicious participants), exhibiting the quality of resilience. In this case, our RCoD

outperformed the closest competitors RSEP and Huang by incurring on average

43.15% and 53.08% less RMSE, respectively. The state- of-the-art methods were not

able to achieve prediction data accuracy like our RCoD since for them the majority

of malicious participants were able to manipulate the overall data in this scenario.

The success of our approach lies in the integration of dynamic trust evaluation of the

sensed data that allows us to defend data corruption and on-off attacks, as well as

identify malicious or honest participants based on their reported data in real time.
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CHAPTER 7

FUTURE WORK AND CONCLUSION

This dissertation described different methods for real-time data mining in mobile

IoT. In this chapter, we present our concluding remarks and provide directions for

future work.

7.1 Discussions

Context-aware data cleaning

In chapter 3, we presented a novel mechanism for cleaning environmental sensing

data streams that consider not only the sensed value, but also the sensor context and

movement affinity for data cleaning. Our proposed method predicted the missing

data value with greater accuracy, even when there was a higher fluctuation in the

data streams. The average RMSE incurred by our method was only 3.9 at varied

data impurity rates. Simulation results showed up to 24% reduction in root mean

square error (RMSE) over IMC [ZSS14] and up to 30% compared to mean-based

cleaning [JAF+06, SGG10] during the considered time period. We evaluated the

approaches based on Smart City project in Melbourne factual dataset.

Although the performance of our context-aware data cleaning method outper-

formed the related contemporary (IMC [ZSS14] and mean-based [JAF+06, SGG10])

works by achieving less root mean square error in the data prediction, several prob-

lems still need to be addressed. First, the scalability test was not performed. The

geographic context depends on a priori knowledge of subarea boundaries. Hetero-

geneous sensor context and the effect of varied semantics in mobile sensing was not

considered. Also, we assumed all the nodes to be cooperative in this work. We plan

to consider behavior of malicious nodes in the near future.
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Semantic-aware trajectory data mining

In chapter 4, we presented a semantic-aware online clustering-based method for

movement relationships finding in mobile trajectories. We incorporated semantics

annotation in the raw trajectory data in order to discover various movement rela-

tionships between sub-trajectories of mobile devices, and we conducted experiments

on a real-world data set. Along with the added advantage of semantic-aware move-

ment behavior analysis, our method identified outliers in the clustering process

with almost similar performance (average recall 0.92 and F1 score of 0.8) as classic

density-based clustering algorithm DBSCAN [EKS+96].

One direction in which to improve this work is to add different application domain

knowledge in the mobile trajectory data. Moreover, we considered stop and go, flock,

and moving together movement behavior among the large trajectory data. There

are additional types of movement patterns that can be identified.

Correlated Sensor-based data fusion

In chapter 5, we presented a correlated sensor-based data fusion mechanism to

ensure data integrity. The data fusion method is applied to multiple types of sensor

data streams. These varied sensors are correlated with each other. The benefits

of our proposed mechanism are two-fold: it is capable of defending against a data

corruption attack by identifying honest and malicious participants based on their

reported data in real time, and it yields fewer data prediction errors. We showed that

the proposed mechanism outperformed the existing mean-based [JAF+06, SGG10]

and temporal linear regression-based data prediction [ZLH13] models. We evaluated

the approaches based on two datasets: Rome crowdsensing temperature and Beijing

Air quality datasets. In case of the air quality dataset, our method incurred on
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average 25% and 59% less RMSE than mean-based and temporal linear regression

models, respectively.

Although the performance of our correlated sensor-based data fusion method

outperformed the related contemporary (mean-based [JAF+06, SGG10] and tempo-

ral linear regression-based data prediction [ZLH13]) in terms of incurring less root

mean square error and percentage error, there remains opportunity for possible im-

provements. First, if the malicious users show on-off attack behavior, behave well

initially and then begin false data injection, the method will not be able to iden-

tify that fluctuation, which will in turn degrade data prediction accuracy. Also, it

is assumed the location information is correct, and no contextual information has

been considered in the data fusion mechanism. Additionally, the geographic context

depends on a priori knowledge of sub-area boundaries.

Reputation-based context aware data fusion

In Chapter 6, we presented a reputation-based context-aware data fusion mecha-

nism. This method is resilient against on-off and data corruption attack behavior

of malicious participants; even in the case of high false data injection, our method

was able to ensure data reliability. We are the first to use contextual hidden Markov

model for online data stream cleaning in the mobile IoT, which facilitated the light-

weight data prediction method. In this work, we considered the spatial, tempo-

ral and contextual relationships among users while ensuring data quality accuracy.

We also considered different spatial granularity scenarios while defining the corre-

lated participants for data fusion based on the application type: spatially stable

or variable, which was not considered in the prior research. Our method exhibited

its resilience by achieving 74% accuracy in the worst-case scenario (60% malicious
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users). In contrast, Huang [HKH14] achieved 39.48% accuracy on average. In the

worst-case scenario, our RCoD outperformed the closest competitor RSEP [AHZ16]

by incurring 46.58% less RMSE on average. Also, the improvement over Huang was

50.62%.

One direction to improve this work is to incorporate the scenario of a highly

sparse network. How the data can be predicted in such a remote geographic location

is a challenging problem for future research. We assumed the malicious participants

do not collude among themselves to infiltrate the data collection procedure. Also,

it is assumed that the participants do not perform trial and error attacks, which

is a sophisticated attack. In that type of attack, malicious participants can learn

different reputation parameters used in the data trustworthiness analysis. Like most

of the related contemporary works, we assumed that the malicious participants do

not get the chance or in other words do not have enough time to guess the system

parameters in order to fool the system. Our method makes data injection attacks

harder, but it is breakable by collusion among the malicious participants. In our

future work, we will consider collusion attacks. Also, it is assumed the location data

is accurate. Working on imprecise location information is a possible research area

to explore.

7.2 Future Directions

Data Prediction in highly Sparse Networks

This research direction inspires the development of a flexible data stream cleaning

method that will work efficiently in both dense and sparse networks, where the

concurrent presence of more than one sensor in close proximity is not ensured. In
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mobile IoT networks, it is not always possible to ensure the presence of a node

for sensing. We propose to include the location-aware data offloading to mobile

cloud, which is an energy-aware space efficient mechanism, where some data will be

offloaded to the nearest mobile cloud. We hypothesize that using mobile cloud will

help in providing data for the location about which there is no recent data. Our

preliminary work [TCA+14] compares the location-aware code offloading mechanism

with CloneCloud [CIM+11] and outperforms it. If there is no sensor present at a

point of interest (PoI), which is an example of a sparse network, the mobile cloud

will be consulted to receive data about the queried PoI. If it is not found there, then

temporal interpolation will be applied to predict the missing data.

Context-aware Data mining with Location Data Uncertainty

This research direction inspires the development of a data mining mechanism that

fuses semantic and contextual information in the identification of various trajectory

relationships. Most of the state-of-the-art works assume that the trajectory infor-

mation received for data mining is accurate. However, imprecise location data is

reported by the mobile IoT devices along with the sensed data in real-life appli-

cations; as a result, there should be a provision of tolerating this kind of location

imprecision in the data mining algorithms.

Generally, when a participant moves to an indoor location or an urban canyon,

there is a high chance of losing GPS data, resulting in noisy trajectory data. The un-

certainty of the trajectory data prevents an accurate classification of the trajectory

relations and identification of trajectory outliers in real time. Hence, there exists

an immense need for developing a robust online semantic-aware methodology that

endures uncertainty in the trajectory data for estimating noisy sensor locations.
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7.3 Conclusion

According to the Economist, “The world’s most valuable resource is no longer oil,

but data” [Eco17]. Thus, ensuring data trustworthiness is highly essential to the IoT

applications for providing a decent quality of service. This dissertation is motivated

by the immense demand for developing real-time data fusion mechanisms for im-

proving data quality in mobile IoT. In this dissertation, we present online methods

for data prediction by fusing spatiotemporal and contextual relationships among the

participating resource-constrained mobile IoT devices. In our first study, we propose

a data prediction method for missing data streams that considers the spatiotempo-

ral and contextual relationship among the sensors. Next, we develop a real-time

outlier detection mechanism analyzing the behavioral movement similarity. Unlike

the existing approaches that consider only the spatiotemporal relationship, we in-

corporate the location semantics which facilitates various movement and behavioral

patterns identification in mobile trajectory data. In our earlier works, we assume

the sensors to be cooperative, which we relax in the next section. We study the data

quality problem in mobile crowdsensing-based IoT systems as well. With various

advantages of mobile crowdsensing (e.g., scalability at lower cost), its people-centric

architecture introduces more inaccurate data. Due to its open structure, it allows

malicious users to interrupt a system by reporting fabricated or erroneous data,

making trust evaluation an important issue in these applications. To ensure data

integrity in mobile IoT, we develop a reputation-aware context-based data fusion

mechanism for data quality prediction. Our online method considers the spatiotem-

poral, inter-sensor categorization and context relationship among the participants.

This method is capable of defending against false data injection by differentiating

malicious and honest participants based on their reported data in real time, and
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yields a lower data prediction error rate. We hope the future applications of mo-

bile IoT will benefit from our research outcomes, and our study will inspire the

development of better data mining solutions in terms of reducing data prediction

errors.
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