90 research outputs found

    A Bit-Parallel Deterministic Stochastic Multiplier

    Full text link
    This paper presents a novel bit-parallel deterministic stochastic multiplier, which improves the area-energy-latency product by up to 10.6×\times104^4, while improving the computational error by 32.2\%, compared to three prior stochastic multipliers.Comment: To Appear at IEEE ISQED 202

    Photonic Reconfigurable Accelerators for Efficient Inference of CNNs with Mixed-Sized Tensors

    Full text link
    Photonic Microring Resonator (MRR) based hardware accelerators have been shown to provide disruptive speedup and energy-efficiency improvements for processing deep Convolutional Neural Networks (CNNs). However, previous MRR-based CNN accelerators fail to provide efficient adaptability for CNNs with mixed-sized tensors. One example of such CNNs is depthwise separable CNNs. Performing inferences of CNNs with mixed-sized tensors on such inflexible accelerators often leads to low hardware utilization, which diminishes the achievable performance and energy efficiency from the accelerators. In this paper, we present a novel way of introducing reconfigurability in the MRR-based CNN accelerators, to enable dynamic maximization of the size compatibility between the accelerator hardware components and the CNN tensors that are processed using the hardware components. We classify the state-of-the-art MRR-based CNN accelerators from prior works into two categories, based on the layout and relative placements of the utilized hardware components in the accelerators. We then use our method to introduce reconfigurability in accelerators from these two classes, to consequently improve their parallelism, the flexibility of efficiently mapping tensors of different sizes, speed, and overall energy efficiency. We evaluate our reconfigurable accelerators against three prior works for the area proportionate outlook (equal hardware area for all accelerators). Our evaluation for the inference of four modern CNNs indicates that our designed reconfigurable CNN accelerators provide improvements of up to 1.8x in Frames-Per-Second (FPS) and up to 1.5x in FPS/W, compared to an MRR-based accelerator from prior work.Comment: Paper accepted at CASES (ESWEEK) 202

    AGNI: In-Situ, Iso-Latency Stochastic-to-Binary Number Conversion for In-DRAM Deep Learning

    Full text link
    Recent years have seen a rapid increase in research activity in the field of DRAM-based Processing-In-Memory (PIM) accelerators, where the analog computing capability of DRAM is employed by minimally changing the inherent structure of DRAM peripherals to accelerate various data-centric applications. Several DRAM-based PIM accelerators for Convolutional Neural Networks (CNNs) have also been reported. Among these, the accelerators leveraging in-DRAM stochastic arithmetic have shown manifold improvements in processing latency and throughput, due to the ability of stochastic arithmetic to convert multiplications into simple bit-wise logical AND operations. However,the use of in-DRAM stochastic arithmetic for CNN acceleration requires frequent stochastic to binary number conversions. For that, prior works employ full adder-based or serial counter based in-DRAM circuits. These circuits consume large area and incur long latency. Their in-DRAM implementations also require heavy modifications in DRAM peripherals, which significantly diminishes the benefits of using stochastic arithmetic in these accelerators. To address these shortcomings, this paper presents a new substrate for in-DRAM stochastic-to-binary number conversion called AGNI. AGNI makes minor modifications in DRAM peripherals using pass transistors, capacitors, encoders, and charge pumps, and re-purposes the sense amplifiers as voltage comparators, to enable in-situ binary conversion of input statistic operands of different sizes with iso latency.Comment: (Preprint) To Appear at ISQED 202
    • …
    corecore