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1 INTRODUCTION 

1.1 Scope 

One of the key characteristics of the OpenIoT cloud platform is its ability to make 

optimal usage of the resources that it comprises, with a goal to maximizing efficiency, 

sustainability and costs of both the sensing process and resource usage within the 

cloud. Furthermore, it is envisaged that these resource optimization functionalities 

are provided by the OpenIoT sensor-cloud infrastructure itself, in an autonomous 

fashion and without any human intervention. To this end, OpenIoT specifies and 

implements a framework for «self-management and optimization» associated with 

sensors, services and applications that are executed over the OpenIoT cloud. The 

framework optimizations have been designed in order to be executed at various 

levels, from cloud storage to bandwidth efficiency or query results caching.  

This deliverable presents the specifications of the self-management and optimization 

framework of the OpenIoT platform, providing insights on its implementation in-line 

with the OpenIoT architecture. The deliverable introduces first the algorithms 

techniques and experimental evaluation that validate them; and then describes their 

implementation in the OpenIoT platform.  

Towards the implementation of the OpenIoT self-management and optimization 

framework, this deliverable has a bi-directional interaction with other work packages 

dealing with the OpenIoT platform architecture (WP2) and implementation (WP4): On 

the one hand it provides inputs on the information that should be stored and 

managed within the OpenIoT system in order to enable the implementation of the 

algorithms, while on the other it takes into account the results of these work 

packages in order to properly design the practical implementation of the algorithms 

within the OpenIoT self-management and optimization framework. 

 

1.2 Audience 

The target audience of this deliverable includes: 

 The consortium partners and more specifically consortium members dealing with 

the design and implementation of the OpenIoT open source platforms. These 

members take into account the results of this deliverable in order to design the 

OpenIoT platform elements (such as data structures) in a way that facilitates the 

implementation of the presented algorithms. 

 Cloud computing and/or IoT researchers, which could be offered with a range of 

resource optimization schemes, that could be valuable in the scope of current and 

future implementations of systems attempting the IoT/cloud convergence. 
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1.3 Summary  

This deliverable describes the OpenIoT self-management and optimization 

framework, in terms of algorithms and mechanisms that it comprises as well as in 

terms of their implementation over the OpenIoT platform and associated cloud 

infrastructure. As a first step the main operations and functionalities of the OpenIoT 

self-management and optimization infrastructure are described and related to the 

structure of management operations defined in state-of-the-art frameworks for 

autonomic computing and self-management. Along with a brief description of the 

optimization techniques that are employed in OpenIoT, an initial mapping of the 

various techniques on the OpenIoT architecture is performed. 

Following the overview of the OpenIoT self-management and optimization 

infrastructure, the deliverable delves into more details about each one of the 

mechanisms. In particular: 

 Efficient scheduling mechanisms are presented, aiming at optimizing the rates 

according to which the various sensors streams are streamed to the cloud and/or 

accessed by consumers. 

 A variety of caching mechanisms are presented, aiming at accelerating access to 

frequently used/requested data. 

 Cloud optimization for sensor data storage, using approximation of raw sensor 

data to view-models represented as functions.  

 Utility-driven mechanisms are illustrated, aiming at maximizing the utility of the 

services, while minimizing the cost for setting them up and maintaining them. 

 Efficient sensor data collection using the utility metrics, and also context-aware 

filtering from mobile devices. 

 Optimization techniques employing the temporal and/or spatial aspects of the 

OpenIoT queries and services, along with semantic techniques for correlating 

queries and associated with reasoning operations over multiple data streams. 

 

These techniques target two of the main goals of WP5, which are to investigate 

techniques for energy-efficient service delivery, and resource sharing 

algorithms for accessing OpenIoT resources. 

Finally, we provide details and insight about the implementation of the 
abovementioned techniques for self-management and optimization within the 
OpenIoT platform. Therefore, and as it was stated in the goals of WP5, we 
established an overall management and optimization framework for the 
OpenIoT infrastructure. The framework incorporates the optimization algorithms 
listed above, researched in this work package. Specifically, we specify the following 
components, and indicate how they are being integrated into the OpenIoT platform:  
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 Utility-based optimization: related to Task T5.2, which addresses optimization 
of resource sharing across service requests, e.g. sensor data collection. 
This utility function in this module also incorporate privacy for the computation, 
addressing also T5.3, is related to the definition of utility metrics in order to 
ensure the trustworthiness of the services. 

 Dynamic Sensor Control, which is also related to T5.2, but focusing on 
resource and sharing of resources at the scheduling level, with a view to 
making optimal use of the resources (sensors). The sensor control techniques 
are also related to T5.1 as they deal with energy efficiency at the (virtual) 
sensor level. 

 Caching Simulation: The cache simulator of query responses is directly related 
to T5.1 as it deals with bandwidth optimization, reducing the data 
transmission volumes between the data layer and the rest of the OpenIoT 
architecture. 

 Cloud Optimization is related to both T5.2 and T5.1 as it deals with resource 
management for cloud environments (e.g. for efficient cloud storage and 
processing), and also on bandwidth optimization (reduced data volumes 
over the wire). 
 

1.4 Structure 

The remainder of the deliverable is structured as follows:  

Section 2 concentrates on the OpenIoT management and optimization 

functionalities, related to the integration of large-scale sensor data into the cloud. 

This requires establishing a common understanding of the challenges and features 

for enhancing complex systems functionality to support a large number of sensors, 

devices and services, and their dynamic deployment and implementation within the 

OpenIoT platform. In particular, Section 2.2 describes the OpenIoT self-management 

features assessed in terms of performance, reliability, scalability, resource 

optimization and cost efficiency. Section 2.3 introduces the OpenIoT vision to define 

an ICO service lifecycle control. Self-management operations represent the building 

blocks of the core IoT service lifecycle in OpenIoT, and provide significant 

contributions to the OpenIoT platform in general. As per definition, service creation, 

service customization, service management, service operation, service billing and 

customer support, complete the ICO service lifecycle.   In this chapter, these 

operations are explained and related with OpenIoT functionalities and technologies 

supporting ICO service lifecycle in cloud environments. 

 

Section 3 is devoted to presenting a detailed analysis of OpenIoT approaches that 

enable self-management and optimization. It presents the techniques OpenIoT is 

proposing to use, as part of the self-management and optimization functionalities 

introduced in Chapter 2. Section 3.1 introduces a summary where self-management 

and optimization functionalities are related with OpenIoT techniques. Section 3.2 

provides details about the scheduling functionality in OpenIoT and describes the 
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related work in sensor networks and multi-query optimization. Later in this section we 

discuss different multi-query data management solutions and caching techniques in 

OpenIoT as well as pull approaches and caching of sensor ICO data (random or 

based on frequency request). In Section 3.3 cloud optimization is discussed for 

efficient sensor data storage of segment approximations of sensor data instead of 

raw measurements. This novel querying mechanism combines in-memory and key-

value stored data management in the cloud. Section 3.4 discusses utility-based 

optimization specifications associated with the OpenIoT platform. We adapt a utility-

driven approach to the system optimization, which tries to maximize the net benefit 

measured as a difference between the benefit of the provided information and the 

cost of maintaining the system in terms of energy consumption/bandwidth and the 

cost of ensuring privacy. Section 3.5 specifies efficient sensor data collection 

techniques, which OpenIoT is proposing to be part of its final architecture, including 

algorithms for utility-based sensor data acquisition and filtering on mobile devices. 

Section 3.6 introduces efficient query processing techniques implemented by the 

LSM module of the OpenIoT architecture. Section 3.7 introduces energy efficiency 

and bandwidth optimization and provides an analysis for specifying this functionality 

in OpenIoT final architecture. We include also an analysis on energy and bandwidth 

consumption on mobile devices.  

 

Section 4 provides details about the implementation of the techniques in Section 3 

for the OpenIoT platform architecture. Specifically, we provide the specification and 

details of the utility-based optimization (Section 4.1) to be used by the OpenIoT 

integrated prototype, based on the techniques described in Section 3.4. In Section 

4.2 we provide details on the implementation of the Dynamic Sensor Control Module, 

based on indirect sensor control, as introduced in Section 3.7.2. The Caching 

Scenarios prototype is detailed in Section 4.3. Finally, the cloud optimization 

approach implementation is specified in Section 4.4, based on the algorithms and 

techniques described previously in Section 3.3. 

 

Section 5 concludes the deliverable. We also include references where more 

detailed specifications and descriptions to the proposed technologies can be found. 
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2 OPENIOT MANAGEMENT AND OPTIMIZATION 

FUNCTIONALITIES 

2.1 Overview 

The process of integrating sensor data and cloud infrastructures as part of a blueprint 

open source solution in OpenIoT, creates new challenges in terms of enhancing 

complex system functionality, enables large support of sensors, devices and service 

systems, and enables dynamic deployment and implementation of various innovative 

IoT services. 

IBM1 has introduced automaticity as part of the vision of autonomic computing 

“systems manage themselves according to an administrator’s goals. New 

components integrate as effortlessly as a new cell establishes itself in the human 

body. These ideas are not science fiction, but elements of the grand challenge to 

create self-managing computing systems”. This principle has emerged and 

transcended beyond computing frontiers and also in the area of the communications 

management, the term autonomic communications has been researched for several 

years, reflecting a real challenge to materialize the vision of transparent interaction 

between administrator’s goals and systems self-management operations. In the late 

90’s supported by the Autonomic Computing Forum (ACF) autonomics brought the 

concept of seamless mobility associated to scenarios for people configuring new 

personalized services using displays, smart posters and other end-user interaction 

facilities, as well as their own personal devices. Named lately as pervasive 

computing, autonomics bring the inherent necessity to increase the functionality of 

those systems dealing with additional information and funded on communication 

system infrastructures. Pervasive service requirements are headed by the 

interoperability of data, voice, and multimedia using the same (converged) network.  

This requirement defines a new challenge: the necessity to integrate smartness to 

the systems and make the infrastructure more reactive by means of data and 

services control. Nowadays the Future Internet design with the inclusion of ICOs is 

motivated by both, the necessity to support the requirements of pervasive services 

and the necessity to satisfy the challenges of self-operations dictated by the largely 

named IoT paradigm.  

Autonomic systems must dynamically adapt the services and resources that they 

provide to meet the changing needs of users and/or to respond to changing 

environmental conditions alike that of system control; this requires the integration of 

management information into the OpenIoT platform. Figure 1 depicts the OpenIoT 

autonomic control loop proposed in OpenIoT. This model for OpenIoT is crucial, as 

each day more complex ICO consumers require novel services, which in turn require 

                                            
1  IBM The Vision of Autonomic Computing, IBM Research, Vision and Manifesto. 
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more complex support systems that must harmonize multiple technologies and linked 

information from sub-systems interacting with the offered embedded services. 

 

Figure 1. OpenIoT Autonomic Service Control Loop for ICO’s. 

 

ICOs promise new smart scenarios, and at the same time create challenging 

environments for deploying user-centric applications and services. ICO systems 

require information and systems able to support services and especially 

interoperable applications. In autonomic systems linked data plays the important role 

of enabling the management plane to adapt the services and resources that it is 

offering to the changing demands of the user, as well as adapt to changing 

environmental conditions, by meaning of the linked nature, thus enabling the 

management of new functionalities in ICO complex systems [Serrano 2008].  

 

2.2 OpenIoT Self-management Features 

2.2.1 Assessing Self-Management Functionalities within OpenIoT Architecture 

The vision of self-management creates an environment that hides the underlying 

complexity of the management operations, and instead provides a façade that is 

appealing to both administrators and end-users alike. It is based on consensual 

agreements between different systems (e.g., management systems and information 

support systems), and it requires a certain degree of cooperation between the 

systems to enable interoperable data exchange.  
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One of the most important benefits of this agreement is the resulting improvement of 

the management tasks and operations using such information to control ICO’s and 

their applications. However, the descriptions and rules that coordinate the control 

operations of an ICO system are not the same as those that govern the sensor data 

in each application system. For example, information present in a particular sensor 

network with primarily proprietary technology is often restricted to control the 

operation of a service, and usually has nothing to do with service management.  

In the scope of OpenIoT, cooperation and interactions between various components 

of the OpenIoT architecture are required in order to support the self-management 

functionalities. Figure 2 depicts the OpenIoT Autonomic Self-management 

Framework for IoT Systems (ICO’s), and presents the OpenIoT architecture 

components that implement and support the various functionalities. 

 

Figure 2. OpenIoT Architecture with Self-management Features. 

Figure 2 serves as a reference for the positioning of these functionalities in the scope 

of the OpenIoT architecture. It summarizes the main functionalities provided by the 

OpenIoT architecture, namely efficient scheduling, cloud optimization, utility-based 

optimization, request types optimization, efficient sensor data collection, and 

energy/bandwidth optimization. The following paragraphs present in detail the various 

functionalities depicted in the figure, and how they are assessed in terms of 

performance, reliability, scalability and resource optimization.   
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2.2.2 Performance 

Scalability and interoperability between heterogeneous, complex and distributed ICO 

systems is always a challenge and it requires new management and optimization 

functionalities. However, this added complexity might hurt the overall performance of 

the platform. Performance may be understood in different ways, depending on the 

perspective to be taken. From the point of view of an end user, performance can be 

perceived, for instance, in terms of query response times. In the case of a sensor it 

can be related to data transmission rates, or for a processing application it can be 

related to the throughput of data analysis of ICO data. In this regard, most of the 

optimization schemes proposed for the OpenIoT should have a positive impact on 

performance. Efficient scheduling and utility-based optimization result in reduced 

amounts of sensor interactions with the query middleware, thus reducing query 

times. Cloud optimization is precisely devised to also reduce the time spent in 

processing queries, using highly efficient cloud storage mechanisms. Efficient sensor 

data collection and bandwidth optimization improve performance in terms of 

throughput.  

As an inherent functional limitation, ICO management systems do not support a large 

spectrum of devices, such as wearable computers and specialized sensors. 

Furthermore, ICO systems are every day being provided with embedded 

technology/connectivity, which is used to make new types of networks that provide 

their own services (e.g., simple services supporting other, more complex, services), 

which implies that management task become more difficult and complex in terms of 

scalability.  

In OpenIoT, we deal with linked data or information sharing. In project scenarios use 

a broad mixture of technologies and devices (sensors) that generate an extensive 

amount of different types of information, many of which need to be shared and 

reused among the different service management components with different data 

representation mechanisms. This requires the use of different data models, due both 

to the nature of the information being managed as well as the physical and logical 

requirements of applications. However, information/data models (linked data and 

particularly RDF) do not have everything necessary to build up this single common 

interoperable sharing support system. In particular, there is a need to delegate the 

ability to describe behaviour of the services and application with the infrastructure.   

2.2.3 Reliability 

Traditionally management systems approaches define a strict layering of functionality 

and cross-layered interactions are left aside. In OpenIoT we explore the broad 

diversity of resources, devices, services, and systems, which are interconnected and 

exchange information across layers.  

This complex structure also plays a role in terms of the overall reliability of an IoT 

platform. Each device that contributes to the OpenIoT ecosystem is subject to varying 
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degrees of dependability. Some devices may provide high quality data (e.g. well 

calibrated sensors) while others may not even be available at some time of the day 

(e.g. community sensing where citizens voluntarily provide data through home-made 

devices). Moreover, reliability of mobile sensing devices can, in some cases, be 

undermined by external factors such as interference, signal problems or 

unreachability. In OpenIoT, we address some of these issues with the utility-based 

optimization, where the reliability of ICOs can influence the inclusion or exclusion of 

its data from the acquisition process. 

In OpenIoT we pursue the objective of annotating information, described in services 

and data models, so to provide an extensible, reusable common management 

platform that provides new functionality to better manage resources, devices, 

networks, systems and services [Serrano 2008]. Given the fact that different data 

representations are a necessity in the next generation Internet solutions [Clark 2003], 

the typical solutions have attempted to define a single common information model 

that can harmonize the information present in each of these different management 

data models. Using a single information model prevents different data models from 

defining the same concept in conflicting ways. In addition, the use of a single 

common information model enables the reuse and exchange of service management 

information. Examples of using a single common information model include the 

initiative CIM/WBEM (Common Information Model/Web Based Enterprise 

Management), [DMTF-CIM] from the DMTF (Distributed Management Task Force, 

Inc.) and broadly supported by the Shared Information Model [TMF-SID] of the TMF 

[TeleManagement Forum]. However neither of them has been completely successful, 

as evidenced by the lack of support for either of these approaches in network devices 

currently manufactured.  This indicates that SID model lacks the extensibility to 

promote the interoperability and enhance its acceptance and expand its 

standardization. 

In OpenIoT we are proposing an alternative to facilitate the interoperability, by 

semantically enriching the information models to contain the references in the form of 

relationships between sensor data required to provide the service. By using one or 

more ontologies and the referenced sensor data ontology [W3C SSN]2 then service 

systems and applications using information contained in the service model can 

access and do operations and functions for which they were designed. This 

functionality in particular impacts the performance of the ICO systems by its unique 

and novel feature of enabling management operations using the information 

contained in the information models (sensor data) for ICO service provisioning. 

2.2.4 Scalability 

The vision of ICOs which enable societies to use a wide range of sensors, devices 

and computing systems to “transparently” create smart applications and on-demand 

                                            
2  http://www.w3.org/2005/Incubator/ssn/ 
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services automatically, requires beyond sub-systems offering reliable control and 

connectivity, associated management systems that are able to support such 

exponentially growing and dynamic service creation. In this vision, not only the 

numbers of potential users may rapidly grow (as in traditional web platforms), but 

also the number of ICOs and participating sensors may grow. The scale of queries, 

data streams and sensor metadata that needs to be processed requires carefully 

designed algorithms that go beyond centralized traditional data analysis techniques. 

Moreover, the inherently distributed nature of sensors, require a wide scale network 

of decentralised processing, to which the OpenIoT users and application should be 

able to issue continuous queries. This adds even another level of scale, as the data 

is highly dynamic, hence not efficiently tractable with standard query processing 

techniques. Data streams and dynamic queries at potentially very fast rates require 

highly scalable processing, which is addressed in OpenIoT through Request type 

optimization and Cloud Optimization.  

2.2.5 Resource Optimization and Cost Efficiency 

Self-management features depend on both the requirements as well as the 

capabilities of the middleware frameworks or platforms for managing information 

describing the services as well as information supporting the delivery and 

maintenance of the services. The representation of information impacts the design of 

novel syntax and semantic tools for achieving the interoperability necessary when 

ICO resources and services are being managed. Middleware capabilities influence 

the performance of the information systems, their impact on the design of new 

services, and the adaptation of existing applications to represent and disseminate the 

information. 

In OpenIoT, the use of rule-based engines for controlling ICO’s service management 

is augmented with the use of standard ontologies. This enables the management 

systems to support the same management data to accommodate the needs of 

different management applications through the use of rich semantics [Serrano 2012]. 

Service management applications for IoT systems highlight the importance of formal 

information.  

The rules are used for managing various aspects of the service lifecycle. It is 

important to identify in OpenIoT what is meant by the term “service lifecycle”. 

Currently, the TMF is specifying many of the management operations in networks for 

supporting services [TMN-M3050][TMN-M3060], in a manner similar to how the W3C 

specifies web services [W3C-WebServices]. However, a growing trend is to manage 

the convergence between infrastructure and services (i.e., the ability to manage 

different service requirements for data, voice, and multimedia serviced by the same 

network), as well as the resulting converged services themselves. The management 

of NGN pervasive services involves self-management capabilities for improving 

performance and achieving the interoperability necessary to support current and next 

generation services.  
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2.3 Self-management Framework – ICO Services Lifecycle 

This section describes an organizational view that enables the ICO service lifecycle 

to be explicitly modelled and semantically managed. This in turn ensures information 

interoperability necessary to manage different services in IoT applications. This 

section describes the organizational view for the Autonomic Self-management 

Framework, which can be divided into six distinct phases with specific tasks [Serrano 

2008].  

Management operations enabling the autonomic nature of ICO systems are the core 

part of the IoT service lifecycle, and where the contributions in OpenIoT are focused. 

The management phase for IoT services is highlighted in Figure 3. Creation and 

customization of services, accounting, billing and customer support are outside the 

scope of OpenIoT. However, they are considered for a design description of ICO 

systems. The different service phases exposed in this section describe the service 

lifecycle foundations. The objective is to focus the research efforts on understanding 

the underlying complexity of service management, as well as a better understanding 

about the roles for the components that make up the service lifecycle, using 

interoperable information that is independent of any specific type of infrastructure that 

is used in the deployment of IoT services. 

 

Figure 3. OpenIoT Autonomic Self-management Framework for IoT Services (ICO’s). 

2.3.1 Service Creation 

The creation of each new IoT service starts with a set of requirements; the service at 

that time exists only as an idea. This idea of the service originates from the 
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requirements produced by market analysis and other business information. At this 

time, technology-specific resources are not considered in the creation of a service. 

However, the infrastructure for provisioning this service must be abstracted in order 

to implement the business-facing aspects of the service as specified in a service 

definition process [Serrano 2008]. 

The idea of IoT service must be translated into a technical description of a new 

service, encompassing all the necessary functionality for fulfilling the requirements of 

that service (e.g., physical devices interconnection, sensor data collection, virtual 

sensor aggregation, etc.). A service is conceptualized as the instructions or set of 

instructions to provide the necessary mechanism to provide the service itself and 

called service logic (SLO).  

2.3.1.1 Efficient Scheduling 

The OpenIoT system comprises the notion of scheduling of requests, which 

undertakes the task of technically describing a new service. The OpenIoT global 

scheduler component, which OpenIoT architecture specifies, receives all the User 

requests for IoT services and fulfils the requirements of that service. A wide range of 

different optimization algorithms can be implemented at the scheduler component of 

the OpenIoT architecture. So the main OpenIoT efficient multi-level (global, local) 

scheduling optimization scheme involves multi-query data management and caching 

techniques that include: 

 pull approach at local scheduling, 

 caching of sensor/ICO data, 

 caching of sensor/ICO data based on frequency of requests, and 

 caching of (SPARQL) queries 

2.3.2 Service Customization 

Service customization, which is also called authoring, is necessary for enabling the 

IoT service provider to offer for its consumers the ability to customize aspects of their 

IoT services (i.e., ICO selection and/or configuration) according to their personal 

needs and/or desires (e.g. defined by a query language). Today, this is a growing 

trend in web-services and business orientation. An inherent portion of the 

customization phase is an extensible infrastructure, which must be able to handle 

service subscription and customization requests from administrators as well as ICO 

consumers. 

2.3.2.1 Efficient Sensor Data Collection 

In OpenIoT we focus on stream data processing components enabling the 

deployment over multiple infrastructures. By combining query languages (i.e. 

SPARQL) and stream data processing components to enable the User to customize 
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a service on its own needs. And based on an efficient stream processing, at the 

collection and distribution, making the sensor data system more efficient towards 

previous identification of “intelligent” data providers’ by sensing and actuating over 

streaming data infrastructures, rather than having to deploy data processing 

infrastructures by themselves. 

2.3.2.2 Request Types Optimization 

Another type of service customization in OpenIoT exists in the request types 

optimization where we make use of LSM (Linked Sensor Middleware) [Le-Phuoc 

2011]. We use LSM as an extended middleware with functionalities to transparently 

cater for dynamic stream information. LSM uses efficient query algorithms that may 

provide a global view of the whole dataset to the data processing operators. 

 

2.3.3 Service Management 

In this section, the management operations of an ICO service and its interactions are 

identified as distinct management operations from the rest of the service lifecycle 

phases. Figure 4 depicts management operations as part of the management phase 

in a pervasive service lifecycle. 

 

Figure 4. Service Management & Operations. 

The main service management tasks are service distribution, service maintenance, 

service invocation, service execution and service assurance. An important functional 

aspect of the OpenIoT service management framework implementation is the 

dynamic (on the fly) deployment of IoT services using specific logic rules. For 

instance, when an IoT service is going to be deployed, decisions have to be taken in 
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order to determine which sensor or devices (things) are going to be used to support 

the service. This activity is most effectively done through the use of particular logic 

rules that map the user with the desired data sources and with the capabilities of the 

set of ICO that are going to support the service. Moreover, service invocation and 

execution can also be controlled by same logic rules, which enable a flexible 

approach for customizing one or more service templates to multiple users.  

On the other hand, management is an effective mechanism for maintaining code to 

realize the IoT services, changes and assurance of the IoT service included. For 

example, when variations in the delivery of the service are sensed by the system, 

one or more policies can define the set of actions that need to be taken to solve the 

problem. In this way, the use of policies enables different behaviour to be 

orchestrated as a first step to implement self-management functionality. 

2.3.3.1 Service Distribution 

This step takes place immediately after the service creation and customization in the 

service lifecycle. It consists of storing the service code in specific storage points. 

Policies controlling this phase are termed code distribution policies (Distribution). The 

mechanism controlling the code distribution determines the specific set of storage 

points that the code should be stored in. The enforcement is carried out by the 

components that are typically called Code Distribution Action Consumers. 

2.3.3.2 Service Maintenance 

Once the code is distributed, it must be maintained in order to support updates and 

new versions. For this task, we use special policies, termed code maintenance 

Policies (CMaintenance). These policies control the maintenance activities carried 

out by the system on the code of specific services. A typical trigger for these policies 

could be the creation of a new code version or the usage of a service by the 

consumer. The actions include code removal, update and redistribution. These 

policies are enforced by the component that is typically named the Code Distribution 

Action Consumer. 

2.3.3.3 Service Invocation 

The service invocation is controlled by special policies that are called SInvocation 

Policies. The service invocation tasks are realized by components named Condition 

Evaluators, which detect specific triggers produced by the service consumers. These 

triggers also contain the necessary information that policies require in order to 

determine the associated actions. These actions consist of addressing a specific 

code repository and sending the code to specific execution environments in the 

network. The policy enforcement takes place in the Code Execution Controller Action 

Consumer. 
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2.3.3.4 Service Execution 

Code execution policies, named CExecution policies govern how the service code is 

executed. This means that the decision about where to execute the service code is 

based on one or more factors (e.g., using performance data monitored from different 

network nodes, or based on one or more context parameters, such as location or 

user identity). The typical components with the capability to execute these activities 

are commonly named Service Assurance Action Consumers, which evaluate network 

conditions. Enforcement of these policies is the responsibility of the components that 

are typically called Code Execution Controller Action Consumers. 

2.3.3.5 Service Assurance 

This phase is under the control of special policies termed service assurance policies, 

termed SAssurance, which are intended to specify the system behaviour under 

service quality violations. The Service Assurance Condition Evaluator evaluates rule 

conditions. These policies include preventive or proactive actions, which are enforced 

by the component typically called the Service Assurance Action Consumer. 

Information consistency and completeness is guaranteed by a policy-driven system, 

which is assumed to reside in the service creation and customization framework. 

2.3.3.6 Utility-based Optimization 

In OpenIoT for the dynamic deployment of IoT services we adapt a utilitarian 

approach optimization for the system’s logic rules. The utilitarian approach tries to 

maximize the net benefit measured as difference between the benefit of the provided 

information and the cost of maintaining the system in terms of energy 

consumption/bandwidth and the cost of ensuring privacy. 

2.3.4 Service Operation 

The operation of a deployed IoT service is based on monitoring aspects of the cloud 

infrastructure that support that service, and variables that can modify the features 

and/or perceived status of the communications. Usually, monitoring tasks are done 

using agents, as they are extensible and can only accommodate a wide variety of 

information, and are easy to deploy. The information is processed by the agent 

and/or by middleware that can translate raw data into and from having explicit 

semantics that suit the needs of different applications. 

2.3.4.1 Cloud Optimization 

In OpenIoT we enforce adaptive cloud optimization algorithms based on the needs of 

each deployed scenario. The cloud infrastructure can be managed based on its 

functional schemes (i.e. access/storage charges). In particular we target model-

based sensor data approximation to reduce the amount of data for query processing, 
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using a MapReduce evaluation paradigm. In this way the OpenIoT platform adapts 

the service runtime having in mind its cost-effectiveness and data integrity. 

2.3.5 Service Billing 

Service billing is just as important as service management, since without the ability to 

bill for delivered IoT services provided, the organization providing those services 

cannot make money. Service billing is often based on using one or more accounting 

mechanisms that charge the customer based on the resources used in the network. 

In OpenIoT, we particularly align our approach with the cloud paradigm enabling pay-

as-you-go services. In the billing phase, the information required varies during the 

business lifecycle, and may require additional resources to support the billing. 

Service metering is implemented in the utility manager, which keeps track of the 

utility metrics specified in D4.2.1. This metering can then serve as a foundation for 

service billing. 

2.3.6 Customer Support 

Customer support provides assistance with purchased IoT services, while IoT main 

feature is the non-dependence or dependency of service provider, computational3  

resources or software4 , or other support goods are required for the provisioning of 

complex IoT services. Therefore, a range of services5 and resources (mainly cloud) 

related are required to facilitate the maintenance and operation of the IoT services, 

and additional context (and sometimes the uncovering of implicit semantics) is 

necessary in order for user or operators to understand problems with purchased 

services and resources. OpenIoT foresees to enable the User with the ability to 

configure, monitor and maintain IoT operative services (as described in deliverable 

D2.3, Chapter 9.2). This is done through specialized monitoring and configuration 

interfaces, which are able, for example, to modify object-objet connections or 

activate/de-active sensors, instead of relaying this capacity to the implemented 

service maintenance functionality in the subsystem. This is mainly an OpenIoT 

platform system administrator/ service provider tool, which would enable him to 

deploy, configure, manage and offer service customer support more dynamically 

when necessary. 

                                            
3  http://en.wikipedia.org/wiki/Computer 
4  http://en.wikipedia.org/wiki/Software 
5  http://en.wikipedia.org/wiki/Customer_service 

http://en.wikipedia.org/wiki/Computer
http://en.wikipedia.org/wiki/Computer
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3 DETAILED ANALYSIS OF OPENIOT APPROACHES TO SELF-

MANAGEMENT AND OPTIMIZATION  

3.1 Overview and Summary of Contributions 

The previous section has introduced the main techniques that are employed in the 

scope of the OpenIoT self-management framework. The following paragraphs 

provide more details on each of the presented schemes (i.e. on Efficient Scheduling 

including Caching, Cloud Optimization, Utility-based Optimization, Efficient Sensor 

Data Collection, Request Types Optimization, Energy Efficiency and Bandwidth 

Optimization). Furthermore, Table 1 illustrates how different schemes contribute to 

the various non-functional goals of the OpenIoT system. In particular: 
 

 Efficient scheduling and caching mechanisms reduce the time and resources 

needed to deliver an OpenIoT service (e.g., to dynamically formulate a SPARQL 

query) and/or its results (e.g. accelerates access to frequently used sensor data). 

In this way it contributes to the performance and resource optimization goals. 

 Cloud optimization techniques reduce the overall storage costs, while also 

boosting the ability of OpenIoT to interface and use multiple elastic cloud 

computing infrastructures. In this way, it contributes to performance, resource 

optimization, as well as the scalability of the overall OpenIoT infrastructure. 

 Utility-based optimization maximizes the net benefit stemming from the use of the 

cloud, while accounting for the cost for setting up and maintaining the cloud 

infrastructure and services. It therefore addresses optimization of aspects such as 

performance, reliability and resource optimization (depending also on the utility 

metrics employed). 

 Efficient sensor data collection exploits spatial correlation of the data and/or the 

queries in order to boost performance and scalability. 

 Finally, both request types optimization and efficient bandwidth allocation enable 

faster access to data of specific services requests thereby boosting performance 

and resource optimization. 
 

These optimization characteristics and properties are more explicitly presented and 

justified in the following subsections, which elaborate on the various optimization 

schemes.  
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Table 1. Self-Management and Optimization Functionalities vs. OpenIoT Techniques. 
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Efficient Scheduling X  X X 

Cloud Optimization X  X X 

Utility-based Optimization X X  X 

Efficient Sensor Data Collection X  X  

Request Types Optimization X   X 

Energy Efficiency and Bandwidth Optimization X   X 

3.2 Efficient Scheduling 

3.2.1 Context of Scheduling Functionality in OpenIoT 

The OpenIoT system comprises the notion of scheduling of requests for OpenIoT 

service formulation. Indeed, the OpenIoT architecture specifies a global scheduler 

component, which receives all requests for IoT services, which are submitted, to the 

OpenIoT system. At the level of this component, the platform has the ability to access 

information about the data requested by each service as well as about the sensors 

and ICOs that are used in order to deliver the requested data. As a result, a wide 

range of different optimization algorithms can be implemented within the scheduler 

component of the OpenIoT architecture. Overall, OpenIoT makes provisions for 

scheduling at multiple levels (global, local), which enable a wide range of 

optimization schemes. 

3.2.2 Related Work in Sensor Networks and Multi-Query Optimization 

3.2.2.1 Pre-Processing, Data Aggregation and In-Network Processing in WSN 

In terms of specific optimizations OpenIoT is inspired by a number of optimization 

algorithms that exist in the Wireless Sensor Networks (WSN) literature, where data 

management is commonly applied as a means to optimize the energy efficiency of 

the network [Abadi 2005]. In WSN a set of in-network processing algorithms are 

applied in order to optimize the use of the network on the basis of aggregate 

operations [Yao 2002].  Query aggregation follows typically a model that includes: (a) 

The establishment of a query in the sensor network, (b) The assembly of partial 

results from multiple nodes in the network, on the basis of proper query processing 

and (c) The accommodation of multiple applications requests which send a number 

of queries to the network. This is accomplished based on the query processing 

mechanisms outlined above [Meng 2008].  Different research works have focused on 
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a variety of in-network processing and data management techniques in order to 

optimize processing times and/or reduce the required access to the sensor network 

[Madden 2005], [Trigoni 2005]. For example [Lee 2006] proposes an in-network 

materialized view that could be shared by multiple queries to reduce the number of 

messages to the WSN. Another characteristic of the systems is that the aggregated 

sensed results concern specific common spatial regions (i.e., provide aggregate data 

from sensors residing in a specific geographical regions of high interest). 

In general, the in-network processing approaches outlined above can be classified 

into three broad categories, namely: 

 Push Approaches, which proactively disseminate sensor readings to upstream 

entities (nodes), since they anticipate that queries for their data/readings are 

asked. Push approaches are useful when multiple queries are executed in the 

network and their locations are not known in advance. Examples can be found in 

[Ye 2002] and [Heinzelman 1999]. 

 Pull Approaches, which keep sensor silent until a request for their data arrives. 

Upon this arrival, relevant sensors are traversed and their readings are collected 

and aggregated in an access point (sink). Optimizations focus therefore in the 

most appropriate ways to collect the readings. Example systems can be found in   

[Yao 2002], [Intanagonwiwat 2000] and [Maddan 2002]. 

 Hybrid approaches, which comprise a two-step process aiming at leveraging the 

advantages of both push and pull approaches [Li 2004]. The first step involves 

pushing of sensor readings to collection points on the basis of a given algorithm. 

Accordingly, the second step involves pulling readings from sinks on the basis of 

application requirements. Hybrid approaches provide the means for spatial 

efficiency in query retrieval (see for example [Lee 2006] and [Ratnasamy 2002]). 

 

Note that optimizations in WSN have to deal with resource constraints, such as 

memory limitations in the sensor nodes. Furthermore, they deal with the problem of 

energy efficiency in sensor networks. In OpenIoT those problems are not the primary 

ones to be solved, especially for the part of the platform that deal with virtual sensors 

and which resides in the cloud. Moreover, the pull and push approaches outlined 

above, give rise to ideas and techniques for optimizing the efficiency of OpenIoT in 

serving multiple IoT services.  

3.2.2.2 Caching in WSN 

Caching is another technique that can reduce network traffic, while also enhancing 

the availability of data to the users (sink). The caching concept involves maintaining 

sensor (data streams) data to a cache memory in order to facilitate fast and easy 

access to them. Likewise caching mechanisms could also maintain the sensor 

queries themselves along with their data, which in the case of OpenIoT could obviate 

the need to execute the results of previously executed SPARQL queries. In the area 
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of OpenIoT this has one extra benefit, which is associated with the cost of accessing 

the cloud infrastructure. 

A large number of caching algorithms for WSN have been proposed in literature and 

an exhaustive presentation is out of the scope of this deliverable. However, among 

the prominent examples are caching schemes based on the formulation of network 

trees per sink and the subsequent identification of a common sub tree whose root is 

used as the caching backbone [Li 2009]. There are also techniques that consider the 

mobility patterns of the nodes in order to form groups [Chow 2007]. Moreover, 

[Chand 2006] has introduced the formulation of non-overlapping clusters (for 

caching) based on geographical proximity. In this case sensor networks (e.g., 

MANETs) are partitioned in equal size cluster, where each client looks for the data in 

the case of a miss in the local cache of the node. 

3.2.2.3 Optimizing Queries to Distributed Data Streams 

Relevant to OpenIoT are also data streams system, which handle data from multiple 

geographically distributed sources. Typical examples of such systems are e-science 

systems leveraging multiple distributed sensor-driven measurements. In such 

systems, the in-network processing techniques ([Madden 2005], [Yao 2002], [Ahmad 

2004]), and source filtering [Olston 2003] facilitates load distribution and overall 

boosts performance. In such systems it is also common to execute continuous 

queries, i.e., recurrent queries running periodically and asking for the same data. A 

popular optimization approach used in this case involves the construction of a query 

plan (e.g., a plan involving specific join ordering) before the execution of the queries 

as a pre-planning step. At run time, this plan is deployed in order to improve 

performance [Pietzuch 2006]. 

These systems give rise to ideas about anticipating and pre-planning the number of 

queries that are submitted to the OpenIoT system. As part of pre-planning a number 

of (frequently used) multi-sensor queries could be cached in the scope of the 

OpenIoT platform, thereby enabling the system to provide a fast response when 

these queries are asked again. 

3.2.3 Multi-Query Data Management and Caching Techniques in OpenIoT 

On the basis of the schemes outlined above, OpenIoT employs a number of relevant 

strategies as part of its management and optimization framework. These strategies 

take into account the differences of the OpenIoT sensor-cloud from conventional 

wireless sensors networks, in terms of both structures and costs. 

3.2.3.1 Implementation of a Pull Approach at Local Scheduling  

OpenIoT can be thought as a highly distributed network of multi-sensor nodes, 

notably nodes of the X-GSN sensor middleware that stream data to the OpenIoT 
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cloud. A pull approach is adopted in terms of accessing the sensor networks of the 

various nodes. As part of this approach: 

 Each X-GSN node can maintain a list of services that need data from each of its 

sensors/ICOs. For each sensor/ICOs and each service using the sensor, the 

minimum frequency of data retrieval is also recorded (i.e. denoting the time 

window that of the streaming for the jth sensor of the ith service). 

 In cases when a X-GSN node is not streaming any data from a particular sensor 

to the cloud, the system is saving in terms of bandwidth and costs associated with 

cloud access. This rule can be changed only in the case when a cloud provider 

specifies it otherwise. This can be the case when historical data are required from 

a given sensors e.g., as part of the SLA (Service Level Agreement) with an end-

user. 

 In all other cases the X-GSN node can stream data on the basis of the minimum 

frequency among those specified for the sensors that participate in the active 

services associated with the X-GSN node.  

The above-mentioned pull approach can minimize the accesses to the cloud 

infrastructure, which could be costly in terms of both latency and monetary cost. It is 

be however possible for the OpenIoT platform to explicitly activate and deactivate 

sensors in X-GSN. The activation or de-activation of X-GSN virtual sensors, in order 

to optimize resources is performed by the OpenIoT Scheduler module, as described 

in Section 3.7.2, through indirect sensor control. 

3.2.3.2  Caching of sensor/ICO data 

As already outlined, the access to the cloud infrastructure could be a precious 

resource, especially in cases when it is associated with monetary cost. To this end, 

OpenIoT attempts to cache frequently requested and used data to a store outside the 

cloud infrastructure (e.g., to a local memory or even local database). The aim is to 

allow queries to be answered through accessing the cache memory (or local storage) 

rather than accessing the cloud infrastructure. This access capability is naturally 

implemented at the Service Delivery and Utility Manager (SD&UM) component of the 

OpenIoT infrastructure.  

In order to understand and quantify the benefits of the caching mechanism, a cost 

model is needed. This model/function quantifies the cost associated with access to 

and maintenance of the cache for a given object O, and compares it to the respective 

cost associated with access to the cloud infrastructure. In the above formulas K and 

K’ denote the cost functions, while c/c’ and d/d’ denote parameters associated with 

the monetary cost and the delay/latency associated with each of the access 

modalities. An OpenIoT service  is typically provided using a number of ICOs, where 

q is the number of objects supporting the delivery of service Si and  n is the number 

of services running in the system at a given time instant. The caching mechanism 
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should therefore (at a given time instant) attempt to optimize (i.e. minimize) the 

following cost quantity where: 

 K0: The initial cost for purchasing and setup of the cache or local storage 

 pij  : The probability that service i uses sensor/ICO j. 

 Oij : The jth ICO is in use by the ith service. 

 l : The number of sensors/ICOs whose data is in the cache or local storage. The 

capacity of the cache (or local storage placing a limitation on this parameter.  

 m : The total number of sensors/ICOs available in the system at a given time 

instant. 

The above cost calculation is time dependent and hence we need to calculate an 

integrated cost across a given time scale (e.g., days, weeks, months). In order to 

minimize the cost we need to ensure that the requested services demand/select 

objects whose data is in the cache with much higher probabilities than those whose 

data is only accessible via the cloud.  

To this end, caching could be based on the following policies: 

 Location based data caching: Cache data related to popular locations, which 

involves maintaining statistics about the frequency of accesses to sensors in each 

location. For example in several applications (e.g., meteorological services) data 

in popular locations (e.g., capital cities, densely populated cities, monuments, and 

travel locations) are likely to be accessed more frequently compared to data in 

other locations. 

 Utility Driven data caching: This involves caching the data with the highest 

utility. The latter could be either a user-assigned parameter, or calculated on the 

basis of the utility metrics specified in D4.2 of the project. 

 Caching based on the frequency of access: Such a policy is based on tracking 

of the frequency of access to ICO data. The most frequently accessed data 

streams are the ones cached that should be cached with high priority.  

 Hybrid approaches using more than one of the above criteria: Combinations 

of the above criteria are possible.  

The previously listed policies can ensure that services access the cache with higher 

probability that the cloud infrastructure, thereby economizing on latency and cost. 

The potential improvement can be benchmarked and quantified based on ground 

truth from the use of the OpenIoT prototype implementation (based on real or 

simulated data). To this end, empirical probabilities (relative frequencies) could be 

estimated on the basis of data sets associated with the operational use of the system 

[Mood 1974]. 
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3.2.3.3 Caching of sensor/ICO data based on frequency of requests 

A specific approach implemented for caching of sensor/ICO data can be based on 

the frequency by which data of specific sensors are requested by OpenIoT services. 

The following algorithm can be periodically invoked, where a user/administrator 

defined the frequency of algorithm invocation: 

 All OpenIoT services using the data produced by the same sensors are clustered 

into respective groups (i.e. equal to the number of sensors). This is possible and 

supported by the data structures specified in the scope of deliverables D4.1 and 

D2.3. 

 For all groups larger than that a specific (user/administrator configured) number  

i.e. a number denoting a critical mass of services using one ICO the OpenIoT 

management system can do the following:  

o Calculate the largest time-window of the data to be requested from all the 

services. 

o Cache all the data of the sensors for the specific time-window to the 

SD&UM component. 

o Update the cache (on a specific time interval based on the services) only 

with the new data available. 

o Check for new services available that comply with the rule, and update the 

time-window and cache update interval respectively. 

o Check for suspended/disabled services and update the time-window and 

cache update interval respectively. 

3.2.3.4 Caching of entire (SPARQL) Queries 

Based on the current OpenIoT architecture, OpenIoT services are associated with 

SPARQL queries denoting queries over the sensors/ICOs of the underlying IoT 

infrastructures. Hence, in addition to caching sensor data, caching of SPARQL scripts 

is also performed, on the basis of «frequency of request» criteria.  

 Multi-query optimization of different query types (aggregate, location 

monitoring, trajectory, point, region)  

 Real-time/batch processing 

 Data sharing 

 Eligible resources per task 

 Assigning sensors to queries to maximize a social welfare in the long-run 

 Efficiently announcing sensor capabilities  
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The objective is to provide rapid access to frequently requested queries/services, 

thereby economizing on the time needed to construct, validate and deploy the 

services. Caching is performed at two levels: 

 At the level of a complete SPARQL query, note that the probability of 

requesting exactly the same query (in a short timescale) is relatively low. 

 At the level of the execution plan of a SPARQL query and the individual sub-

queries that it comprises. 

3.2.3.5 SD & UM Requests Caching Scenarios 

Probably the most significant drawback of using triple stores for the deployment of 

semantic web technologies is their performance. In comparison to relational 

databases, there is an obvious trade-off between flexibility in information structuring 

and raw performance. In order to approach the performance of relational databases, 

implementing a caching solution would significantly increase the performance of triple 

stores [Martin 2010]. 

Besides performance however, accessing remote data-stores like Amazon S3 or 

Google Cloud Data-store, usually incurs an extra cost depending on the provider’s 

pricing scheme. Indicatively, Amazon S3 charges $0.005 per 1,000 (Amazon Inc.) per 

request, while Google Cloud charges $0.01 – $0.09 per 100k operations (an 

operation may include a variable number of requests depending on the type) (Google 

Inc.). It is therefore understandable, that besides increasing performance, caching 

may potentially decrease the overall cost of operating the LSM Cloud Datastore. 

In the context of T5.2 Resource Sharing & Management and in order to assess the 

attainable level of cost reduction, a simulation is performed that is based on the Erfurt 

Semantic Web Application Development Middleware [Martin 2010] as explained in 

the following sections.  
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3.2.3.5.1 Erfurt Caching Architecture 

The architecture of the Erfurt  Middleware Architechture is illustrated in Figure 5: 
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Figure 5. SPARQL Cache Architecture. 

The specific implementation implements a small proxy layer, between the Web 

Application and the SPARQL data-store endpoint (Figure 5. SPARQL Cache 

Architecture). All SPARQL queries are routed through this proxy. When a query is 

entered into the system the proxy layer checks if the result has already been cached. 

In such a case, the result is returned to the client directly through the cache without 

accessing the SPARQL data-store. In any other case the query is redirected to the 

SPARQL data-store and the result is stored in the local cache before it is returned to 

the client. 

 

3.2.3.5.2 Cache Population and Maintenance 

In general the architecture of caching solutions is quite simple and analogous to the 

approach implemented by the Erfurt Middleware. Each object cached at the proxy 

layer must be uniquely identifiable. At certain time intervals certain objects may be 

invalidated. It is important however, that in contrast to caching implementations from 

conventional web applications, cache objects are also invalidated based on updates 

on the triple store. Additionally, it is important to cache objects of increased 

complexity that are aggregators of multiple query results [Martin 2010]. An indicative 

cache object schema is visualized below in Figure 6. 
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Figure 6. Cache Population ER Diagram. 

 

3.2.3.5.3 Berlin SPARQL Benchmark Results 

In order to evaluate the Erfurt caching solution its querying performance was 

measured against the Berlin SPARQL Benchmark [Bizer 2009]. The Berlin SPARQL 

Benchmark is based on an e-commerce use case, simulating an end-user search for 

products, vendors and reviews. The resulting SPARQL queries are grouped into 

mixes, each one consisting of 25 queries. The queries are derived from twelve 

different types and are instantiated by replacing parameters with concrete, 

randomized values. The QueryMixes per Hour (QMpH) assessment then states, how 

many of these query mixes a certain triples store is able to execute per hour. [Bizer 

2009] 

While in the original benchmark the probability for selecting a specific parameter is 

equal for each parameter, in the cache benchmark the parameters are selected 

according to the Pareto distribution, since this reflects practical use cases better and 

enables the measurement of performance gain in such scenarios. The probability 

density function that models the level of the cache hit rate increase according to the 

increase of QMpH can be described by the following formula [Martin 2010]: 

1
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


a

a

x

ab
xP

 

The parameter a defines the distribution, whereas b defines the minimum value. 

Applied to the benchmark scenario, this implies that we have a number of products or 

offers that are queried more often than others. In the current benchmark 

implementation, parameter a was varied in order to see how well the caching 
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implementation adopts to a wider or narrower spectrum of repeated queries. For the 

Pareto principle (commonly known also as the 80/20 rule of thumb),  

Table 2 shows how the choice of a broadens the distribution of the parameter (based 

on a benchmark with 10 million triples and 12,500 queries). 

 

Table 2. Cache hit/miss rate in relation to the choice of parameter a 

Distr. Parameter linear a = 0.1 a = 0.3 a = 0.5 a = 1.0 a = 2.0 a = 4.0 

Unique Queries 11718 6205 4147 2953 1694 624 142 

Res Distribution 50.5/49.5 64/36 72/28 78/22 84/16 88/12 90/10 

 

Therefore we can see that the wider the variety of queries, we have fewer unique 

queries that are serviced directly from the LSM repository rather than the cache. 

 

3.2.3.5.4 Application of Scenario on Cloud Datastores 

As mentioned previously, a very important issue of using cloud data-stores is the 

price per request payment scheme. Therefore, minimizing the number of requests 

that occur directly on the LSM cloud repository which drastically reduce the overall 

operational costs.  

In the context of T5.2 Resource Sharing & Management, in order to demonstrate 

and simulate scenarios associated with cloud data-store access and caching 

solutions, a spreadsheet calculator prototype has been created that models the 

various costs. This section examines such a particular scenario, aiming to determine 

to what level a caching solution may provide benefits to the overall cost efficiency of 

the system. In particular, this scenario is based on usage of the Amazon S3 Cloud 

Data-store, which can be modelled easily, since it is based on a linear pricing scheme 

($0.005/1000 requests).  Additionally, the particular scenario also assumes the cache 

miss rates previously displayed in  

Table 2. 

According to  

Table 2, there are 7 scenarios examined that concern the cache hit/miss rate, 

according to the a distribution parameter. These scenarios are: 

 linear distribution 

 a = 0.1 

 a = 0.3 

 a = 0.5 

 a = 1 

 a = 2 

 a = 4 
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In the case of linear distribution, cache miss rate is at almost 50% while in the other 

scenarios, the higher the a distribution parameter, the lower the miss rate. These 

scenarios are compared primarily to the first column group on the chart where no 

caching is used.  

Additionally, for this scenario, yearly server operational costs that support a 20TB 

cache have been taken into account. It is assumed that the server storage capacity is 

sufficient to store all the query results obtained from the cloud data-store. For this 

server setup the yearly cost of ownership is visualized in  

Table 3: 

 

Table 3. Caching Scenario - Server Cost of Ownership. 

Caching Server Cost / Unit 

Server Disk Capacity (TB) 5 

Unit Cost(€) 3500 

Lifespan (years) 3 

PV Discount Rate (%) 5 

Server Maintenance/year (€) 1500 

Energy cost / year  (€) 1000 

  

Server Cost / Year (Present Value) 

Cache Size Required (TB) 20 

Servers Required 4 

Cost / Year (PV) 22.635,00 € 

 

Applying the above scenario, it is shown in Table 3 how the cost changes depending 

on the variety of the query spectrum. All the categories that are displayed on the 

horizontal axis in Figure 7 except the “no cache” category include cumulative costs. 

This means that all the other categories have yearly server costs included along with 

datastore usage costs.  
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Figure 7. Amazon S3 Data-store Prices Based on Caching and Spectrum Width. 

As expected, for a low number of requests per hour, there is no benefit in using a 

cache. In the first category at 600 Krph, even with a cache miss rate at 10% (a=4.0) 

it is still preferable not to use any caching at all. In contrast, it is actually quite 

inefficient to use a cache server at that level, since the costs is even greater. Even at 

a medium-high number of hourly requests such as the second category at 1450 Krph 

the scenario just hits the threshold where it becomes more efficient to use caching. In 

the final category at 2000 Krph it is finally evident that at a high number of requests, 

it is far more efficient to use the cache. This is visible at the extreme situation with a 

10% cache miss rate, where the data-store usage costs for the high request category 

at 2000 Krph, are marginally higher than even the low category with 1/3 of its rph 

(600 Krph).  

Consequently, in order to achieve an efficient caching solution there must be a clear 

estimate first of all, of the average requests per hour on the cloud data-store, as well 

as to what extent the caching storage capacity is sufficient. 

Finally, it is also evident by this simulation that the determining factor for cache 

performance is not the absolute number of queries. Rather, it is the variety of different 

queries that are performed on the cloud data-store in order to quickly build up the 

cache. 

3.3 Cloud Optimization 

Large amounts of data coming from ICOs and (virtual) sensors are expected in the 

context of OpenIoT. This is a result of both the number of potential entities or things 

that provide data to the cloud, and the high rates at which they can push 

measurements. Such scenario that combines large volumes of data and high velocity 

of data calls for scalable data management and querying solutions, spanning multiple 

storage backends and processing units in the cloud. However, this is not a 

straightforward task, as most cloud-storage systems are designed for batch 

processing (e.g. Hadoop) or stored static data (e.g. HBase). In the use cases of 
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OpenIoT, these solutions are not adequate, as they would need to store all the raw 

data measurements in the cloud, which is not efficient in terms of storage and can 

potentially saturate the data backend. 

In this section we propose a cloud-based framework for sensor data management, 

which optimizes storage and querying of sensor time series measurements. In 

particular, we exploit key-value stores and the MapReduce parallel computing 

paradigm, two significant aspects of cloud computing, to realize indexing and 

querying model-view sensor data in the cloud. In order to process range or point 

queries on model-view sensor data, our KVI-index in the cloud store has shown good 

performance in processing interval data, while current key-value built-in indices do 

not support interval related operations. The interval index for sensor data 

management not only works on static data sets, but it is dynamically updated based 

on the new arriving segments of sensor data. 

Various sensor data segmentation and modelling algorithms have been extensively 

researched, such as PCA, PLA, DFT, etc. [Guo 2012], [Papaioannou 2011], [Ding 

2008]. The core idea is to fragment the time series from one sensor into modelled 

data segments, and then approximates each data segment by a mathematical 

function with certain parameters [Guo 2012], [Papaioannou 2011], [Ding 2008], such 

that a specific error norm is satisfied. The chosen mathematical model for each 

segment takes as dependent variable the sensor value and as independent variable 

the time-stamp. For simplicity, we refer to the modelled segment as a segment in the 

rest of this deliverable. For example, in Figure 8 (a), the time series from a mobile 

accelerometer sensor is divided into eight disjoint segments each of which is 

modelled by a linear regression function and has associated time domain and value 

range shown in Figure 8 (b). For model-view sensor data management, only the 

segment models are materialized and therefore the query processing is performed on 

the segments instead of the raw sensor data, as in [Thiagarajan 2008]. 

 

 

Figure 8. (a) Model view sensor data. (b) Polynomial models of segments. (c) Query 

processing on the gridded segment. 
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We exploit key-value stores and the MapReduce parallel computing paradigm, two 

significant aspects of cloud computing, to realize indexing and querying model-view 

sensor data in the cloud.  One modelled segment is characterized by its time and 

value intervals [Deshpande 2006], [Thiagarajan 2008], [Papaioannou 2011] which 

enables us to design a distributed interval index for querying sensor data segments. 

The supported categories of queries on model-view sensor data to are as follows: 

Time point or range query: return the values of one sensor at a specific time point 

or during a time range. 

Value point or range query: return the timestamps or time intervals when the values 

of one sensor are equal to the query value or fall within the query value range. There 

may be multiple time points or intervals of which sensor values satisfy the query 

predicate. 

 

 

The contributions of our work can be summarized as follows: 

Innovative interval index:  We propose an innovative interval index for model-view 

based sensor data management in key-value stores, referred to as the KVI-index. 

The KVI-index is a two-tier structure consisting of one lightweight and memory-

resident binary search tree and one index-model table materialized in the key-value 

store. This composite index structure can dynamically accommodate new sensor 

data segments very efficiently.  

Intersection search: We introduce an enhanced intersection search algorithm 

(iSearch+) that produces consecutive results suitable for MapReduce processing. 

Hybrid modelled-segment query processing: After exploring the search 

operations in the in-memory structure of the KVI-index for range and point queries 

that locate modelled segments that may satisfy the query, we introduce a hybrid 

query processing approach that integrates both range scan and MapReduce to 

process these segments in parallel and identify the qualified ones. 

3.3.1 Key-Value Interval Index 

Our KVI-index is a novel in-memory and key-value composite index structure. The 

virtual searching tree (vs-tree) resides in memory, while an index-model table in the 

key-value store is devised to materialize the secondary structure (SS) of each node 

in vs-tree. 

3.3.1.1 In-memory structure 

The in-memory vs-tree is a standard binary search tree shown in Figure 9 (a). Each 

time (or value) interval is registered on only one node of vs-tree, which is the one 

with the interval first overlaps along the searching path from root. This node is 
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defined as a registration node for the interval to index. Each node of vs-tree has an 

associated secondary structure (SS), materialized in the key-value store, which 

stores the substantial information of the modelled segments registered at this node.  

All the operations on vs-tree are performed in memory and are thus very efficient. As 

the domains of time and value of the sensor data are different, two vs-trees, one for 

time stamps and another for values, are kept in memory simultaneously for 

answering time and value queries respectively. 

 

 

Figure 9.  (a) In-memory vs-tree. (b) Index-model table in the key-value store. (c) One 

segment of sensor data. 

3.3.1.2 Index-model table 

We designed a novel index-model composite storage schema, which enables one 

key-value table not only to store the modelled segments, but also to materialize the 

structural information of the vs-tree, i.e., the SSs for each tree node. 

The index-model table is shown in Figure 9 (b). Each row corresponds to only one 

modelled segment of sensor data, e.g., the data segment shown in Figure 9 (c). A 

row key consists of the node value and the interval of an indexed segment at that 

node. One modelled segment's time, value interval and coefficients are all stored in 

different columns of the same row.  

3.3.1.3 KVI-index updates 

The complete segment-updating algorithm of KVI-index includes two processes: 

registration node searching and materialization of modelled segments.     



Deliverable 5.1.2 Self-management and Optimization Framework    

Copyright  2013 OpenIoT Consortium  41 

 

Figure 10. (a) rSearch. (b) Segment Materialization. 

 

 

Registration node searching (rSearch) 

As the segment model of sensor data is generated in real-time, the time (value) 

domain of vs-tree should be able to catch up with the variation of that of sensor data. 

Therefore, the update algorithm first involves a domain expansion process to 

dynamically adjust the domain of the vs-tree according to the domain variation of the 

sensor data. Then, the registration node can be found on the validated vs-tree. The 

complete rSearch algorithm can be illustrated by Figure 10 (a).  

Materialization of modelled segment 

When materializing one segment into the SS of a node, the row-key may be chosen 

in two ways. When no modelled segment has been stored at that SS, the row key is 

the concatenation of the binary representations of the registration node and postfix 

for the segment. When the SS has already been initialized, the time or value interval 

of one segment to index is incorporated into the row key. In this way, different 

segments stored in the same SS of a node do not overwrite each other.  

3.3.2 Query Processing via KVI-index and MapReduce 

In order to query model-view sensor data, the searching process of qualified 

segments in KVI-index includes intersection and point searches which are 

responsible for collecting the nodes that accommodate qualified segments in their 

secondary structures SSs. Afterwards we design a novel hybrid parallel computing 

and sequential scan approach for model filtering and gridding.   

3.3.2.1 Enhanced interval intersection search 

Given a time (resp. value) range query, iSearch+ first calls the rSearch to find the 

registration node of the query range. The nodes on the searching path from the root 

node to the one preceding the registration node form a node set. The iSearch+ stops 
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at the node, which is closest to the left-end point. All the nodes along the left-

descending path form a node set. Analogously, the nodes from the right-descending 

path form another node set. Any node outside the search path does not have any 

qualified segments.  

3.3.2.2 Point search 

We denote the point search by sSearch as it functions as the stabbing search in 

interval data management. The sSearch is a binary search that records the nodes 

along the descending path. Since there is no split searching, as in iSearch+, only one 

node set is produced here. 

3.3.2.3 Hybrid KVI-Scan-MapReduce query processing 

Our idea is to design a hybrid KVI-Scan-MapReduce paradigm that combines both 

range scan and MapReduce for processing SSs. 

The height of vs-tree is bounded, and thus the amount of computation is limited. As 

the SSs are sparsely distributed in the index-model table and each SS can be 

considered as a small range of clustered index, the random-access and range-scan 

based model filtering and gridding is suitable. The successive range from left and 

right path sub-search delimits the tight boundaries of the sub-index-model table over 

the relevant SSs that are suitable for distributed processing with MapReduce. This 

hybrid paradigm eliminates the Map-phase processing of SSs of irrelevant nodes. 

Moreover, it is non-intrusive for both the key-value store and MapReduce.  

The functionalities of mappers and reducers are depicted in detail below.  

Mapper: Each mapper gets the time (resp. value) interval of one segment to check 

whether it intersects with the query time (resp. value) range. The qualified segments 

are sent to the next reduce phase. 

Reducer: Each reducer receives a list of qualified modelled segments. For each 

segment, the reducer invokes a model gridding function to compute discrete values 

for constructing query results.  

Regarding the scan-based model filtering and gridding, as SSs are located in 

different regions of the index-model table, the query processor makes use of thread 

pool to process each SS in parallel. 

 

3.4 Utility Based Optimization 

In the OpenIoT context heterogeneous mobile and stationary sensing devices co-

exist. This heterogeneity makes it complex to efficiently acquire the data from the 

different virtual and real sensors that feed the OpenIoT cloud. It is desirable that 

based on the query requirements, the system could be able to optimize the 
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acquisition of data from the available sensors. However, this is not a trivial problem, 

given the different user expectations, costs, type of queries, etc. In this section we 

formulate the optimal data acquisition problem as a multi-query optimization with the 

objective of maximizing the total utility and propose efficient heuristic solutions for 

various query types and query mixes. This section is based on the theoretical and 

experimental results described in detail in [Riahi 2013].  

According to the OpenIoT architecture, the sensing devices communicate with GSN, 

which in turn pushes the sensed data and their metadata to the cloud storage. The 

OpenIoT Scheduler consults the cloud storage and finds out about the available 

sensing data and the metadata. For the sake simplicity, in this section we ignore the 

intermediaries between sensors and the scheduler and assume that sensors 

communicate directly with the scheduler. In order to enable utility-based optimization, 

sensing devices are expected to take measurements only when they are selected 

by the scheduler to do so. We also make the following assumptions: (i) sensing 

device owners ask for a payment for each provided measurement. (ii) Each sensor 

has a specific sensing range. (iii) Each measurement includes a sensor-specific 

inherent inaccuracy. In this section, we use the term sensor to refer to the actual 

sensor on the sensing device, the sensing device, or even the combination of the 

sensing device owner and the device she carries.  

According to the OpenIoT architecture, end users submit queries to the scheduler by 

defining services. The scheduler periodically collects the queries and tries to answer 

them in an optimal way. The challenge is how to answer queries based on the data 

availability and the capabilities of various sensors that may belong to different sensor 

deployments. Therefore, we take a utility-driven approach, which aims at maximizing 

the total utility for the queries posed by the end users. Utility maximization can be 

achieved by selecting appropriate sensors for providing measurements, considering 

the value of the measurements to the queries, the cost of obtaining such 

measurements, and exploiting possible common data requirements among queries. 

In the context of OpenIoT with diverse sets of end users who have different criteria 

for evaluating the quality of the query results, ideally the scheduler relies on the end 

users to provide a valuation function, 𝑣𝑞(. ), with each query 𝑞. This function returns 

the value of a set of measurements, which can be used as the answer to the query. 

Users have a limited budget to spend for obtaining query answers. It is assumed that 

the amount that can be paid in return to a specific response quality is embodied in 

the valuation function of the query. This means that the return type of 𝑣𝑞(. ) is of the 

unit that is used for issuing payments. However, if end users are not experts in 

defining the valuation functions, they can select one from a predefined set of 

valuation functions when defining the services. Valuation functions can also be 

assigned by the scheduler or the request definition module if the user wishes so. 

Queries defined by end users can generally fall into two major categories, namely 

one-shot queries and continuous queries: 
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 One-shot queries are executed only once. Major one-shot queries in our 

context are point queries, spatial aggregate queries over a region, and queries 

over trajectories.  

 Continuous queries are continuously evaluated, and can be split into the two 

sub-categories of monitoring queries and event detection queries.  

Single-sensor queries only need one sensor reading while multi-sensor queries need 

multiple sensor readings.  

3.4.1 Problem Formulation 

Without loss of generality, we assume that the system runs for a period of 𝑇, e.g., 

from 6 a.m. to 9 p.m. in a day. This period is discretized into several time slots of 

fixed length, e.g., 5 minutes. We assume that all the sensors connect to a unique 

scheduler and, if necessary, at the beginning of each time slot announce their 

location and price of providing a measurement at that location. 

The objective is to acquire data for the queries from the available sensors in order to 

maximize the utility over 𝑇. Formally, we let 𝒬 denote the set of all queries issued 

from time 1 to 𝑇, 𝒮𝑡 denote the set of available sensors at time slot 𝑡, and 𝐾: 𝒬 →

 ×𝑡=1
𝑇 2𝒮𝑡

 define an allocation scheme that assigns sensors to each query. 𝑌(𝐾, 𝑡) is a 

function that returns the set of sensors that are assigned to all queries at time 𝑡. We 

denote by 𝑐𝑠(𝐾, 𝑡) the cost of sensor s at time 𝑡 given the allocation 𝐾. Let 𝒦 denote 

the set of all possible allocation schemes. The goal is to find allocation 𝐾∗ ∈ 𝒦 that 

maximizes the social welfare: 

𝐾∗ =  argmax
𝐾∈𝒦

(∑ 𝑣𝑞(𝐾(𝑞)) −  ∑ ∑ 𝑐𝑠(𝐾, 𝑡)

𝑠∈𝑌(𝐾,𝑡)

𝑇

𝑡=1𝑞∈𝒬

) 

 

For solving the above optimization problem we need to know in advance all the 

queries that are issued over 𝑇, and the location and cost of all the sensors at each 

time slot. However, in the context of OpenIoT, users must be able to submit new 

queries whenever they desire and it is not realistic to ask the users to pose all their 

queries in the beginning of the period 𝑇. Due to the uncontrolled mobility of the 

(mobile) sensors, their exact locations at a specific time slot cannot be determined a 

priori. Moreover, the cost of a sensor might vary from one time slot to another based 

on the preferences of the sensor owner. Due to the lack of access to all the required 

information to solve the above long-term optimization problem, we resort to a myopic 

approach, in which we try to maximize the utility at the current time slot without 

considering the future state of the system. In this approach, when finding the optimal 

allocation scheme, we only consider the queries and sensors that are available 

during the current time slot. After finding the best allocation scheme, the cost of each 
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selected sensor is shared among queries that are answered using the measurement 

from that sensor.  

We solve the myopic multi-query optimization problem for the following query types: 

 Single-sensor point queries, for which we provide optimal and approximate 

solutions. 

 Multiple-sensor one-shot queries including spatial aggregate queries, queries 

over trajectories, multiple-sensor point queries, etc. 

 Continuous queries 

o Location monitoring queries 

o Region monitoring queries 

 Mix of the above query types 

The algorithms that we used for achieving utility-based optimization for the 

abovementioned query types are available in [Riahi 2013]. 

3.4.2 Cost  Computation 

Sensors owners participate in the system as long as the resource consumption on 

their devices as well as their location privacy loss are compensated. In this regard, 

each sensor asks for a certain price in return for providing a measurement to the 

aggregator. Therefore, the cost of obtaining a measurement from sensor 𝑠 which is 

located at 𝑙𝑠, consists of two components as demonstrated in the following equation: 

𝑐𝑠(ℰ𝑠, 𝐻𝑠, 𝑙𝑠) = 𝑐𝑠
𝑒(ℰ𝑠) + 𝑐𝑠

𝑝(𝑝𝑠(𝐻𝑠, 𝑙𝑠)), 

where ℰ𝑠 is the remaining energy, and 𝐻𝑠 is the history of revealed locations of 𝑠. 𝑐𝑠
𝑒 

is a function that gives the energy cost of taking a measurement and transmitting it to 

the aggregator, and 𝑐𝑠
𝑝
 is a function that calculates the cost of the sensor's privacy 

loss due to revealing its location. The privacy loss is computed by the function 𝑝𝑠. We 

do not impose any restrictions on the form of these two functions. When this cost 

function is not available from the sensors, a default cost function can be assigned by 

the scheduler to the sensor. Note that ℰ𝑠 can also represent the energy consumption 

rate of the sensor depending on the type of sensors. The function must be selected 

by the scheduler considering available constraints of the sensors and the 

energy/bandwidth optimization objective. 

3.4.3 Valuation functions 

Generally, the value of a sensor reading for an application is a function of the quality 

of that sensor reading and the quality of the sensor readings obtained so far. The 

number of samples required for finding the value of a phenomenon depends on the 

phenomenon itself and the trustworthiness of the sensors. For example, it might be 

necessary to take redundant measurements to assess the trustworthiness of a 

particular sensor that can be used for providing the measurements. For instance, a 

single-sensor point query 𝑞 might have the following valuation function: 
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𝑣𝑞(𝑠) = {
𝐵𝑞𝜃𝑞,𝑠, 𝜃𝑞

𝑚𝑖𝑛 ≤  𝜃𝑞,𝑠 ≤ 1

0, 𝜃𝑞,𝑠 < 𝜃𝑞
𝑚𝑖𝑛,

 

where 0 ≤ 𝜃𝑞,𝑠 ≤ 1 is the quality of the sensor reading, 𝜃𝑞
𝑚𝑖𝑛  is the minimum 

acceptable quality by the query, and 𝐵𝑞 is the query budget. This implies that the user 

is willing to pay 𝐵𝑞  for a sensor reading with the highest possible quality. 

 

 

 

The quality of a sensor reading depends on the distance of the sensor from the 

queried location (more accurately, it depends on the correlation between the 

phenomenon value at the queried location and the location of the sensor,) the 

inherent sensing inaccuracy, and the trustworthiness of the sensor. We assume that 

this dependency is given by a user-defined function 𝑣𝑞(𝑠, 𝑙𝑞), where 𝑙𝑞 is the queried 

location. The following is an example of such a function: 

𝑣𝑞(𝑠, 𝑙𝑞) = {
(1 − 𝛾𝑠) (1 − 

|𝑙𝑠 − 𝑙𝑞|

𝑑𝑚𝑎𝑥
) 𝜏𝑠, |𝑙𝑠 − 𝑙𝑞| ≤ 𝑑𝑚𝑎𝑥

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

 

where 𝛾𝑠 is the inaccuracy of 𝑠 measured in percentage of the value range of the 

sensor, 0 ≤  𝜏𝑠 ≤ 1 is the trustworthiness of 𝑠, 𝑙𝑠 is the current location of 𝑠, and 𝑑𝑚𝑎𝑥 

is the maximum distance in which the sensors can be considered to provide data.  

For spatial aggregate queries, which need more than one sensor, and sample 

valuation function could be the following: 

𝑣𝑞(𝑆𝑞) = 𝐵𝑞𝒢𝑞(𝑆𝑞)
∑ 𝜃𝑠𝑠∈𝑆𝑞

|𝑆𝑞|
, 

where 𝒢𝑞 is a function that calculates the coverage of the selected sensors. A simple 

coverage function can calculate the fraction of the area covered by the sensors, while 

a more general function might also take into account the dispersion or the importance 

of the locations that are covered by the selected sensors. 

3.4.4 Experimental Evaluation 

We used a real mobility dataset from Nokia campaign in Lausanne, Switzerland. The 

simulations are run for 50 time slots. Figure 11 shows the average utility per time slot 

achieved by different algorithms when we have only point queries. Figure 12 

illustrates the average utility per time slot achieved by of our algorithm compared to a 

baseline algorithm for spatial aggregate queries. Similar results for location 

monitoring and region monitoring queries are illustrated in Figure 13 and Figure 14, 

respectively. Figure 15 shows the average utility per time slot achieved by our multi-
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query data acquisition algorithm and a baseline algorithm when a mix of queries of 

different types is available. 
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Figure 11. Average utility per time slot 

having only point queries. 

 

Figure 12. Average utility per time slot 

having only spatial aggregate queries. 

 

Figure 13. Average utility per time slot 

having only location monitoring queries. 

 

 

Figure 14. Average utility per time slot 

having only region monitoring queries. 

 

Figure 15. Average utility per time slot 

having a mix of point, aggregate, and 

location monitoring queries. 
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3.5 Efficient Sensor Data Collection 

In the area of ICOs big advances have been realized to enable ICO control (mainly 

over the sensor networks data). However, full control over the data of multiple 

devices has not been implemented yet, nor intelligent data services have been 

deployed. In OpenIoT we seek for deployment of stream data processing 

components enabling the deployment over multiple infrastructures (openness 

feature). An efficient set of methods for data acquisition from heterogeneous sensors, 

both static and mobile, allows filtering of incoming sensor data, or selecting relevant 

sensor data sources.  

In this context, we present two main contributions. The first (Section Error! 

Reference source not found.) is an approach for efficient sensor data acquisition, 

based on the utility-based optimization described in Section 3.4. The second is a 

context-aware acquisition and filtering approach for mobile sensors, detailed in 

Section 3.5.2. 

3.5.1 Utility-based Sensor Data Acquisition  

As we described in Section 3.4, based on utility functions, we can define optimization 

schemes that maximize the total welfare for sensor data acquisition. One specific 

outcome of this effort is a data acquisition framework that efficiently shares sensor 

data among queries of different types. This framework optimizes the usage of 

sensors, choosing them in such a way that the global utility is maximized.  

In particular, the utility-based data acquisition approach is able to select a subset of 

sensors S’ from the available set of sensor S, in such a way that a given utility 

function is maximized. In this way, the system avoids acquiring data from (virtual) 

sensors which are not needed by the queries posed by the users, or whose 

contribution to the total utility is marginal. The cost computation and valuation 

functions have been described in Section 3.4, and are provided as an input to the 

data acquisition algorithms described here. 

Nevertheless, and as it was explained above, the algorithms for data acquisition vary 

depending on the type of queries that are received from users and/or applications.  

We describe below the main characteristics of these data acquisition algorithms, 

classified according to the type of query: single-sensor point query, multiple sensor 

one-shot query, continuous queries, and a query mix. These types of queries are 

commonly found in a pervasive sensor infrastructure such as the one in the OpenIoT 

context. The full description of the algorithms can be found in [Rihai 2013]. 

 
Single-Sensor Point Queries: In the context of OpenIoT, these queries are limited to 

observations that are available in one particular sensor (notice that the sensor may 

be virtual). For this type of queries, we can express the optimization of sensor 

allocation as a Binary Integer Linear Problem (BLIP). For his case, an ILP solver can 

find the optimal solution, if the input size is not too large. On the other hand, if the 
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input size is large, a Heuristic Scheduling approximation algorithm is proposed. This 

algorithm [Feige 2007], referred to as the Local Search algorithm, has been devised 

to solve non-monotone submodular functions, as it is the case with this optimization 

problem. 

Multiple-Sensor One-shot Queries: In this case, the queries received have different 

data requirements: multiple sensor observations are needed to be able to answer 

them. This is the case for queries that operate over trajectories or over a spatial 

extent. Moreover, the optimization function must be able to take advantage of the 

possible overlapping of sensors readings (e.g. they might cover contiguous areas or 

have other different topological relationships) and the value that each sensor 

contributes to a query. This turns out to be a combinatorial problem: a sensor 

assignment that maximizes the overall benefit must be selected, out of all possible 

ones. The proposed greedy algorithm iteratively selects sensors that maximize the 

partial overall utility. This algorithm has been shown to be faster and outputs a better 

total utility if the utility functions are not submodular.  

Continuous Queries: The proposed acquisition algorithms for continuous queries 

target location and region monitoring queries. In both, the continuous nature of the 

query implies a time period when the monitoring is performed, as well as a sampling 

time. These algorithms attempt to get sensor observations according to the frequency 

of the sampling time. Due to uncertainty, it is not guaranteed that data is acquired for 

the required sampling time, so data can be acquired at other times, but with a fraction 

of the expected value. In the case of the location monitoring queries, a point query is 

created at every time slot; then a set of sensors is selected for those point queries 

and for each sensor the correspondent payment is calculated.  

In the case of region monitoring queries, sensor data is possible if the regions over 

which the queries are executed overlap. Several queries may share subsets of 

sensors (e.g. two queries requesting temperature values in the same area), or sensor 

can provide similar data (e.g. two sensors providing humidity measurements in the 

same location). A modified algorithm can take advantage of this, by providing a set of 

weighted costs of sensors. As an example, if a subset of sensors was already 

selected by another continuous query, then a weight of 0 can be assigned to that 

subset of sensors.  

 

Query Mix: When the aggregator receives queries of different types, it has the 

possibility of sharing the sensors among them and hence increasing the total utility. 

Indeed, since individually finding an optimal set of sensors for multiple point or 

aggregate queries is NP-Complete, finding the optimal set of sensors for the 

combination of queries is also NP-Complete. The proposed algorithm for the query 

mix selects sensors by exploiting the commonalities of the queries posed to the 

system. It first generates point queries for location and region monitoring queries. 

Then, all queries are provided to the greedy algorithm used for multiple sensor one-

shot queries, so that it optimizes the total utility. Afterwards, the results of the point 
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queries are applied for continuous queries. As in this stage there might be queries 

sharing the same sensors (e.g. regions overlapping), the payments need to be 

adjusted accordingly. Finally, the selected sensors are requested to provide their 

observations. 

3.5.2 Context-Aware Acquisition and Filtering of Sensor Data in Mobile 

Environments 

Publish/subscribe middleware offers the mechanisms to deal with the challenges 

related to continuous context-aware and energy-efficient acquisition and filtering of 

sensor data in mobile environments, specifically in scenarios requiring opportunistic 

mobile sensing that can potentially generate huge volumes of sensor data. Note that 

this data needs to be transmitted into the cloud over mobile devices for which battery 

and bandwidth are limiting resources. Thus we need to devise strategies to minimize 

the number of data transmissions to the cloud while maintain adequate sensing 

coverage for mobile sensing applications. Publish/subscribe middleware provides the 

means for selective acquisition of sensor data from mobile wearable sensors as well 

as filtering of sensor data on mobile devices prior to its delivery into the cloud for 

further processing.  

In this subsection we present the main concepts of a publish/subscribe component 

running on mobile devices entitled Mobile Publish/Subscribe (MoPS). MoPS enables 

selective sensor data acquisition and filtering  in IoT environments where mobile 

devices are applied as gateways for collecting and transmitting sensor data into the 

cloud, while at the same time mobile devices receive the data of interest from the 

cloud. In contrast to existing centralized database solutions which typically send all 

sensed data into the cloud, MoPS supports flexible and controllable acquisition of 

data and its subsequent transmission into the cloud only in situations when the 

sensed data is indeed required by the the back-end system, i.e., the cloud. In other 

words, the data should be produced and transmitted to the cloud only if it is valuable, 

e.g., there is current interest by system users to be alerted about certain events, or 

the data is needed for the data-mining tasks. 

MoPS provides content-based filtering of sensor data on mobile devices based on 

context, e.g., current data needs specified by application users, sensing coverage, 

available bandwidth, or QoS-specific parameters defined by an application. 

Moreover, it can even suppress the sensing process on wearable sensors. Similar to 

[Sadoghi2011], MoPS supports a rich predicate language with an expressive set of 

operators for the most common data types: relational operators, set operators, prefix 

and suffix operators on strings, and the SQL BETWEEN operator. Hereafter we 

explain the MoPS model and underlying design principles. Further details on MoPS 

design and implementation are available in deliverable D3.4.1. 

Publish/Subscribe Model. The MoPS model comprises a set of publishers, Pi, and 

a set of subscribers, Sj, that interact over a hierarchical two-tier publish/subscribe 

network composed of mobile brokers, MBk, and a cloud broker, CB. An example 
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model is shown in Figure 16. Publishers, e.g., wearable or built-in sensors, publish 

data items and send them either to mobile brokers or directly to a cloud broker. 

Subscribers, e.g. processes on mobile devices, can activate and dismiss 

subscriptions by sending messages subscribe and unsubscribe to mobile or cloud 

brokers, which in turn use the message notify for push-style delivery of matching data 

items, i.e., items that satisfy subscription constraints, to subscriber processes.  

A cloud broker is responsible for efficient matching of data items to active 

subscriptions as well as their subsequent delivery to either subscribers, mobile 

brokers, or other remote services, i.e., components that have defined matching 

subscriptions.
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Figure 16. Publish/subscribe model and interaction. 

The main novelty of the MoPS model compared to existing publish/subscribe 

solutions is the implementation of mobile brokers running on mobile devices such as 

smartphones and tablets. After their initial registration with the cloud broker, mobile 

brokers can announce the type of data for publishers which they represent. For 

example, P2 in Figure 16 is, e.g., a wearable gas sensor detecting levels of nitrogen 

dioxide (NO2) and ozone (O3). After MB1 detects P2 because they exchange 

signalling information over a Bluetooth connection, MB1 can define the type of data 

items to transmit to its cloud broker B2 in the future. MB1 sends a message 

announce(NO2,O3,x,y), where x=45.81302 and y=15.97781 represent MB1's current 

geographical latitude and longitude. The reason for creating the announce message 

is the following: We need to activate subscriptions from the cloud broker on MB1, but 

only those that can potentially match future publications created by P2. Obviously, as 

it is not desirable to activate all subscriptions from the cloud on a single mobile 

device, the announce message is compared to existing subscriptions on B2. For 

example, B2 identifies subscription si=[NO2 > 40μgm-3 AND 45.81<lat<45.82 AND  

15.96<long<15.98] as a subscription potentially matching future publications of P2. 

Thus, B2 sends a message subscribe to activate si on MB1. Further on, MB1 

publishes P2's data items into the cloud, but only those that match si.  
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Selective and flexible data acquisition. By reusing the inherent features of the two-

tier publish/subscribe model, we provide a flexible mechanism to control the sensing 

density over a predefined area covered by traces of mobile internet-connected 

objects (MIOs). It requires an orchestration of the sensing process with activation of 

adequate subscriptions on mobile brokers, as instructed by the back-end cloud 

system based on the integrated crowdsensed data. If we assume the density 

demand is predefined for an area as required by the application logic, MIOs residing 

in this area during a certain time interval can be instructed either  

(1) to transmit the sensed data into the cloud as additional data samples are needed 

within this area for the particular time interval, or 

(2) to restrain from such transmissions since the application has already acquired 

sufficient data samples for the area. 

This is the main mechanism for frequency reduction of data transmissions from MIOs 

into the cloud which has the potential to greatly reduce energy consumption on MIOs. 

Consider the following example in Figure 17. It depicts movement traces for three 

MIOs m1, m2 and m3 within a certain area, and denotes time intervals [t11, t12] and [t21, 

t22] within which the two MIOs perform data transmissions into the cloud (they are 

marked by the symbol ), while m3 does not perform any transmissions. MIOs 

perform transmissions at marked places because during the two time intervals 

subscriptions matching the data acquired by m1 and m2 are active on those MIOs. 

This does not impose any constraints on the sensing process as it largely depends 

on MIO interaction with sensors in its vicinity. For example, if the sensing process is 

pull-based, an MIO can invoke it periodically during the subscription activity periods. 

If sensors are configured to perform periodic sensing, mobile brokers residing on 

MIOs ignore the sensed data while it does not match any of the active subscriptions.  
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Figure 17. Movement traces and data transmissions. 

Let us further explain who controls the activation of subscriptions on MIOs and how 

the sensing density is controlled. The back-end cloud system is notified when an MIO 

enters the depicted geographical area since MIOs are configured to announce their 

available data sources when entering the area. This requires periodic GPS 

positioning on MIOs which is potentially energy-greedy, but if other network-based 

techniques are available for determining MIO location, this process should not 
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represent a major obstacle for application adoption. In addition, mobile devices need 

to be aware of area boundaries that are important for the application logic. Since the 

back-end system is aware of the data samples already acquired over an observed 

area, it can decide whether to ship matching subscriptions to MIOs or not. In our 

example in Figure 17, the application logic has decided that there are sufficient 

measurements acquired for the depicted area from m1 and m2, and thus 

subscriptions were not forwarded to m3. 

Potential gains due to filtering of redundant data. To gain an insight into potential 

energy gains due to flexible data acquisition and filtering of redundant data, we have 

performed an analysis based on a real data set, the Mobile Data Challenge (MDC) 

data set collected during the Lausanne Data Collection Campaign from October 2009 

until March 2011 [Laurila 2012]. The analysis is done such that we have randomly 

selected one day data traces for each of the 38 participant logs available in the MDC 

data set. Each such data trace represents an MIO movement over one day where we 

associate user locations with GSM cell identifiers. Two users are collocated if they 

reside with the same GSM cell during the same time interval, when they can 

potentially create redundant measurements. Our next assumption is that users carry 

wearable sensors with periodic readings generated once in a minute or once every 

five minutes. In addition, we assume that for our approach the required number of 

daily measurements within a cell equals 30. 

Table 4. Energy gains due to flexible data acquisition. 

 No. of cells 1 min 5 min Our approach 

1 822 40330 9344 2013 

2 870 39686 9188 2011 

3 942 41153 9884 2086 

4 888 42068 9977 2071 

5 777 39267 9250 1807 

 

We have performed 10 iterations of the experiment with randomly selected daily 

traces from 38 different users and Table 4 depicts our results for 5 selected 

iterations. The second column lists the number of different cell identifiers found in all 

traces. It varies from 777 to 942 different cells which tells us that there is not much 

overlap in user movement (at most 5 to 9 users are collocated in the same cell in all 

our experiments). The third and the fourth column list the number of daily data 

measurements if sensors generate periodic readings once per minute or 5 minutes, 

while the fifth column lists the number of such readings with our approach. One can 

see that our approach generates only around 5% to 6% sensor readings and data 

transmissions compared to 1/60 Hz measurements and 20% to 25% such readings 

compared to 5/60 Hz measurements. Thus, based on this preliminary analysis with 

unfavourable movement traces with low collocation probability, one can conclude that 

potential energy gains are significant. 
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Modelling the number of published messages while varying the sensing 

coverage. Here we investigate the number of messages generated by the MoPS 

approach w.r.t the area covered by mobile sensing. We assume that a geographic 

area can be divided into smaller location areas such as GSM cells and that a user 

mobility model is purely random. Subscribers or application logic can define interest 

in part of the geographic area and we want to compare the MoPS approach with a 

traditional publish/subscribe approach which contributes all acquired sensor data to 

the cloud broker. We define an analytical model to assess the number of transmitted 

publications comparing the CUPUS approach with the traditional approach to 

estimate potential gains in the number of transmitted messages from mobile phones 

to the cloud which directly influence energy consumption on mobile devices. By 

lowering the number of publications sent from a mobile device to the cloud, we can 

reduce the consumption of two key resources on a mobile device, the battery life and 

network bandwidth. 

To calculate the savings in terms of the number of transmitted messages we use the 

following parameters, which can be estimated for real applications: 

 n - the total number of publishers 

 c - the total number of cells 

 cs  - the number of cells with at least one subscription 

 Pi - the number of publications generated by the i-th publisher 

 ci - the number of cells through which the i-th publisher has passed 

In our analysis we are assuming that the number of cells c is constant and that cells 

do not overlap. Additionally, we assume that subscriptions are moving and are not 

fixed to specific cells, but such that a proportion cs of cells with at least one 

subscription is constant during the observed experiment. 

The savings can then be calculated as the percent decrease in the number of 

transmitted messages of our solution compared to the traditional one in which 

publishers are publishing all available data objects to the rest of the system, while 

with our solution only publications of interest to one or more users are published to 

the rest of the system: 

𝑺 =
𝑴𝒕𝒓𝒂𝒅−𝑴𝑴𝒐𝑷𝑺

𝑴𝒕𝒓𝒂𝒅
. 

Since our solution generates additional control messages (i.e. announce messages 

and responses to announce), we need to add their number to the number of 

transmitted publications to calculate the total number of exchanged messages in our 

solution. The number of messages generated by a single user Mi is equal to the sum 

of his/her useful publications (i.e., publications that are delivered to subscribers) and 

control messages (announce messages with replies to them), and can be calculated 

as 𝑴𝒊 = 𝑷𝒊
𝒖 + 𝑨𝒊 = 𝑷𝒊 ∙ 𝒓𝒔 + 𝟐𝒄𝒊, where 𝑷𝒊

𝒖 is the number of transmitted useful 

publications by the i-th publisher that is calculated as the product of the number Pi of 
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publications generated by the i-th publisher and 𝒓𝒔 =
𝒄𝒔

𝒄
 is the probability that a 

randomly selected cell has at least one subscription. The number of control 

messages Ai is defined as the number of cells through which a publisher is passing  

ci, where in our case we can compare it with the number of GSM cell handovers that 

are made during publisher movement.  

Finally, from the previous equations we get the following percent decrease in the 

number of transmitted messages for our solution: 

𝑺 =
𝑴𝒕𝒓𝒂𝒅−∑ 𝑴𝒊

𝒏
𝒊

𝑴𝒕𝒓𝒂𝒅
=

∑ 𝑷𝒊
𝒏
𝒊 −∑ (𝑷𝒊∙𝒓𝒔+𝟐𝒄𝒊)𝒏

𝒊

∑ 𝑷𝒊
𝒏
𝒊

. 

Hereafter, we analyse the number of transmitted messages in our approach when 

compared to the traditional approach. Table 5 shows the default parameter values 

used in the analysis. We analyse the influence of parameters rs, Pi and ci on the 

percent decrease S. For each analysis, we changed a single parameter, while all 

other parameters are fixed to default values in Table 5.  

Table 5. Default parameter values. 

Parameter Symbol Value 

the number of cells c 1500 

the number of publishers n 60 

the percentage of cells with subscriptions rs 0.5 

the average number of user publications Pi 1000 

the average number of cells through which 

a publisher has passed 

ci 100 

 

Figure 18 shows how the percent decrease changes with increasing percentage of 

cells with subscriptions rs. As we can see, the percent decrease falls linearly with rs. 

By increasing the value of parameter rs, we increase the number of cells for which 

there is interest from subscribers. As expected, the advantage of our approach drops 

when increasing rs due to the drop in retained publications. Obviously, if all cells are 

covered by subscriptions, there is no value in data filtering on mobile phones as 

announce messages represent an overhead: Our approach drops to 0 when rs 

reaches 0.8, but it can cause significant savings when rs is in the range from 0 to 0.5.  
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Figure 18. Percent decrease in the number of messages for different percents of cells 

with subscriptions. 

In Figure 19 we can see how the percent decrease changes when we increase the 

number of average publications per publisher Pi . As we can see in the figure, the 

percent decrease grows sublinearly with Pi. By changing the value of parameter Pi 

we model the frequency of publication production. Since our approach reduces the 

number of transmitted publications, by increasing Pi, the gain of our approach also 

grows under the assumption that rs=0.5.  

From the previous analysis it can be concluded that the data filtering approach on 

mobile devices can bring significant gains when the sensing area is below 50%. 

Further savings are possible by filtering redundant data within highly covered areas. 

 

Figure 19. Percent decrease in the number of messages when increasing the 

number of average publications per publisher $P_i$. 

Figure 20 shows how the percent decrease changes when increasing the number of 

cells through which an average publisher has to passed through. As we can see in 

the figure, the percent decrease drops linearly with ci. By increasing the value of 

parameter ci we model the speed and mobility of publishers. Since our approach 

generates additional announce messages when publishers are changing cells, 

obviously the advantage of our approach drops when increasing ci.  



Deliverable 5.1.2 Self-management and Optimization Framework    

Copyright  2013 OpenIoT Consortium  58 

 

Figure 20. Percent decrease in the number of messages when increasing the 

number of cells through which a user passes through. 

 

3.6  Request Type Optimization 

Depending on the type of queries that users and applications dispatch to the 

OpenIoT infrastructure, access and processing of streaming data resources can be 

optimized in different ways. In particular, the dynamic nature of the data coming from 

sensors and ICOs, calls for efficient query processing mechanisms that go beyond 

traditional database management systems capabilities. 

Moreover, given the potential diversity of sensor data sources, it is needed to 

represent and query the ICO data through a holistic model that reflects the 

application domain. Semantic Web and Linked Data technologies can answer to 

some of these requirements, as they provide well-defined models (in the form of 

ontologies) that can be interlinked, queried, and reasoned upon. Nevertheless, 

existing Linked Data platforms are designed for static data storage and not suited for 

streaming data processing,  

To cope with dynamic streams of data coming from ICOs, in the OpenIoT project we 

use LSM [Le-Phuoc 2011], a middleware with functionalities to transparently cater for 

dynamic stream information [Nguyen 2012] and tailored to existing distributed sensor 

infrastructures: from Twitter streams down to resource-constrained sensing 

hardware. In the remainder of this section we highlight the optimization techniques 

present in LSM, especially for efficient query and stream data processing.  

3.6.1 Efficient Query Processing 

The linked stream data model brings several advantages in data correlation 

operations. The first advantage comes from the data acquisition and data distribution. 

The graph-based layout gives the data processing operators the global view of the 

whole dataset. Therefore, the query processor can filter the irrelevant data to a query 

much earlier than the log-file approach does. Traditionally, the monitoring data 
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recorded in separated log files are partitioned by in individual services, processes, 

etc., thus, cross-correlating the relevant data items among them needs to load all the 

data into a relational storage before carrying out the correlation. 

The push-based and incremental processing model of linked stream processing 

engines provides much better performance than that of traditional relational database 

engine. Because a query over the log streams on relation database is performed in 

pull-based and one-shot fashion whereby any new snapshot of log stream needs the 

full computation. Thanks to the push-based and RDF triple data model, the log data 

can be pushed gradually per triples or a set of triples into the Data Correlation 

Engine. This helps to avoid the overload of matching schema and data loading when 

receiving a big monitored log file.  

To meet the query processing demand of Data Correlation Engine, we evaluated a 

Continuous Query Evaluation over Linked Stream (CQELS) engine [Lephuoc 2011]. 

This engine can consume very high throughput from log streams and can have 

access to big persistent triple storages with millions of triples. The current version can 

deal with thousands of concurrent queries corresponding to service matching policies 

registered. 

In OpenoT we aim at using a declarative language for defining stream processing 

functionalities by using query-based data acquisition operator is used to collect or 

receive data from data sources or gateways and can be pull-based or push-based. 

By using SPARQL/CQELS the data transformation and alignment can be done to 

produce a normalized RDF output format, thus a streaming operator streams the 

outputs of the final operator of a workflow to the consuming stream data applications. 

SPARQL/CQELS provides the engine for processing Linked data stream and Linked 

data. It contains a definition of the language specification and the engine for 

processing the input data. 

The LSM architecture functionality is illustrated in Figure 21. It is divided in layers that 
together cover the entire process, from data acquisition, to Linked Data, publishing 
and access, until storage and applications by means of stream processing and 
correlated data.  
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Figure 21. Linked Data Functionality by means of Linked Data in LSM. 

 

3.6.2 Efficient Stream Data Processing 

In OpenIoT we are witnessing more and more senor data services that are based on 

cloud computing models, which can typically lead to unprecedented economies of 

scale. These cloud computing infrastructures offer a pay-as-you-go model, as well as 

standard software stack for various applications.  

While OpenIoT takes into account existing tools and techniques for the virtualization 

of computing resources, it also considers the possibility and the extent to which ICOs 

can be virtualized, despite limitations imposed by their geographical locations, 

administrative ownership and functional capabilities. OpenIoT indeed advocates the 

creation of virtual sensors through the X-GSN middleware, which can encapsulate 

internet-connected objects.  On a higher level, the users of the OpenIoT cloud are 

able to develop applications that leverage information from multiple sensors, 

actuators and other devices. This abstracts users from specific ICOs, as they provide 

their data requirements through high-level queries (e.g. SPARQL) in terms of well-

defined ontological models (e.g. SSN ontology). The Linked Sensor Middleware 

(LSM) is the OpenIoT component that is in charge of handling these queries. This is 

a first of a kind extension of existing cloud computing infrastructures: using 

algorithms and strategies developed in OpenIoT, end-users are able to configure, 

deploy and use IoT based services. 

The use of near-real time stream data is a key enabler and driver in such diverse 

application domains as smart cities, home automation, ambient assisted living, or 

recommender systems. As on the Web, access to and integration of information from 

large numbers of heterogeneous sources under diverse ownership and control is a 

resource-intensive and cumbersome task without proper support.  
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In OpenIoT we have analysed LSM and others, e.g., SPARQL extensions to query 

RDF streams: C-SPARQL, EP-SPARQL, CQELS, SPARQLStream, or middleware 

that has been built for streaming data processing, e.g. SPITFIRE, GSN, etc. Still, 

widespread access to real streams does not exist at the same level as for Web 

resources. LSM, the Linked Stream Middleware6, addresses this problem, providing 

access to more than 100,000 stream sources via a RESTful interface and a 

SPARQL/CQELS endpoint. However, to the best of our knowledge, no general-

purpose infrastructure to support existing lower access thresholds for users and 

developers has been developed.  

In OpenIoT, the usage of LSM enables efficient query processing over both static 

data (e.g. sensor metadata) and also streaming data (e.g. observations). LSM 

transforms the data from virtual sensors into Linked Data stored in RDF. A SPARQL 

query is a so-called one-shot query, and such queries typically refer to queries about 

sensor metadata and historical sensor readings. The SPARQL endpoint of LSM 

provides the interface to issue these types of queries. The currently deployed RDF 

triple store by LSM, OpenLink Virtuoso, provides a Linked Data query processor that 

supports the SPARQL 1.1 standard.  

SPARQL queries are executed once over the entire collection and discarded after the 

results are produced, but queries over Linked Stream Data are continuous 

(registered in the system, and continuously executed as new data arrives). For 

processing continuous queries over Linked Stream Data, the LSM provides the 

CQELS engine [Le-Phuoc 2011]. The query processing in CQELS is done in a push-

based fashion, i.e., data entering the query engine triggers the processing. The 

continuous queries are expressed in the CQELS language, which is an extension of 

the SPARQL 1.1 standard. 

3.7 Energy Efficiency and Bandwidth Optimization 

ICOs are often used in remote monitoring and control applications, where software 

running on general-purpose computers “pull” information from remote sensors and 

“push” actuations into the network.  The ICO themselves form a multi-hop network 

communicating with one or more access points that interface between application 

software and the ICO network. Therefore, two resources that are scarce are the ICO 

are energy and link bandwidth.  

The energy efficiency in ICO becomes an issue because each node in the network is 

equipped with a battery, but it is sometimes quite difficult to change or recharge 

batteries. Therefore, the crucial question is on how to prolong the autonomous ICO 

lifetime as much as possible. Hence, maximizing the lifetime of an ICO network 

through minimizing the energy consumption is an important challenge since sensors 

                                            
6   Linked Stream middleware (LSM), lsm.deri.ie. 
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cannot be easily replaced or recharged due to their ad-hoc deployment in distant 

locations and hazardous environments. 

The bandwidth optimization in ICO becomes an issue because the network can be 

concurrently used for different applications (measurements). As an example consider 

a network monitoring temperature, light and noise in company offices and production 

halls. In such applications, the relative importance of ICO data streams often 

depends on the type and values of the data being sensed, and on how data from 

different streams is correlated with each other. For example, if the goal of 

temperature monitoring application is to actuate heating or cooling then it would 

make sense to allocate more network bandwidth for data streams coming from 

occupied rooms compared to empty rooms. As a more extreme example, if sensors 

in an area detect abnormally high temperature, it may signify a disastrous event like 

a fire, in which case it would be prudent to allocate almost all of the bandwidth to 

those streams. Thus, as such ICO shared networks grow in size, they require a 

bandwidth allocation method, by which the nodes can decide how to allocate network 

bandwidth to the streams. The allocation method has to handle traffic that exhibits a 

high degree of spatial correlation, when a group of nodes in close proximity all detect 

an event of interest. Thus, it has to be able to change bandwidth allocations in the 

network depending on observed phenomena.  

3.7.1 Energy and Bandwidth Consumption on MIOs 

In environments with MIOs and smartphones as described in Section 3.5.2, the 

process of pushing messages from the cloud to smartphones can incur large energy 

costs. A recent study shows that periodic transfers in mobile application which 

account for only 1.7% of the overall traffic volume contribute to 30% of the total 

handset radio energy consumption [Qian2012]. Thus here we investigate potential 

solutions for sending sensor readings to user smartphones and evaluate 

experimentally the incurred energy and bandwidth consumption. 

Hereafter we briefly report three potential solutions that have been implemented and 

tested to enable delivery of notify messages in the MoPS system: 1) persistent TCP 

connection, 2) connection-less communication over HTTP where a REST web 

service is running on a mobile phone, and 3) REST web service with Google Cloud 

Messaging.  

Persistent TCP connections are the simplest mechanism to implement, but can 

cause significant overhead as keep-alive messages are needed to maintain an active 

connection which prevents the processor from going into a sleep mode.  

Connectionless REST-based communication between a mobile device and the cloud 

is an alternative to permanent TCP connections. Both the mobile device and server 

need to run a REST service: Whenever they want to communicate, they send HTTP 

messages to the REST service entry-point. In comparison to TCP connections, this 

mechanism is one step closer to push-based communication where situations of 
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temporary connection losses and failed handover do not affect the communication 

mechanism.  

This mechanism does not allow a power save mode, but reduces the generated 

traffic over wireless interfaces and reduces the number of open connections. REST-

based mechanism allows a mobile service to use a single entry point for all incoming 

messages, regardless of the sender, while the previous approach uses separate TCP 

connections for each sender.  

For a fully implemented push-based message delivery mechanism in mobile 

environments we have used the Google Cloud Messaging (GCM) service. GCM is a 

service provided by Google running as an intermediary between application servers 

(cloud-based brokers in case of our prototype) and mobile devices running the 

Android OS. GCM uses a simple format for messages limited to 4 KB. A mobile 

service does not need to be in active state to receive such notifications: The Android 

OS will start or wake up the service upon a received message. The mechanism does 

not create, handle or destroy any additional connections, which makes it a true push-

based communication mechanism without additional overhead. Since the support for 

the GCM service is an integral part of the Android operating system, GCM only 

requires that a radio interface is online, and allows the processing unit to go to power 

save mode. The GCM mechanism is used by various Google applications on mobile 

devices and reuses the same connection for the delivery of all messages, thus 

reducing the communication overhead to a minimum. The main drawback is limited 

availability (only for AndroidOS) and dependency on a third party solution.  

Experimental evaluation. In our evaluation scenario the previously listed 

communication paradigms are tested such that we send sequentially notify 

messages to smartphones, and measure battery power consumption and generated 

network traffic at the wireless interface of a mobile device. Measurements are 

performed on a Samsung Galaxy S4 Android phone. The power consumption of a 

mobile device is measured with the PowerTutor application, and network traffic 

monitoring is performed with the TrafficMonitor application.  All other services, which 

could potentially use the GCM for its purposes (e.g. Gmail application, other Google’s 

services) were stopped during the evaluation phase. 

At the beginning of the evaluation scenario, a mobile service registers itself at the 

MoPS server, such that the server is aware of a mobile service and of the mobile 

device address. After the registration, the mobile service no longer sends any data, 

because evaluation scenario is focused on the resource consumption for various 

receiving paradigms. The server generates a random data set of notification items, 

and sends them to the registered mobile device. A data item consists of five 

numbers, where each number is written with double precision, so a data item has the 

size of 40 bytes. Small data items were used because we wanted to analyse the 

receiving paradigm overhead. Larger amount of data would mask the overhead 

resource consumption, because most of the resources would be spent to transfer the 

data.  
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In first energy consumption test, the server has sent 1000 data items with an average 

interval of 1 second between two consecutive notify operations on a Wi-Fi interface. 

In this case the phone did not enter a power-save mode. The measured values of 

energy consumption are shown in Table 6. The power consumption is measured in 

mili Watts, the duration of each paradigm runtime necessary for receiving the entire 

data sets in expressed seconds, and the consumed energy expressed in Joules. All 

three paradigms need approximately the same time for receiving 1000 data items. 

The GCM paradigm is the most favourable technique for sending notifications as it 

consumes almost 50% of the energy required for TCP-based solution, while REST 

has an overhead of almost 20% compared to TCP (Figure 22).  

Table 6. Energy consumption on a Wi-Fi interface for receiving 1000 data items 

Communication 

paradigm 

Power 

consumption [mW] 

Runtime [s] Energy 

consumption [J] 

TCP 103.6 1034 107.12 

REST 118.57 1053 124.85 

GCM 53.27 1041 55.46 

 

 

Figure 22. Energy consumption on a Wi-Fi interface for receiving 1000 data items. 

The second energy consumption test is done by sending 100 data items, with an 

average interval of 10 seconds between each notify operation. In this case the 

smartphone did enter a power-save mode between each receive operation. Results 

of the second test are shown in Table 7. As one can notice the GCM paradigm once 

again has the best performance, but in this test other two paradigms have much 

better results than in the first test scenario (Figure 23). In general, the GCM service 

shows the best results regarding energy consumption because no additional network 

connections are needed while the processor can go to the power save mode. 
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Table 7. Energy consumption on a Wi-Fi interface for receiving 100 data items 

Communication 

paradigm 

Power 

consumption [mW] 

Runtime [s] Energy 

consumption [J] 

TCP 67.73 1031 69.83 

REST 77.67 1049 81.47 

GCM 45.73 1017 46.51 

 

 

Figure 23. Energy consumption on a Wi-Fi interface for receiving 100 data items. 

Parallel with energy consumption tests, we also measured the bandwidth 
consumption with TrafficMonitor application on the phone Wi-Fi interface. In the first 
bandwidth consumption test, the server sent 1000 data items, with a 1 second 
interval between each transmission. The TCP-based solution generates the least 
amount of traffic, and our REST-based solution generates the largest amount of 
traffic (approximately 5 times larger than pure TCP) as expected since entities 
communicate using the HTTP protocol. The TCP paradigm provides the best results 
because it introduces the least overhead. In addition to our data set, the data 
transferred through the GCM connection also contains the identifier of the intended 
recipient, while the REST solution is built on top of HTTP (Figure 24). The REST 
paradigm generates much more traffic than the other two, especially for upload (i.e. 
upload) as shown in Table 8. 

Table 8. Bandwidth consumption on a Wi-Fi interface for receiving 1000 data items. 

Communication 

paradigm 

Total bandwidth 

[kB] 

Download [kB] Upload [kB] 

TCP 264.13 256.51 7.62 

REST 1402.88 1293.29 109.59 

GCM 973.81 958.73 15.08 
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Figure 24. Bandwidth consumption on a Wi-Fi interface for receiving 1000 data items. 

The second bandwidth consumption test was done by sending 100 data items, with 

an average interval of 10 seconds between each data transmission. The results of 

the second test are shown in Table 9. The TCP-based solution once again generated 

the least amount of traffic, and REST generated the largest amount of traffic (Figure 

25).  

Table 9. Bandwidth consumption on a Wi-Fi interface for receiving 100 data items. 

Communication 

paradigm 

Total bandwidth 

[kB] 

Download [kB] Upload [kB] 

TCP 52.82 45.05 7.77 

REST 986.77 961.29 25.48 

GCM 203.24 189.67 13.57 

 

 

Figure 25. Bandwidth consumption on a Wi-Fi interface for receiving 100 data items. 
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After testing all three paradigms for battery consumption, power consumption and 
generated network traffic we can conclude that the TCP solution generates the least 
amount of traffic on a Wi-Fi network interface and the GCM paradigm consumes the 
least energy, compared to the other two paradigms, especially when the time interval 
between two consecutive data transmission is large enough such that the processor 
can go to the power save mode. The REST paradigm consumes the most energy 
and generates the biggest traffic on a Wi-Fi interface, so we can conclude that the 
REST paradigm is ineffective in terms of energy consumption and generated network 
traffic. 

 

3.7.2 Bandwidth Optimization through Indirect Sensor Control 

The most commonly used resource and therefore the most significant source of 

bandwidth consumption on the OpenIOT platform, is expected to be the data 

streamed from the sensors to the users. This section describes an optimization 

strategy that addresses this issue and has been developed in the context of T5.2 

Resource Sharing and Management. 

The module responsible for streaming from sensors to the LSM is X-GSN. In the 

current implementation of X-GSN, once a sensor is activated it streams data 

continuously whether the data is actually needed from a service or not. This results in 

a misuse of available bandwidth. In order to address this issue, a module that applies 

Indirect Dynamic Sensor functionality has been implemented on top of the X-GSN 

module. 

As the name of the module implies, the control (activation/deactivation) of a sensor is 

not to be controlled directly from the user. Rather, a user announces the creation of 

a service which makes use of a group of sensors, to the Request Definition module. 

The request is forwarded to the Scheduler which in turn creates a SPARQL triplet of 

a “serviceID HAS sensorID” format on the LSM, which is represented by the 

sensorServiceRelation entity, stating which sensors a particular service is intending 

to use. 

At the same time, a periodic timed task is running on the X-GSN module, which is 

responsible for direct sensor management, querying the particular triple on the LSM 

repository, in order to determine which sensors are being currently announced/ 

requested by users. The task compares the query results from the triplets, with the 

list of virtual-sensors that are currently active on the X-GSN module. Then X-GSN  

activates virtual sensors that have been found by the query but are not active on the 

module and deactivate the virtual sensors that are active on the module but have not 

been found in the query. 
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This process is illustrated in the sequence diagram in Figure 26 and flow chart 

diagram in Figure 27. 

Request 
Definition

User

Announces
 Service Creation

/ Use of Sensor Group

Scheduler

Sends Service 
Representation

X-GSN Dynamic Sensor Control
Loop

Service Creation

Returns
 ConfirmationReturns

 Confirmation
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Store Service 
Definition to LSM
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activate / deactivate 
sensor streaming

Periodically Request 
Defined Services 
/ Sensors Triples

 

Figure 26. Indirect Dynamic Sensor Control Sequence Diagram. 
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Figure 27. Indirect Dynamic Sensor Control Flow Chart. 

The above process is expected to result in significant bandwidth conservation, since 

sensors streams data only when they are actually used, as opposed to them 

streaming on a constant basis. 
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3.7.2.1 Sensor Use Identification 

To implement the Dynamic Sensor Control functionality, the X-GSN module needed 

support a basic API that activates/deactivates virtual-sensors programmatically. The 

original GSN framework does not support such an API, and sensor activation / 

deactivation is performed by copying or removing accordingly the virtual sensor .xml 

and metadata files, from the virtual-sensors directory within the GSN source folder.  

In order not to temper with the existing code, an independent module for has been 

implemented that performs the Dynamic Sensor Control functionality. 

The module’s functionality can be described briefly as follows: 

 By querying the LSM, an ArrayList<String> of active sensor names are 
obtained 

 Then the module scans the virtual-sensors directory for all .xml files 
constructs a HashMap<String, File>, that maps sensor id Strings which are 
obtained from the name property in the <sensor>.xml.metadata file, with File 
Objects that correspond the virtual-sensor names 

 The module scans the available virtual sensors from the LSM folder in the 
X-GSN module, again mapping sensor id’s with corresponding files. 

 The ArrayList<String> obtained from the query on the LSM is compared with 
the first HashMap<String, File>. Any sensor names located in the HashMap 
but not in the SPARQL query ArrayList are deactivated. This is performed by 
deleting the corresponding .xml and .xml.metadata files from the directory 

 Finally the ArrayList<String> obtained from the SPARQL query is compared 
with the available sensors and activates them by copying the corresponding 
files to the virtual-sensors directory 

 This functionality is embedded in a TimerTask class (the DynamicControlTask 
class) that is executed in predefined intervals 
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4 PROTOTYPE IMPLEMENTATIONS 

In the previous sections, we have described the techniques, algorithms and 

principles that we have conceived, designed and proposed for the self-management 

and optimization framework of OpenIoT. We have supported our design choices and 

algorithms with experimentation and evaluation over proof-of concept prototypes, 

where applicable.  

In this section we provide details about the prototypes that actually implement the 

techniques and algorithms presented previously, within the components of the 

OpenIoT architecture. This includes functional specifications and a summary of the 

design decisions and technical details needed to adapt, modify or configure the 

OpenIoT modules concerned. Specifically, we include:  

 The Utility-based optimization implementation. It implements the cost and 

valuation functions introduced in Section 3.4 and the acquisition algorithms in 

Section 3.5. 

 The Dynamic Sensor Control module, which implements the control of X-GSN 

virtual sensors for Bandwidth optimization, as explained in Section 3.7.2. The 

implementation details of the data acquisition and filtering mechanism for 

mobile devices as specified in Section 3.5.2 are available in deliverable 

D3.4.1.  

 Caching Scenarios prototype. It describes the simulator that calculates cache 

costs associated with accessing a cloud data-store, in combination with a local 

caching solution, following Section 3.2.3.5. 

 Cloud optimization implementation. It specifies the implementation of the 

integration of LSM and X-GSN including the cloud optimization based on view-

models using memory indexes and Map Reduce-based query processing.  

We have elaborated Table 10, which shows how the different techniques explained in 

Section 3 relate to the implementation descriptions in this section. In the case of the 

mobile publish subscribe system (MoPS) that addresses efficient data collection and 

bandwidth optimization for mobile devices, the implementation is further described in 

Deliverable 4.5.1. For LSM, full implementation details have already been provided in 

Deliverable 3.3.1. 
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Table 10. Prototypes and module implementations vs. OpenIoT Management and 

optimization Techniques. 
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Efficient Scheduling   X X    

Cloud Optimization    X   

Utility-based Optimization X      

Efficient Sensor Data Collection X    X  

Request Types Optimization      X 

Energy Efficiency and Bandwidth Optimization  X   X  

 

 

4.1 Utility Based Optimization 

In this section we present the functional specification of the utility-based optimization 

in OpenIoT described in Section 3.4. 

4.1.1 Functional Specification 

In OpenIoT utility-based data collection and query processing is performed in a 

subcomponent of SD&UM. We refer to this subcomponent as Utility-based Optimizer 

(UBO). Figure 28 depicts the high level functional architecture of utility-based 

optimization in OpenIoT. UBO periodically retrieves the available queries from the 

OpenIoT cloud database, the metadata of sensors in the regions requested by these 

queries and the trust score of these sensors. Trust scores of sensors are calculated 

by the trust assessment component described in Deliverable 5.2.1. Given these 

information, UBO performs utility-based sensor selection to identify the sensors that 

are used to answer the queries. After selection of sensors it might be necessary to 

rewrite the SPARQL queries in order for them to read from selected sensors. These 

rewritten queries are denoted by Queries* in Figure 28. The frequency of running 

UBO optimizations is read from a configuration file. However, this frequency can be 

updated based on the scheduling information of the requests that arrive to SD&UM. 
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Figure 28. High level functional architecture of utility-based optimization. 

Figure 29 shows the functionality of UBO in more details. In the following we 

describe the steps that are taken in each execution round of UBO. 

1. All the OpenIoT Service Model Object (OSMO) objects available from the 
Service Delivery and Utility Manager (SD&UM) are retrieved. 

2. The SPARQL queries in OSMO objects are parsed and the required point 
queries and spatial aggregate queries are created for each OSMO object. For 
example, a query asking for a reading from sensors, is translated to a point 
query asking for a sensor reading at the location of sensor s. A query asking 
for the average value of sensor readings from a set of sensors S, is translated 
into a spatial aggregate query asking for the average sensor reading in a 
rectangular area that contains all the sensors in S. 

3. The metadata of sensors which fall into the enclosing queried region are 
retrieved from the Directory Service. The enclosing queried region is the 
smallest region that contains all the regions defined in spatial aggregate 
queries and the regions defined around the locations queried by point queries. 

4. Utility-based multi-query optimization algorithm explained in Section 3.4 is run 
against the extracted queries and the metadata for available sensors. The 
result of this step is a set of sensor IDs. 

5. New SPARQL queries for each OSMO object are created from the original 
SPARQL queries based on the selected sensors. 

6. If a selected sensor is not activated, a message is sent to X-GSN to activate 
the sensor and push its data to LSM. 

7. The new SPARQL queries are executed by forwarding them to the Directory 
Service SPARQL interface. 

8. The query execution results are forwarded to Request Presentation. 

9. The cost of sensor readings is split among the queries and the corresponding 
accounting information is sent to the Accounting & Billing module. 

 



Deliverable 5.1.2 Self-management and Optimization Framework    

Copyright  2013 OpenIoT Consortium  73 

 

Figure 29. Utility-based query execution. 

 

4.1.2 Required Information about Sensors and Queries 

The UBO assigns a cost to each sensor. The cost value can be specified in the 

sensor metadata, which is accessible to the UBO through SensorType objects. If the 

cost information is not available in the metadata, we assume that at least information 

about energy consumption of sensors is available in their metadata. Based on this 

information, the UBO can assign a reasonable pre-defined cost to the corresponding 

sensors. 

In OpenIoT heterogeneous stationary or mobile devices are available. The device 

owners, especially mobile device owners, can be concerned about possible leakage 

of their privacy by providing data about themselves or about their surroundings. In 

order to minimize privacy threats or to manage the level of privacy leakage, privacy 

protection mechanisms are employed on the devices. OpenIoT cannot impose any 

specific privacy protection mechanisms on the sensing devices. However, the privacy 

requirements of the device owners must be considered while utility-based data 

collection and query processing is performed. In order to achieve this important 

requirement, we assume that the cost reported by the sensing device already 
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includes the cost of possible privacy loss as mentioned in Section 3.4.23.4.2. When 

the cost information is not provided by the sensing devices, the assumption is that 

the device owners are not concerned about their potential privacy loss; hence in 

assigning the default cost only the energy consumption of the device is taken into 

account. 

When a user defines a new service through the Request Definition module, he/she 

can assign a maximum budget for obtaining the query results. This maximum budget 

along with a suitable predefined query-type specific quality assessment function 

determines how much the data collected for answering the defined query is worth. 

Examples of these functions can be found in Section 3.4.3. The budget information is 

stored in each service’s OSMO object. If the query budget is not specified, the 

average sensor reading cost is used as the budget of the query. If the query is 

scheduled to run continuously, in each query execution round, this average cost is 

considered as the budget. 

4.2 Dynamic Sensor Control Module 

4.2.1 Main Released Functionalities and Services 

In the context of T5.2 Resource Sharing & Management, a Dynamic Sensor 

Control module has been developed in order to extend the X-GSN module’s 

functionality. The functionality of this module as described in Section 3.7.2 

periodically queries the LSM for the active sensors and activates/deactivates the 

relevant virtual sensors on the X-GSN module. In order to implement the module it 

was necessary to provide and extension to the API of X-GSN that would perform 

these queries that identify the currently active sensors. This module is explained in 

further detail in 3.7.2.1.  

4.2.2 Download, Deploy and Run 

The current module is embedded in the X-GSN module, therefore the process to 

download, install and run this module is already handled when performing the same 

process with X-GSN. Refer to deliverable D4.3.1 for specific details. 

4.2.2.1 Source Code Analysis 

This section describes the architecture of the Dynamic Sensor Control code. Figure 

30 represents the UML class diagram that facilitates the Sensor Use Identification 

functionality (identify the X-GSN sensors that are used in the queries, and 

activate/deactivate virtual-sensors accordingly, as in Section 3.7.2.1): 
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In Figure 30 the UML depicts the classes comprised in the Dynamic Sensor Control 

Module. The Parser interface and the SensorParser implementation class are in 

charge of parsing the RDF metadata in LSM, and extract the identifiers of the virtual 

sensors. The DynamicControlTask class encapsulates the operations of activation 

and de-activation of virtual sensors. It has a SparqlClient attached to be able to pose 

SPARQL queries, get results (which can be later parsed) and get the virtual sensor 

identifiers to activate or de-activate. 

<<Interface>>

Parser<T>

+Collection<T>:parse(TupleQueryResult)

-SensorParser

+Collection<String>: parse(TupleQueryResult)

- Collection<String>: parseTQR(TupleQueryResult)

ParserFactory

+SensorParser: SENSOR_PARSER

SparqlClient

-SPARQLRepository: therepository

-TupleQueryResult: sparqlToQResult(String)

-Collection<T> getQueryResults(String, Parser<T>)

DynamicControlTask

-String: VIRTUAL_SENSORS_DIR

-String: AVAILABLE_SENSORS_DIR

-String: VIRTUAL_SENSORS_TAG

-String: VIRTUAL_SENSORS_TAGE_NAME_ATTR

-String: SENSOR_QUERY

-String: TEST_QUERY

-String: QUERY

-SparqlClient: sparqlClient

+void:run()

- void:activateSensor(File)

- void:deactivateSensor(File)

- Map<String,File>:getGSNSensors(String)

- String:getSensorNameFromFile(File)

- SparqlClient:loadSparqlClient()

- updateActiveSensors(List<String>, Map<String, File>, Map<String, File>)

DynamicControlTaskTimer

-Timer:instance

+Timer:getInstance()

+void:startTimer()

 

Figure 30. Dynamic Sensor Control UML Diagram 

 

Also, the following tables analyse various class methods of the module’s 

components. 
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<<Interface>> Parser<T> 

Service Name Input Output Info 

parse TupleQueryResult Collection<T> 

This method should be 

implemented by any class 

implementing the 

Parser<T> Interface 

The Parser<T> interface is part of the Strategy Design Pattern that is used to 

manage various Parser subclasses that are used from the SparqlClient. Each class 

implementing this interface returns a Collection of the type defined at runtime. 

ParserFactory 

Service Name Input Output Info 

SENSOR_PARSER void SensorParser 

Sensor parser implements 

the Parser<String> interface 

meaning that the parse 

method returns a Collection 

of Strings. 

ParserFactory implements a Static Factory Design pattern that creates objects that 

implement the Parser<T> interface.  

 

private inner class SensorParser 

Service Name Input Output Info 

parse TupleQueryResult Collection<String> 
Simple calls the 

parseTQR method 

parseTQR TupleQueryResult Collection<String> 

Implementation of the 

actual parsing 

functionality 

SensorParser implements a Parser<String> interface and is the only concrete 

implementation at the moment. Sensor parser parses TupleQueryResults and returns 

Strings that represent a sensor ID. The parser is executed over the SPARQL query 

results from LSM. 

DynamicControlTask (Singleton) 

Service Name Input Output Info 

run void void 

This is the main method of 

the class that is executed 

once a timer starts it 

activateSensor File void Copies active sensors from 

the LSM directory to the 
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virtual-sensors directory 

deactivateSensor File void 

Deletes inactive sensors 

from the virtual-sensors 

directory 

getGSNSensors String Map<String, File> 
Retrieves GSN sensors 

from the specified path 

loadSparqlClient void SparqlClient Loads the sparql client 

getInstance void  
Retrieves the singleton 

instance 

DynamicControlTask is the class providing the main dynamic sensor control 

functionality. Since it is desirable that only a single task of that type is running at a 

given time, it is implemented as a singleton. Other than that its’ main responsibilities 

are using the SparqlClient class to query the LSM for active sensors and 

activate/deactivate the corresponding virtual sensors. The activateSensor and 

deactivateSensor method implements the copy and activation of sensors, if they are 

announced in LSM. Conversely, the deactivate Sensor deletes inactive sensors in X-

GSN, thus optimizing the use of resources in the system. 

 

DynamicControlTaskTimer (Singleton) 

Service Name Input Output Info 

getInstance void Timer 
Retrieves the singleton 

instance 

startTimer void void Initiates the timer 

The DynamicControlTaskTimer class simply starts/cancels the timed schedule for the 

DynamicControlTask class. Similarly to the DynamicControlTask, we only want a 

single Timer to be active. Therefore, this class is also implemented as a singleton. 

SparqlClient 

Service Name Input Output Info 

getQueryResults String, Parser<T> Collection<T> 

This method receives a 

string query and a 

Parser<T> with which the 

query results are parsed. It 

retrieves the results from 

the LSM, inserts them into 

the parser and returns a 

Collection of objects 

specified by the parser 

algorithm that is selected. 
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sparqlToQResult String TupleQueryResult 

This method receives a 

Sparql query in String form 

and returns a 

TupleQueryResult which 

can then be inserted into a 

parser 

Finally, the SparqlClient class is responsible for establishing a connection with the 

LSM database, in order to perform queries and return results. 

4.2.2.2 Configuration 

Concerning the Dynamic Sensor Module itself, there is a limited set of functionalities 

that can be configured in the conf/lsm_config.properties file. The file contains the 

following lines that concern the specific module: 

#DynamicControl 

functionalGraph = http://lsm.deri.ie/OpenIoT/guest/functionaldata# 

endPoint = http://lsm.deri.ie/sparql 

virtualSensorsDir = virtual-sensors 

availableSensorsDir = virtual-sensors/LSM 

 

dynamicControl = true 

#enter frequency of dynamic sensor control in minutes 

dynamicControlPeriod = 5 

 

The properties (Table 11) that can be configured are the following: 

Property Explanation 

functionalGraph The link to the RDF Graph that is to be queried 

endPoint An LSM endpoint that is used to establish the 

connection for the SparqlClient class 

virtualSensorsDir This is the folder where active virtual sensors (xml files) 

are expected to be found 

availableSensorsDir This is the folder where available virtual sensors (xml 

files) are expected to be found 

dynamicControl This property states if the Dynamic Control actives 

(True) or inactive (False). The default value is true 

dynamicControlPeriod This property states the time interval, which the LSM 

query for active sensors (in minutes). 

Table 11. Dynamic Sensor Control Properties. 
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4.3 Caching Scenarios Simulation Prototype 

In the context of T5.2 Resource Sharing & Management, a “Caching Scenarios 

Simulation Prototype” has been developed. The purpose of the prototype is to 

simulate the costs associated with accessing a cloud data-store, in combination with 

a local caching solution. It is expected, that the simulator assists in estimating the 

cost-efficiency of such a system, depending on the average request load and the 

caching solution that is implemented. 

4.3.1 Main Released Functionalities and Services 

The above prototype simulator has been developed as an MS Excel Workbook. It is 

separated into three distinct worksheets: 

 Instructions 

 User Input & Simulation Chart 

 Chart Calculation Parameters 

In further details the distinct workbooks have the following functionalities. 

Instructions 

In Figure 31 the simulator introductory screen is displayed, which explains the 

functionality of the worksheet and how to use it. The particular worksheet is locked 

entirely and cannot be edited. Further detailed instructions, on using the prototype 

are included in the worksheet itself. 

 

Figure 31. Caching Simulation Introductory Screen. 
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User Input & Simulation Chart 

This worksheet is where the user can provide actual input and view the results on the 

produced bar chart. The following figure (Figure 32) displays the relevant input cells 

 

 

Figure 32. Caching Simulator User Input. 

In the particular figure the orange cells are the ones expecting input from the user, 

while the grey cells provide the related output. These inputs/results are used in 

combination with other hard coded parameters in the “Chart Calculation 

Parameters” worksheet in order to provide the resulting chart. Again this worksheet 

is locked for editing besides the orange cells. 
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Chart Calculation Parameters 

This worksheet contains parameters that are used to create the chart in the “User 

Input & Simulation Chart” worksheet. Certain parameters are obtained from the 

above worksheet, others are hardcoded in order to facilitate various calculations. 

An indicative screen of the particular worksheet is displayed in Figure 33. 

 

 

Figure 33.  Caching Simulator Chart Calculation Parameters. 

The figure above shows three tables. Their contents are described as follows: 

 Table 1 includes hard coded cache miss parameters derived from the results 

of the research paper “Improving the Performance of Semantic Web 

Applications with SPARQL Query Caching” [Martin 2010]. Additionally, it 

includes cost calculations for each rph category depending on the cache miss 

rate. 

 Table 2 calculates the costs per year resulting from the above parameters. 
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 Table 3 finally, simply distributes Table 2 parameters in such a way in order to 

create a combined stacked bar chart in the “User Input & Simulation Chart” 

worksheet. 

4.3.2 Download, Deploy and Run 

The workbook for the prototype is downloadable from URL: 

https://websvn.deri.ie/wsvn/openiot/Deliverables/D512/ , filename: OpenIOT-D512-

Cache Cost Evaluation Simulation Prototype.xlsx. 

The file is simply executed as a windows application and is ready to use. 

 

4.4 Cloud Optimization Integration in GSN and LSM 

4.4.1 Functional specification 

Figure 34 illustrates the integration of model-view sensor data index and query 

modules and the current components of OpenIoT, namely, GSN node and LSM.   

In GSN node, we add the functionality module shown in Fig. 4 (a) which is in charge 

of segmenting sensor time series on the fly and assigning the segments to 

corresponding nodes in vs-tree. GSN node should maintain a vs-tree for each sensor 

time series in memory. Instead of sending raw sensor data points to the cloud store in 

LSM, GSN node only pushes the segments including the registration node, time 

domain, value range and model coefficients of the segment, to the key-value store in 

LSM. Then the key-value store HBase resident in LSM materializes the segment into 

corresponding row of the model-view sensor data table. 

Regarding querying model-view sensor data, our proposed hybrid query processing 

scheme is embedded into LSM shown in Fig. 34 (b).  When a query comes to the 

LSM, in the first step the intersection or stabbing search on vs-tree in LSM delimits a 

set of nodes that may host qualified segments. Then, the MapReduce based query 

processing is invoked within the LSM cloud to fetch the potential qualified segments 

from the key-value store, filter predicate-addressed segments and return the gridded 

values as query results. Based on the current architecture of OpenIoT, the 

components in the dot-dash red blocks of Fig. 34 (a) and (b) need to be 

implemented. 

 

 

https://websvn.deri.ie/wsvn/openiot/Deliverables/D512/
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Figure 34. (a) GSN node. (b) Sensor data segments and KVI-index. (c) Key-value 

stores in LSM. (d) KVI-index and MapReduce based query processing. 

 

4.4.2 Query specification 

Model-view sensor data management only modifies the internal mechanism of 

indexing and querying sensor data, and therefore from the perspective of application 

side, end-users can submit queries as usual. The following categories of queries are 

supported by our model-view based approach in OpenIoT platform:  

time point query: return the value of one sensor at a specific time point. 

value point query: return the timestamps when the value of one sensor is equal to the 

query value. There may be multiple time stamps of which sensor values satisfy the 

query values. 

time range query: return the values of one sensor during the query time range. 

value range query: return the time intervals of which the sensor values are within the 

query value range. There may be multiple time intervals of which sensor values 

satisfy the query value range. 

Concerning the query results, abstract functions of segments make little sense for 

end-users and hence the gridding phase is necessary in the query processing in 

order to generate user-friendly discrete data set as query results. Moreover, segment 

gridding helps eliminate the part of one segment that is outside the query range. Fig. 

4 gives an example illustrating the query results from the hybrid query processing 

module in LSM are discrete data pairs representing the timestamps and sensor 

values.    
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4.4.3 Experimental evaluation  

To show the feasibility of our approach, we have conducted a series of experiments 

described in this section. This proof-of-concept implementation is to be plugged to X-

GSN, but we already show the feasibility of the techniques initially presented in 

Section 3.3. The results show important improvements in response time, compared 

to raw data value storage. 

4.4.3.1 Setup 

We employ accelerometer data from mobile phones as sensor data set. The size of 

raw sensor data is 22 GB including 200 million data points. After modeling, the 

modelled segments of the sensor data take 12 GB, while there are around 25 million 

modelled segments.  

We developed our system using the versions of Hbase and Hadoop in Cloudera CDH 

4.3.0. The experiments are performed on our own cluster that consists of 1 master 

node and 8 slaves. The master node has 64GB RAM, 3TB disk space (4 x 1TB disks 

in RAID5) and 12 cores, each of which is 2.30 GHz (Intel Xeon E5-2630). Each slave 

node has 6 cores 2.30 GHz (Intel Xeon E5-2630), 32GB RAM and 6TB disk space (3 

x 2TB disks). Nodes are connected via 1GB Ethernet. In the experiment results, we 

refer to query selectivity as the ratio of the number of qualified modelled segments 

over that of total modelled segments. 

4.4.3.2 Results 

We compare the model-view sensor data query processing with conventional one 

over raw sensor data. Raw sensor data is a set of discrete data points each of which 

has associated timestamp and value. We create two tables, which respectively take 

the timestamp and sensor value as the row-keys, such that the query range or point 

can be used as keys to locate the qualified data points. The query processor invokes 

MapReduce to access the large size of data points for query results. 
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Figure 35. Range query results. 

 

 

Figure 36. Point query results. 

 

Figure 35. Range query results. (a) and (b) present the query response times for time 

and value range queries. As shown in Figure 35, model-view approach takes around 

30% less time than the raw sensor data method for both time and value range 

queries. Although the raw sensor data based methods apply MapReduce to directly 

access the qualified tuples via the row-key based range scan, the amount of raw 

sensor data to process is much larger than that of the model-view approach. In 

Figure 36, the processing time of the raw data based method is 2x less than that of 

the model-view one in time point queries, because the raw data method can use the 

query time point as index key to directly access the relevant data points, while our 

hybrid approach requires to perform model filtering and gridding.  

We also evaluate our KVI-Scan-MapReduce approach to compare with other model-

view sensor data querying approaches. Moreover, we experimentally explore the 

factors that affect the performance of KVI-Scan-MapReduce. Please refer to [Guo 

2013] for more details. 
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5 CONCLUSIONS 

OpenIoT is working towards a blueprint framework and an associated middleware 

platform that could enable the on-demand formulation of IoT services over a cloud-

computing infrastructure. Two of the main properties of the OpenIoT project are 

related to its ability to manage itself, towards optimizing the use of resources.  In 

particular, as several users are serviced by OpenIoT and several services are 

concurrently running over the OpenIoT infrastructure, it is important to ensure that 

resources are used in an optimal way, which could also boost the availability and 

reliability of the infrastructure. To this end, OpenIoT employs a variety of optimization 

algorithms, which are structured within a framework for autonomic management of 

the OpenIoT infrastructure (i.e. without human mediation).  

The deliverable has presented a number of algorithms and techniques that are 

employed for the management and resource optimization of the OpenIoT cloud 

platform. These algorithms target a number of different optimization objectives and 

employ a host of different mechanisms, in particular: 

 Efficient scheduling functionalities are considered, mainly in order to ensure that 

OpenIoT streams data only in cases where these data have been requested 

and/or used. 

 Caching mechanisms are prescribed with a view to accelerating access to sensor 

data that are frequently required, to sensor services that are frequently used, as 

well as to sensor data that reside in popular locations. 

 Cloud optimization technologies are also presented, using model-based view for 

sensor query representation and processing.  

 Utility-driven algorithms are also employed in order to maximize the net benefit 

(i.e. utility) measured as difference between the benefit of the provided 

information and the cost of maintaining the system in terms of energy 

consumption/bandwidth and the cost of ensuring privacy. 

 Context-aware filtering for mobile environments, focused on efficiency on sensor 

data collection. 

 Semantic Web and Linked data techniques are used in order to efficiently 

correlate different queries (e.g., sensor queries) to the OpenIoT system. 

 The use of bandwidth allocation subject to spatial constraints is suggested in 

order benefit from spatial correlations and maximizes the energy efficiency of the 

network. 

Several of the above algorithms are based on background research results of the 

partners, while other are tailored to the structure and the mode of operation of the 

OpenIoT system. In addition to describing these schemes, a specification and 

implementation design has been presented, identifying the components of the 
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OpenIoT architecture that host and/or support these mechanisms. Specifically, we 

have introduced the implementation details for the Dynamic Sensor control module, 

the Utility-based optimization, the Cloud optimization integration, and the simulation 

of caching scenarios. The project intends also to select some of the schemes for 

integration over the open source OpenIoT platform. The rest schemes would serve 

as exercises and projects for the open source community of the project, while also 

being excellent themes for (open source) promotion activities like summer of code. 
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