
Deliverable 5.1.2 Self-management and Optimization Framework

Copyright  2013 OpenIoT Consortium 1

SEVENTH FRAMEWORK PROGRAMME

Specific Targeted Research Project

Call Identifier: FP7–ICT–2011–7

Project Number: 287305

Project Acronym: OpenIoT

Project title: Open source blueprint for large scale self-organising

cloud environments for IoT applications

D5.1.2 Self-management and

Optimization Framework

Document Id: OpenIoT-D512-271213-Draft

File Name: OpenIoT-D512-271213-Draft.pdf

Document reference: Deliverable 5.1.2

Version: Draft

Editor: Jean-Paul Calbimonte

Organisation: EPFL / AIT / DERI

Date: 2013 / 12 / 30

Document type: Deliverable

Dissemination level: PU (Public)

Copyright  2013 OpenIoT Consortium: NUIG-National University of Ireland Galway, Ireland;

EPFL – Ecole Polythechnique Fédérale de Lausanne, Switzerland; Fraunhofer Institute

IOSB, Germany; AIT - Athens Information Technology, Greece; CSIRO - Commonwealth

Scientific and Industrial Research Organization, Australia; SENSAP Systems S.A., Greece;

AcrossLimits, Malta. UniZ-FER University of Zagreb, Faculty of Electrical Engineering and

Computing, Croatia. Project co-funded by the European Commission within FP7 Program.

Deliverable 5.1.2 Self-management and Optimization Framework

Copyright  2013 OpenIoT Consortium 2

DOCUMENT HISTORY

Rev. Author(s) Organisation(s) Date Comments

V20 Robert

Gwadera

EPFL 2013/10/18 Initial ToC

V21 Ivana Podnar

Žarko

UNIZG-FER 2013/11/02 Added sections 3.5.2 and 3.7.1

V22 Chris Georgoulis AIT 2013/11/22 Added sections 3.5.3.5, 3.8 and 4,

Updated Issues with

Numbering/Heading,

V23

Mehdi

Riahi

EPFL 2013/12/11 Added sections 3.4 and 4.1

Jean-Paul

Calbimonte

EPFL 2013/12/12 Adapted contents in Section 3.4 and

Section 4, Updated Sec 1

Jean-Paul

Calbimonte

EPFL 2013/12/16 Rearranged 3.8 in 3.7.2, Updated 1.4,

Modified 3.5.1

Tian

Guo

EPFL 2013/12/17 Added 3.3 and 4.5

Mehdi

Riahi

EPFL 2013/12/19 Modified 3.4 and 4.1, connected both

sections.

Jean-Paul

Calbimonte

EPFL 2013/12/20 Edition Sections 3.4, 3.3, 4, 4.3, 4.4,

Addressed early comments from project

partners, Conclusions and Introduction
V24 Ivana Podnar

Žarko

UNIZG-FER 2013/12/23 Modified 3.5.2

Technical Review

V25 Jean-Paul

Calbimonte

EPFL 2013/12/24 Addressed TR comments

V26 Chris

Georgoulis

AIT 2013/12/27 Updated Section 3.1.5.3, 4.3, addressed

TR Comments

V27
Martin

Serrano DERI 2013/12/30 Quality Review

V28
Martin

Serrano DERI 2013/12/30 Circulated for Approval

V29
Martin

Serrano DERI 2013/12/30 Approved

Draft
Martin

Serrano DERI 2013/12/30 EC Submitted

Deliverable 5.1.2 Self-management and Optimization Framework

Copyright  2013 OpenIoT Consortium 3

TABLE OF CONTENTS

1 INTRODUCTION .. 9

1.1 SCOPE ... 9

1.2 AUDIENCE ... 9

1.3 SUMMARY ... 10

1.4 STRUCTURE ... 11

2 OPENIOT MANAGEMENT AND OPTIMIZATION FUNCTIONALITIES 13

2.1 OVERVIEW .. 13

2.2 OPENIOT SELF-MANAGEMENT FEATURES ... 14

2.2.1 Assessing Self-Management Functionalities within OpenIoT Architecture 14

2.2.2 Performance ... 16

2.2.3 Reliability .. 16

2.2.4 Scalability .. 17

2.2.5 Resource Optimization and Cost Efficiency .. 18

2.3 SELF-MANAGEMENT FRAMEWORK – ICO SERVICES LIFECYCLE 19

2.3.1 Service Creation ... 19

2.3.1.1 Efficient Scheduling.. 20

2.3.2 Service Customization .. 20

2.3.2.1 Efficient Sensor Data Collection ... 20

2.3.2.2 Request Types Optimization .. 21

2.3.3 Service Management .. 21

2.3.3.1 Service Distribution .. 22

2.3.3.2 Service Maintenance ... 22

2.3.3.3 Service Invocation .. 22

2.3.3.4 Service Execution .. 23

2.3.3.5 Service Assurance ... 23

2.3.3.6 Utility-based Optimization .. 23

2.3.4 Service Operation ... 23

2.3.4.1 Cloud Optimization ... 23

2.3.5 Service Billing ... 24

2.3.6 Customer Support ... 24

Deliverable 5.1.2 Self-management and Optimization Framework

Copyright  2013 OpenIoT Consortium 4

3 DETAILED ANALYSIS OF OPENIOT APPROACHES TO SELF-MANAGEMENT

AND OPTIMIZATION .. 25

3.1 OVERVIEW AND SUMMARY OF CONTRIBUTIONS 25

3.2 EFFICIENT SCHEDULING ... 26

3.2.1 Context of Scheduling Functionality in OpenIoT 26

3.2.2 Related Work in Sensor Networks and Multi-Query Optimization 26

3.2.2.1 Pre-Processing, Data Aggregation and In-Network Processing in WSN26

3.2.2.2 Caching in WSN ... 27

3.2.2.3 Optimizing Queries to Distributed Data Streams 28

3.2.3 Multi-Query Data Management and Caching Techniques in OpenIoT 28

3.2.3.1 Implementation of a Pull Approach at Local Scheduling 28

3.2.3.2 Caching of sensor/ICO data ... 29

3.2.3.3 Caching of sensor/ICO data based on frequency of requests 31

3.2.3.4 Caching of entire (SPARQL) Queries ... 31

3.2.3.5 SD & UM Requests Caching Scenarios ... 32

3.2.3.5.1 Erfurt Caching Architecture ... 33

3.2.3.5.2 Cache Population and Maintenance ... 33

3.2.3.5.3 Berlin SPARQL Benchmark Results ... 34

3.2.3.5.4 Application of Scenario on Cloud Datastores 35

3.3 CLOUD OPTIMIZATION ... 37

3.3.1 Key-Value Interval Index ... 39

3.3.1.1 In-memory structure ... 39

3.3.1.2 Index-model table .. 40

3.3.1.3 KVI-index updates .. 40

3.3.2 Query Processing via KVI-index and MapReduce 41

3.3.2.1 Enhanced interval intersection search ... 41

3.3.2.2 Point search ... 41

3.3.2.3 Hybrid KVI-Scan-MapReduce query processing 42

3.4 UTILITY BASED OPTIMIZATION ... 42

3.4.1 Problem Formulation... 44

3.4.2 Cost Computation .. 45

3.4.3 Valuation functions .. 45

3.4.4 Experimental Evaluation ... 46

Deliverable 5.1.2 Self-management and Optimization Framework

Copyright  2013 OpenIoT Consortium 5

3.5 EFFICIENT SENSOR DATA COLLECTION ... 48

3.5.1 Utility-based Sensor Data Acquisition ... 48

3.5.2 Context-Aware Acquisition and Filtering of Sensor Data in Mobile

Environments .. 50

3.6 REQUEST TYPE OPTIMIZATION .. 57

3.6.1 Efficient Query Processing .. 57

3.6.2 Efficient Stream Data Processing ... 59

3.7 ENERGY EFFICIENCY AND BANDWIDTH OPTIMIZATION 60

3.7.1 Energy and Bandwidth Consumption on MIOs ... 61

3.7.2 Bandwidth Optimization through Indirect Sensor Control.......................... 66

3.7.2.1 Sensor Use Identification ... 68

4 PROTOTYPE IMPLEMENTATIONS .. 69

4.1 UTILITY BASED OPTIMIZATION ... 70

4.1.1 Functional Specification .. 70

4.1.2 Required Information about Sensors and Queries 72

4.2 DYNAMIC SENSOR CONTROL MODULE .. 73

4.2.1 Main Released Functionalities and Services .. 73

4.2.2 Download, Deploy and Run .. 73

4.2.2.1 Source Code Analysis .. 73

4.2.2.2 Configuration .. 77

4.3 CACHING SCENARIOS SIMULATION PROTOTYPE 78

4.3.1 Main Released Functionalities and Services .. 78

4.3.2 Download, Deploy and Run .. 81

4.4 CLOUD OPTIMIZATION INTEGRATION IN GSN AND LSM 81

4.4.1 Functional specification... 81

4.4.2 Query specification ... 82

4.4.3 Experimental evaluation.. 83

4.4.3.1 Setup.. 83

4.4.3.2 Results ... 83

5 CONCLUSIONS ... 85

6 REFERENCES ... 86

Deliverable 5.1.2 Self-management and Optimization Framework

Copyright  2013 OpenIoT Consortium 6

LIST OF FIGURES

Figure 1. OpenIoT Autonomic Service Control Loop for ICO’s. 14

Figure 2. OpenIoT Architecture with Self-management Features. 15

Figure 3. OpenIoT Autonomic Self-management Framework for IoT Services (ICO’s). 19

Figure 4. Service Management & Operations. .. 21

Figure 5. SPARQL Cache Architecture. .. 33

Figure 6. Cache Population ER Diagram. ... 34

Figure 7. Amazon S3 Data-store Prices Based on Caching and Spectrum Width. ... 36

Figure 8. (a) Model view sensor data. (b) Polynomial models of segments. (c) Query processing on the gridded segment. 38

Figure 9. (a) In-memory vs-tree. (b) Index-model table in the key-value store. (c) One segment of sensor data. 40

Figure 10. (a) rSearch. (b) Segment Materialization. .. 40

Figure 11. Average utility per time slot having only point queries. 47

Figure 12. Average utility per time slot having only spatial aggregate queries. 47

Figure 13. Average utility per time slot having only location monitoring queries. 47

Figure 14. Average utility per time slot having only region monitoring queries. 47

Figure 15. Average utility per time slot having a mix of point, aggregate, and location monitoring queries. ... 47

Figure 16. Publish/subscribe model and interaction. .. 51

Figure 17. Movement traces and data transmissions. .. 52

Figure 18. Percent decrease in the number of messages for different percents of cells with subscriptions.... 56

Figure 19. Percent decrease in the number of messages when increasing the number of average publications per publisher P_i. 56

Figure 20. Percent decrease in the number of messages when increasing the number of cells through which a user passes through. ... 57

Figure 21. Linked Data Functionality by means of Linked Data in LSM. 59

Figure 22. Energy consumption on a Wi-Fi interface for receiving 1000 data items. 63

Figure 23. Energy consumption on a Wi-Fi interface for receiving 100 data items. .. 64

Figure 24. Bandwidth consumption on a Wi-Fi interface for receiving 1000 data items. 65

Figure 25. Bandwidth consumption on a Wi-Fi interface for receiving 100 data items. 65

Figure 26. Indirect Dynamic Sensor Control Sequence Diagram. 67

Figure 27. Indirect Dynamic Sensor Control Flow Chart. .. 67

Figure 28. High level functional architecture of utility-based optimization. 71

Figure 29. Utility-based query execution. ... 72

Deliverable 5.1.2 Self-management and Optimization Framework

Copyright  2013 OpenIoT Consortium 7

Figure 30. Dynamic Sensor Control UML Diagram ... 74

Figure 31. Caching Simulation Introductory Screen. .. 78

Figure 32. Caching Simulator User Input. ... 79

Figure 33. Caching Simulator Chart Calculation Parameters. 80

Figure 34. (a) GSN node. (b) Sensor data segments and KVI-index. (c) Key-value stores in LSM. (d) KVI-index and MapReduce based query processing. .. 82

Figure 35. Range query results. ... 84

Figure 36. Point query results. .. 84

LIST OF TABLES

Table 1. Self-Management and Optimization Functionalities vs. OpenIoT Techniques. 26

Table 2. Cache hit/miss rate in relation to the choice of parameter a 35

Table 3. Caching Scenario - Server Cost of Ownership. ... 36

Table 4. Energy gains due to flexible data acquisition. ... 53

Table 5. Default parameter values. ... 55

Table 6. Energy consumption on a Wi-Fi interface for receiving 1000 data items..... 63

Table 7. Energy consumption on a Wi-Fi interface for receiving 100 data items....... 64

Table 8. Bandwidth consumption on a Wi-Fi interface for receiving 1000 data items. 64

Table 9. Bandwidth consumption on a Wi-Fi interface for receiving 100 data items. 65

Table 10. Prototypes and module implementations vs. OpenIoT Management and optimization Techniques. 70

Table 11. Dynamic Sensor Control Properties. ... 77

Deliverable 5.1.2 Self-management and Optimization Framework

Copyright  2013 OpenIoT Consortium 8

TERMS AND ACRONYMS

ACF Autonomic Computing Forum

CQELS Continuous Query Evaluation over Linked Stream

DCOM Distributed Component Object Model

DMTF Distributed Management Task Force

GSN Global Sensor Network

ICO Internet-Connected Objects

IoT Internet of Things

LSM Linked Stream Middleware

NGN Next Generation Networks

PaaS Platform as a service

RDF Resource Description Framework

RMI Remote Method Invocation

SaaS Software as a service

SD&UM Service Delivery and Utility Manager

SLA Service Level Agreement

SLO Service Logic

SPARQL SPARQL Protocol and RDF Query Language

SQL Structured Query Language

SSN Semantic Sensor Networks

TMF TeleManagement Forum

W3C World Wide Web Consortium

WSN Wireless Sensor Networks

UBO Utility-based Optimizer

Deliverable 5.1.2 Self-management and Optimization Framework

Copyright  2013 OpenIoT Consortium 9

1 INTRODUCTION

1.1 Scope

One of the key characteristics of the OpenIoT cloud platform is its ability to make

optimal usage of the resources that it comprises, with a goal to maximizing efficiency,

sustainability and costs of both the sensing process and resource usage within the

cloud. Furthermore, it is envisaged that these resource optimization functionalities

are provided by the OpenIoT sensor-cloud infrastructure itself, in an autonomous

fashion and without any human intervention. To this end, OpenIoT specifies and

implements a framework for «self-management and optimization» associated with

sensors, services and applications that are executed over the OpenIoT cloud. The

framework optimizations have been designed in order to be executed at various

levels, from cloud storage to bandwidth efficiency or query results caching.

This deliverable presents the specifications of the self-management and optimization

framework of the OpenIoT platform, providing insights on its implementation in-line

with the OpenIoT architecture. The deliverable introduces first the algorithms

techniques and experimental evaluation that validate them; and then describes their

implementation in the OpenIoT platform.

Towards the implementation of the OpenIoT self-management and optimization

framework, this deliverable has a bi-directional interaction with other work packages

dealing with the OpenIoT platform architecture (WP2) and implementation (WP4): On

the one hand it provides inputs on the information that should be stored and

managed within the OpenIoT system in order to enable the implementation of the

algorithms, while on the other it takes into account the results of these work

packages in order to properly design the practical implementation of the algorithms

within the OpenIoT self-management and optimization framework.

1.2 Audience

The target audience of this deliverable includes:

 The consortium partners and more specifically consortium members dealing with

the design and implementation of the OpenIoT open source platforms. These

members take into account the results of this deliverable in order to design the

OpenIoT platform elements (such as data structures) in a way that facilitates the

implementation of the presented algorithms.

 Cloud computing and/or IoT researchers, which could be offered with a range of

resource optimization schemes, that could be valuable in the scope of current and

future implementations of systems attempting the IoT/cloud convergence.

Deliverable 5.1.2 Self-management and Optimization Framework

Copyright  2013 OpenIoT Consortium 10

1.3 Summary

This deliverable describes the OpenIoT self-management and optimization

framework, in terms of algorithms and mechanisms that it comprises as well as in

terms of their implementation over the OpenIoT platform and associated cloud

infrastructure. As a first step the main operations and functionalities of the OpenIoT

self-management and optimization infrastructure are described and related to the

structure of management operations defined in state-of-the-art frameworks for

autonomic computing and self-management. Along with a brief description of the

optimization techniques that are employed in OpenIoT, an initial mapping of the

various techniques on the OpenIoT architecture is performed.

Following the overview of the OpenIoT self-management and optimization

infrastructure, the deliverable delves into more details about each one of the

mechanisms. In particular:

 Efficient scheduling mechanisms are presented, aiming at optimizing the rates

according to which the various sensors streams are streamed to the cloud and/or

accessed by consumers.

 A variety of caching mechanisms are presented, aiming at accelerating access to

frequently used/requested data.

 Cloud optimization for sensor data storage, using approximation of raw sensor

data to view-models represented as functions.

 Utility-driven mechanisms are illustrated, aiming at maximizing the utility of the

services, while minimizing the cost for setting them up and maintaining them.

 Efficient sensor data collection using the utility metrics, and also context-aware

filtering from mobile devices.

 Optimization techniques employing the temporal and/or spatial aspects of the

OpenIoT queries and services, along with semantic techniques for correlating

queries and associated with reasoning operations over multiple data streams.

These techniques target two of the main goals of WP5, which are to investigate

techniques for energy-efficient service delivery, and resource sharing

algorithms for accessing OpenIoT resources.

Finally, we provide details and insight about the implementation of the
abovementioned techniques for self-management and optimization within the
OpenIoT platform. Therefore, and as it was stated in the goals of WP5, we
established an overall management and optimization framework for the
OpenIoT infrastructure. The framework incorporates the optimization algorithms
listed above, researched in this work package. Specifically, we specify the following
components, and indicate how they are being integrated into the OpenIoT platform:

Deliverable 5.1.2 Self-management and Optimization Framework

Copyright  2013 OpenIoT Consortium 11

 Utility-based optimization: related to Task T5.2, which addresses optimization
of resource sharing across service requests, e.g. sensor data collection.
This utility function in this module also incorporate privacy for the computation,
addressing also T5.3, is related to the definition of utility metrics in order to
ensure the trustworthiness of the services.

 Dynamic Sensor Control, which is also related to T5.2, but focusing on
resource and sharing of resources at the scheduling level, with a view to
making optimal use of the resources (sensors). The sensor control techniques
are also related to T5.1 as they deal with energy efficiency at the (virtual)
sensor level.

 Caching Simulation: The cache simulator of query responses is directly related
to T5.1 as it deals with bandwidth optimization, reducing the data
transmission volumes between the data layer and the rest of the OpenIoT
architecture.

 Cloud Optimization is related to both T5.2 and T5.1 as it deals with resource
management for cloud environments (e.g. for efficient cloud storage and
processing), and also on bandwidth optimization (reduced data volumes
over the wire).

1.4 Structure

The remainder of the deliverable is structured as follows:

Section 2 concentrates on the OpenIoT management and optimization

functionalities, related to the integration of large-scale sensor data into the cloud.

This requires establishing a common understanding of the challenges and features

for enhancing complex systems functionality to support a large number of sensors,

devices and services, and their dynamic deployment and implementation within the

OpenIoT platform. In particular, Section 2.2 describes the OpenIoT self-management

features assessed in terms of performance, reliability, scalability, resource

optimization and cost efficiency. Section 2.3 introduces the OpenIoT vision to define

an ICO service lifecycle control. Self-management operations represent the building

blocks of the core IoT service lifecycle in OpenIoT, and provide significant

contributions to the OpenIoT platform in general. As per definition, service creation,

service customization, service management, service operation, service billing and

customer support, complete the ICO service lifecycle. In this chapter, these

operations are explained and related with OpenIoT functionalities and technologies

supporting ICO service lifecycle in cloud environments.

Section 3 is devoted to presenting a detailed analysis of OpenIoT approaches that

enable self-management and optimization. It presents the techniques OpenIoT is

proposing to use, as part of the self-management and optimization functionalities

introduced in Chapter 2. Section 3.1 introduces a summary where self-management

and optimization functionalities are related with OpenIoT techniques. Section 3.2

provides details about the scheduling functionality in OpenIoT and describes the

Deliverable 5.1.2 Self-management and Optimization Framework

Copyright  2013 OpenIoT Consortium 12

related work in sensor networks and multi-query optimization. Later in this section we

discuss different multi-query data management solutions and caching techniques in

OpenIoT as well as pull approaches and caching of sensor ICO data (random or

based on frequency request). In Section 3.3 cloud optimization is discussed for

efficient sensor data storage of segment approximations of sensor data instead of

raw measurements. This novel querying mechanism combines in-memory and key-

value stored data management in the cloud. Section 3.4 discusses utility-based

optimization specifications associated with the OpenIoT platform. We adapt a utility-

driven approach to the system optimization, which tries to maximize the net benefit

measured as a difference between the benefit of the provided information and the

cost of maintaining the system in terms of energy consumption/bandwidth and the

cost of ensuring privacy. Section 3.5 specifies efficient sensor data collection

techniques, which OpenIoT is proposing to be part of its final architecture, including

algorithms for utility-based sensor data acquisition and filtering on mobile devices.

Section 3.6 introduces efficient query processing techniques implemented by the

LSM module of the OpenIoT architecture. Section 3.7 introduces energy efficiency

and bandwidth optimization and provides an analysis for specifying this functionality

in OpenIoT final architecture. We include also an analysis on energy and bandwidth

consumption on mobile devices.

Section 4 provides details about the implementation of the techniques in Section 3

for the OpenIoT platform architecture. Specifically, we provide the specification and

details of the utility-based optimization (Section 4.1) to be used by the OpenIoT

integrated prototype, based on the techniques described in Section 3.4. In Section

4.2 we provide details on the implementation of the Dynamic Sensor Control Module,

based on indirect sensor control, as introduced in Section 3.7.2. The Caching

Scenarios prototype is detailed in Section 4.3. Finally, the cloud optimization

approach implementation is specified in Section 4.4, based on the algorithms and

techniques described previously in Section 3.3.

Section 5 concludes the deliverable. We also include references where more

detailed specifications and descriptions to the proposed technologies can be found.

Deliverable 5.1.2 Self-management and Optimization Framework

Copyright  2013 OpenIoT Consortium 13

2 OPENIOT MANAGEMENT AND OPTIMIZATION

FUNCTIONALITIES

2.1 Overview

The process of integrating sensor data and cloud infrastructures as part of a blueprint

open source solution in OpenIoT, creates new challenges in terms of enhancing

complex system functionality, enables large support of sensors, devices and service

systems, and enables dynamic deployment and implementation of various innovative

IoT services.

IBM1 has introduced automaticity as part of the vision of autonomic computing

“systems manage themselves according to an administrator’s goals. New

components integrate as effortlessly as a new cell establishes itself in the human

body. These ideas are not science fiction, but elements of the grand challenge to

create self-managing computing systems”. This principle has emerged and

transcended beyond computing frontiers and also in the area of the communications

management, the term autonomic communications has been researched for several

years, reflecting a real challenge to materialize the vision of transparent interaction

between administrator’s goals and systems self-management operations. In the late

90’s supported by the Autonomic Computing Forum (ACF) autonomics brought the

concept of seamless mobility associated to scenarios for people configuring new

personalized services using displays, smart posters and other end-user interaction

facilities, as well as their own personal devices. Named lately as pervasive

computing, autonomics bring the inherent necessity to increase the functionality of

those systems dealing with additional information and funded on communication

system infrastructures. Pervasive service requirements are headed by the

interoperability of data, voice, and multimedia using the same (converged) network.

This requirement defines a new challenge: the necessity to integrate smartness to

the systems and make the infrastructure more reactive by means of data and

services control. Nowadays the Future Internet design with the inclusion of ICOs is

motivated by both, the necessity to support the requirements of pervasive services

and the necessity to satisfy the challenges of self-operations dictated by the largely

named IoT paradigm.

Autonomic systems must dynamically adapt the services and resources that they

provide to meet the changing needs of users and/or to respond to changing

environmental conditions alike that of system control; this requires the integration of

management information into the OpenIoT platform. Figure 1 depicts the OpenIoT

autonomic control loop proposed in OpenIoT. This model for OpenIoT is crucial, as

each day more complex ICO consumers require novel services, which in turn require

1 IBM The Vision of Autonomic Computing, IBM Research, Vision and Manifesto.

Deliverable 5.1.2 Self-management and Optimization Framework

Copyright  2013 OpenIoT Consortium 14

more complex support systems that must harmonize multiple technologies and linked

information from sub-systems interacting with the offered embedded services.

Figure 1. OpenIoT Autonomic Service Control Loop for ICO’s.

ICOs promise new smart scenarios, and at the same time create challenging

environments for deploying user-centric applications and services. ICO systems

require information and systems able to support services and especially

interoperable applications. In autonomic systems linked data plays the important role

of enabling the management plane to adapt the services and resources that it is

offering to the changing demands of the user, as well as adapt to changing

environmental conditions, by meaning of the linked nature, thus enabling the

management of new functionalities in ICO complex systems [Serrano 2008].

2.2 OpenIoT Self-management Features

2.2.1 Assessing Self-Management Functionalities within OpenIoT Architecture

The vision of self-management creates an environment that hides the underlying

complexity of the management operations, and instead provides a façade that is

appealing to both administrators and end-users alike. It is based on consensual

agreements between different systems (e.g., management systems and information

support systems), and it requires a certain degree of cooperation between the

systems to enable interoperable data exchange.

Deliverable 5.1.2 Self-management and Optimization Framework

Copyright  2013 OpenIoT Consortium 15

One of the most important benefits of this agreement is the resulting improvement of

the management tasks and operations using such information to control ICO’s and

their applications. However, the descriptions and rules that coordinate the control

operations of an ICO system are not the same as those that govern the sensor data

in each application system. For example, information present in a particular sensor

network with primarily proprietary technology is often restricted to control the

operation of a service, and usually has nothing to do with service management.

In the scope of OpenIoT, cooperation and interactions between various components

of the OpenIoT architecture are required in order to support the self-management

functionalities. Figure 2 depicts the OpenIoT Autonomic Self-management

Framework for IoT Systems (ICO’s), and presents the OpenIoT architecture

components that implement and support the various functionalities.

Figure 2. OpenIoT Architecture with Self-management Features.

Figure 2 serves as a reference for the positioning of these functionalities in the scope

of the OpenIoT architecture. It summarizes the main functionalities provided by the

OpenIoT architecture, namely efficient scheduling, cloud optimization, utility-based

optimization, request types optimization, efficient sensor data collection, and

energy/bandwidth optimization. The following paragraphs present in detail the various

functionalities depicted in the figure, and how they are assessed in terms of

performance, reliability, scalability and resource optimization.

Deliverable 5.1.2 Self-management and Optimization Framework

Copyright  2013 OpenIoT Consortium 16

2.2.2 Performance

Scalability and interoperability between heterogeneous, complex and distributed ICO

systems is always a challenge and it requires new management and optimization

functionalities. However, this added complexity might hurt the overall performance of

the platform. Performance may be understood in different ways, depending on the

perspective to be taken. From the point of view of an end user, performance can be

perceived, for instance, in terms of query response times. In the case of a sensor it

can be related to data transmission rates, or for a processing application it can be

related to the throughput of data analysis of ICO data. In this regard, most of the

optimization schemes proposed for the OpenIoT should have a positive impact on

performance. Efficient scheduling and utility-based optimization result in reduced

amounts of sensor interactions with the query middleware, thus reducing query

times. Cloud optimization is precisely devised to also reduce the time spent in

processing queries, using highly efficient cloud storage mechanisms. Efficient sensor

data collection and bandwidth optimization improve performance in terms of

throughput.

As an inherent functional limitation, ICO management systems do not support a large

spectrum of devices, such as wearable computers and specialized sensors.

Furthermore, ICO systems are every day being provided with embedded

technology/connectivity, which is used to make new types of networks that provide

their own services (e.g., simple services supporting other, more complex, services),

which implies that management task become more difficult and complex in terms of

scalability.

In OpenIoT, we deal with linked data or information sharing. In project scenarios use

a broad mixture of technologies and devices (sensors) that generate an extensive

amount of different types of information, many of which need to be shared and

reused among the different service management components with different data

representation mechanisms. This requires the use of different data models, due both

to the nature of the information being managed as well as the physical and logical

requirements of applications. However, information/data models (linked data and

particularly RDF) do not have everything necessary to build up this single common

interoperable sharing support system. In particular, there is a need to delegate the

ability to describe behaviour of the services and application with the infrastructure.

2.2.3 Reliability

Traditionally management systems approaches define a strict layering of functionality

and cross-layered interactions are left aside. In OpenIoT we explore the broad

diversity of resources, devices, services, and systems, which are interconnected and

exchange information across layers.

This complex structure also plays a role in terms of the overall reliability of an IoT

platform. Each device that contributes to the OpenIoT ecosystem is subject to varying

Deliverable 5.1.2 Self-management and Optimization Framework

Copyright  2013 OpenIoT Consortium 17

degrees of dependability. Some devices may provide high quality data (e.g. well

calibrated sensors) while others may not even be available at some time of the day

(e.g. community sensing where citizens voluntarily provide data through home-made

devices). Moreover, reliability of mobile sensing devices can, in some cases, be

undermined by external factors such as interference, signal problems or

unreachability. In OpenIoT, we address some of these issues with the utility-based

optimization, where the reliability of ICOs can influence the inclusion or exclusion of

its data from the acquisition process.

In OpenIoT we pursue the objective of annotating information, described in services

and data models, so to provide an extensible, reusable common management

platform that provides new functionality to better manage resources, devices,

networks, systems and services [Serrano 2008]. Given the fact that different data

representations are a necessity in the next generation Internet solutions [Clark 2003],

the typical solutions have attempted to define a single common information model

that can harmonize the information present in each of these different management

data models. Using a single information model prevents different data models from

defining the same concept in conflicting ways. In addition, the use of a single

common information model enables the reuse and exchange of service management

information. Examples of using a single common information model include the

initiative CIM/WBEM (Common Information Model/Web Based Enterprise

Management), [DMTF-CIM] from the DMTF (Distributed Management Task Force,

Inc.) and broadly supported by the Shared Information Model [TMF-SID] of the TMF

[TeleManagement Forum]. However neither of them has been completely successful,

as evidenced by the lack of support for either of these approaches in network devices

currently manufactured. This indicates that SID model lacks the extensibility to

promote the interoperability and enhance its acceptance and expand its

standardization.

In OpenIoT we are proposing an alternative to facilitate the interoperability, by

semantically enriching the information models to contain the references in the form of

relationships between sensor data required to provide the service. By using one or

more ontologies and the referenced sensor data ontology [W3C SSN]2 then service

systems and applications using information contained in the service model can

access and do operations and functions for which they were designed. This

functionality in particular impacts the performance of the ICO systems by its unique

and novel feature of enabling management operations using the information

contained in the information models (sensor data) for ICO service provisioning.

2.2.4 Scalability

The vision of ICOs which enable societies to use a wide range of sensors, devices

and computing systems to “transparently” create smart applications and on-demand

2 http://www.w3.org/2005/Incubator/ssn/

Deliverable 5.1.2 Self-management and Optimization Framework

Copyright  2013 OpenIoT Consortium 18

services automatically, requires beyond sub-systems offering reliable control and

connectivity, associated management systems that are able to support such

exponentially growing and dynamic service creation. In this vision, not only the

numbers of potential users may rapidly grow (as in traditional web platforms), but

also the number of ICOs and participating sensors may grow. The scale of queries,

data streams and sensor metadata that needs to be processed requires carefully

designed algorithms that go beyond centralized traditional data analysis techniques.

Moreover, the inherently distributed nature of sensors, require a wide scale network

of decentralised processing, to which the OpenIoT users and application should be

able to issue continuous queries. This adds even another level of scale, as the data

is highly dynamic, hence not efficiently tractable with standard query processing

techniques. Data streams and dynamic queries at potentially very fast rates require

highly scalable processing, which is addressed in OpenIoT through Request type

optimization and Cloud Optimization.

2.2.5 Resource Optimization and Cost Efficiency

Self-management features depend on both the requirements as well as the

capabilities of the middleware frameworks or platforms for managing information

describing the services as well as information supporting the delivery and

maintenance of the services. The representation of information impacts the design of

novel syntax and semantic tools for achieving the interoperability necessary when

ICO resources and services are being managed. Middleware capabilities influence

the performance of the information systems, their impact on the design of new

services, and the adaptation of existing applications to represent and disseminate the

information.

In OpenIoT, the use of rule-based engines for controlling ICO’s service management

is augmented with the use of standard ontologies. This enables the management

systems to support the same management data to accommodate the needs of

different management applications through the use of rich semantics [Serrano 2012].

Service management applications for IoT systems highlight the importance of formal

information.

The rules are used for managing various aspects of the service lifecycle. It is

important to identify in OpenIoT what is meant by the term “service lifecycle”.

Currently, the TMF is specifying many of the management operations in networks for

supporting services [TMN-M3050][TMN-M3060], in a manner similar to how the W3C

specifies web services [W3C-WebServices]. However, a growing trend is to manage

the convergence between infrastructure and services (i.e., the ability to manage

different service requirements for data, voice, and multimedia serviced by the same

network), as well as the resulting converged services themselves. The management

of NGN pervasive services involves self-management capabilities for improving

performance and achieving the interoperability necessary to support current and next

generation services.

Deliverable 5.1.2 Self-management and Optimization Framework

Copyright  2013 OpenIoT Consortium 19

2.3 Self-management Framework – ICO Services Lifecycle

This section describes an organizational view that enables the ICO service lifecycle

to be explicitly modelled and semantically managed. This in turn ensures information

interoperability necessary to manage different services in IoT applications. This

section describes the organizational view for the Autonomic Self-management

Framework, which can be divided into six distinct phases with specific tasks [Serrano

2008].

Management operations enabling the autonomic nature of ICO systems are the core

part of the IoT service lifecycle, and where the contributions in OpenIoT are focused.

The management phase for IoT services is highlighted in Figure 3. Creation and

customization of services, accounting, billing and customer support are outside the

scope of OpenIoT. However, they are considered for a design description of ICO

systems. The different service phases exposed in this section describe the service

lifecycle foundations. The objective is to focus the research efforts on understanding

the underlying complexity of service management, as well as a better understanding

about the roles for the components that make up the service lifecycle, using

interoperable information that is independent of any specific type of infrastructure that

is used in the deployment of IoT services.

Figure 3. OpenIoT Autonomic Self-management Framework for IoT Services (ICO’s).

2.3.1 Service Creation

The creation of each new IoT service starts with a set of requirements; the service at

that time exists only as an idea. This idea of the service originates from the

Deliverable 5.1.2 Self-management and Optimization Framework

Copyright  2013 OpenIoT Consortium 20

requirements produced by market analysis and other business information. At this

time, technology-specific resources are not considered in the creation of a service.

However, the infrastructure for provisioning this service must be abstracted in order

to implement the business-facing aspects of the service as specified in a service

definition process [Serrano 2008].

The idea of IoT service must be translated into a technical description of a new

service, encompassing all the necessary functionality for fulfilling the requirements of

that service (e.g., physical devices interconnection, sensor data collection, virtual

sensor aggregation, etc.). A service is conceptualized as the instructions or set of

instructions to provide the necessary mechanism to provide the service itself and

called service logic (SLO).

2.3.1.1 Efficient Scheduling

The OpenIoT system comprises the notion of scheduling of requests, which

undertakes the task of technically describing a new service. The OpenIoT global

scheduler component, which OpenIoT architecture specifies, receives all the User

requests for IoT services and fulfils the requirements of that service. A wide range of

different optimization algorithms can be implemented at the scheduler component of

the OpenIoT architecture. So the main OpenIoT efficient multi-level (global, local)

scheduling optimization scheme involves multi-query data management and caching

techniques that include:

 pull approach at local scheduling,

 caching of sensor/ICO data,

 caching of sensor/ICO data based on frequency of requests, and

 caching of (SPARQL) queries

2.3.2 Service Customization

Service customization, which is also called authoring, is necessary for enabling the

IoT service provider to offer for its consumers the ability to customize aspects of their

IoT services (i.e., ICO selection and/or configuration) according to their personal

needs and/or desires (e.g. defined by a query language). Today, this is a growing

trend in web-services and business orientation. An inherent portion of the

customization phase is an extensible infrastructure, which must be able to handle

service subscription and customization requests from administrators as well as ICO

consumers.

2.3.2.1 Efficient Sensor Data Collection

In OpenIoT we focus on stream data processing components enabling the

deployment over multiple infrastructures. By combining query languages (i.e.

SPARQL) and stream data processing components to enable the User to customize

Deliverable 5.1.2 Self-management and Optimization Framework

Copyright  2013 OpenIoT Consortium 21

a service on its own needs. And based on an efficient stream processing, at the

collection and distribution, making the sensor data system more efficient towards

previous identification of “intelligent” data providers’ by sensing and actuating over

streaming data infrastructures, rather than having to deploy data processing

infrastructures by themselves.

2.3.2.2 Request Types Optimization

Another type of service customization in OpenIoT exists in the request types

optimization where we make use of LSM (Linked Sensor Middleware) [Le-Phuoc

2011]. We use LSM as an extended middleware with functionalities to transparently

cater for dynamic stream information. LSM uses efficient query algorithms that may

provide a global view of the whole dataset to the data processing operators.

2.3.3 Service Management

In this section, the management operations of an ICO service and its interactions are

identified as distinct management operations from the rest of the service lifecycle

phases. Figure 4 depicts management operations as part of the management phase

in a pervasive service lifecycle.

Figure 4. Service Management & Operations.

The main service management tasks are service distribution, service maintenance,

service invocation, service execution and service assurance. An important functional

aspect of the OpenIoT service management framework implementation is the

dynamic (on the fly) deployment of IoT services using specific logic rules. For

instance, when an IoT service is going to be deployed, decisions have to be taken in

Deliverable 5.1.2 Self-management and Optimization Framework

Copyright  2013 OpenIoT Consortium 22

order to determine which sensor or devices (things) are going to be used to support

the service. This activity is most effectively done through the use of particular logic

rules that map the user with the desired data sources and with the capabilities of the

set of ICO that are going to support the service. Moreover, service invocation and

execution can also be controlled by same logic rules, which enable a flexible

approach for customizing one or more service templates to multiple users.

On the other hand, management is an effective mechanism for maintaining code to

realize the IoT services, changes and assurance of the IoT service included. For

example, when variations in the delivery of the service are sensed by the system,

one or more policies can define the set of actions that need to be taken to solve the

problem. In this way, the use of policies enables different behaviour to be

orchestrated as a first step to implement self-management functionality.

2.3.3.1 Service Distribution

This step takes place immediately after the service creation and customization in the

service lifecycle. It consists of storing the service code in specific storage points.

Policies controlling this phase are termed code distribution policies (Distribution). The

mechanism controlling the code distribution determines the specific set of storage

points that the code should be stored in. The enforcement is carried out by the

components that are typically called Code Distribution Action Consumers.

2.3.3.2 Service Maintenance

Once the code is distributed, it must be maintained in order to support updates and

new versions. For this task, we use special policies, termed code maintenance

Policies (CMaintenance). These policies control the maintenance activities carried

out by the system on the code of specific services. A typical trigger for these policies

could be the creation of a new code version or the usage of a service by the

consumer. The actions include code removal, update and redistribution. These

policies are enforced by the component that is typically named the Code Distribution

Action Consumer.

2.3.3.3 Service Invocation

The service invocation is controlled by special policies that are called SInvocation

Policies. The service invocation tasks are realized by components named Condition

Evaluators, which detect specific triggers produced by the service consumers. These

triggers also contain the necessary information that policies require in order to

determine the associated actions. These actions consist of addressing a specific

code repository and sending the code to specific execution environments in the

network. The policy enforcement takes place in the Code Execution Controller Action

Consumer.

Deliverable 5.1.2 Self-management and Optimization Framework

Copyright  2013 OpenIoT Consortium 23

2.3.3.4 Service Execution

Code execution policies, named CExecution policies govern how the service code is

executed. This means that the decision about where to execute the service code is

based on one or more factors (e.g., using performance data monitored from different

network nodes, or based on one or more context parameters, such as location or

user identity). The typical components with the capability to execute these activities

are commonly named Service Assurance Action Consumers, which evaluate network

conditions. Enforcement of these policies is the responsibility of the components that

are typically called Code Execution Controller Action Consumers.

2.3.3.5 Service Assurance

This phase is under the control of special policies termed service assurance policies,

termed SAssurance, which are intended to specify the system behaviour under

service quality violations. The Service Assurance Condition Evaluator evaluates rule

conditions. These policies include preventive or proactive actions, which are enforced

by the component typically called the Service Assurance Action Consumer.

Information consistency and completeness is guaranteed by a policy-driven system,

which is assumed to reside in the service creation and customization framework.

2.3.3.6 Utility-based Optimization

In OpenIoT for the dynamic deployment of IoT services we adapt a utilitarian

approach optimization for the system’s logic rules. The utilitarian approach tries to

maximize the net benefit measured as difference between the benefit of the provided

information and the cost of maintaining the system in terms of energy

consumption/bandwidth and the cost of ensuring privacy.

2.3.4 Service Operation

The operation of a deployed IoT service is based on monitoring aspects of the cloud

infrastructure that support that service, and variables that can modify the features

and/or perceived status of the communications. Usually, monitoring tasks are done

using agents, as they are extensible and can only accommodate a wide variety of

information, and are easy to deploy. The information is processed by the agent

and/or by middleware that can translate raw data into and from having explicit

semantics that suit the needs of different applications.

2.3.4.1 Cloud Optimization

In OpenIoT we enforce adaptive cloud optimization algorithms based on the needs of

each deployed scenario. The cloud infrastructure can be managed based on its

functional schemes (i.e. access/storage charges). In particular we target model-

based sensor data approximation to reduce the amount of data for query processing,

Deliverable 5.1.2 Self-management and Optimization Framework

Copyright  2013 OpenIoT Consortium 24

using a MapReduce evaluation paradigm. In this way the OpenIoT platform adapts

the service runtime having in mind its cost-effectiveness and data integrity.

2.3.5 Service Billing

Service billing is just as important as service management, since without the ability to

bill for delivered IoT services provided, the organization providing those services

cannot make money. Service billing is often based on using one or more accounting

mechanisms that charge the customer based on the resources used in the network.

In OpenIoT, we particularly align our approach with the cloud paradigm enabling pay-

as-you-go services. In the billing phase, the information required varies during the

business lifecycle, and may require additional resources to support the billing.

Service metering is implemented in the utility manager, which keeps track of the

utility metrics specified in D4.2.1. This metering can then serve as a foundation for

service billing.

2.3.6 Customer Support

Customer support provides assistance with purchased IoT services, while IoT main

feature is the non-dependence or dependency of service provider, computational3

resources or software4 , or other support goods are required for the provisioning of

complex IoT services. Therefore, a range of services5 and resources (mainly cloud)

related are required to facilitate the maintenance and operation of the IoT services,

and additional context (and sometimes the uncovering of implicit semantics) is

necessary in order for user or operators to understand problems with purchased

services and resources. OpenIoT foresees to enable the User with the ability to

configure, monitor and maintain IoT operative services (as described in deliverable

D2.3, Chapter 9.2). This is done through specialized monitoring and configuration

interfaces, which are able, for example, to modify object-objet connections or

activate/de-active sensors, instead of relaying this capacity to the implemented

service maintenance functionality in the subsystem. This is mainly an OpenIoT

platform system administrator/ service provider tool, which would enable him to

deploy, configure, manage and offer service customer support more dynamically

when necessary.

3 http://en.wikipedia.org/wiki/Computer
4 http://en.wikipedia.org/wiki/Software
5 http://en.wikipedia.org/wiki/Customer_service

http://en.wikipedia.org/wiki/Computer
http://en.wikipedia.org/wiki/Computer

Deliverable 5.1.2 Self-management and Optimization Framework

Copyright  2013 OpenIoT Consortium 25

3 DETAILED ANALYSIS OF OPENIOT APPROACHES TO SELF-

MANAGEMENT AND OPTIMIZATION

3.1 Overview and Summary of Contributions

The previous section has introduced the main techniques that are employed in the

scope of the OpenIoT self-management framework. The following paragraphs

provide more details on each of the presented schemes (i.e. on Efficient Scheduling

including Caching, Cloud Optimization, Utility-based Optimization, Efficient Sensor

Data Collection, Request Types Optimization, Energy Efficiency and Bandwidth

Optimization). Furthermore, Table 1 illustrates how different schemes contribute to

the various non-functional goals of the OpenIoT system. In particular:

 Efficient scheduling and caching mechanisms reduce the time and resources

needed to deliver an OpenIoT service (e.g., to dynamically formulate a SPARQL

query) and/or its results (e.g. accelerates access to frequently used sensor data).

In this way it contributes to the performance and resource optimization goals.

 Cloud optimization techniques reduce the overall storage costs, while also

boosting the ability of OpenIoT to interface and use multiple elastic cloud

computing infrastructures. In this way, it contributes to performance, resource

optimization, as well as the scalability of the overall OpenIoT infrastructure.

 Utility-based optimization maximizes the net benefit stemming from the use of the

cloud, while accounting for the cost for setting up and maintaining the cloud

infrastructure and services. It therefore addresses optimization of aspects such as

performance, reliability and resource optimization (depending also on the utility

metrics employed).

 Efficient sensor data collection exploits spatial correlation of the data and/or the

queries in order to boost performance and scalability.

 Finally, both request types optimization and efficient bandwidth allocation enable

faster access to data of specific services requests thereby boosting performance

and resource optimization.

These optimization characteristics and properties are more explicitly presented and

justified in the following subsections, which elaborate on the various optimization

schemes.

Deliverable 5.1.2 Self-management and Optimization Framework

Copyright  2013 OpenIoT Consortium 26

Table 1. Self-Management and Optimization Functionalities vs. OpenIoT Techniques.

Self-Management and Optimization

Functionalities vs. OpenIoT Techniques

P
e
rfo

rm
a
n
c
e

R
e
lia

b
ility

S
c
a
la

b
ility

R
e
s
o
u
rc

e
/

C
o
s
t

O
p
tim

iz
a
tio

n

Efficient Scheduling X X X

Cloud Optimization X X X

Utility-based Optimization X X X

Efficient Sensor Data Collection X X

Request Types Optimization X X

Energy Efficiency and Bandwidth Optimization X X

3.2 Efficient Scheduling

3.2.1 Context of Scheduling Functionality in OpenIoT

The OpenIoT system comprises the notion of scheduling of requests for OpenIoT

service formulation. Indeed, the OpenIoT architecture specifies a global scheduler

component, which receives all requests for IoT services, which are submitted, to the

OpenIoT system. At the level of this component, the platform has the ability to access

information about the data requested by each service as well as about the sensors

and ICOs that are used in order to deliver the requested data. As a result, a wide

range of different optimization algorithms can be implemented within the scheduler

component of the OpenIoT architecture. Overall, OpenIoT makes provisions for

scheduling at multiple levels (global, local), which enable a wide range of

optimization schemes.

3.2.2 Related Work in Sensor Networks and Multi-Query Optimization

3.2.2.1 Pre-Processing, Data Aggregation and In-Network Processing in WSN

In terms of specific optimizations OpenIoT is inspired by a number of optimization

algorithms that exist in the Wireless Sensor Networks (WSN) literature, where data

management is commonly applied as a means to optimize the energy efficiency of

the network [Abadi 2005]. In WSN a set of in-network processing algorithms are

applied in order to optimize the use of the network on the basis of aggregate

operations [Yao 2002]. Query aggregation follows typically a model that includes: (a)

The establishment of a query in the sensor network, (b) The assembly of partial

results from multiple nodes in the network, on the basis of proper query processing

and (c) The accommodation of multiple applications requests which send a number

of queries to the network. This is accomplished based on the query processing

mechanisms outlined above [Meng 2008]. Different research works have focused on

Deliverable 5.1.2 Self-management and Optimization Framework

Copyright  2013 OpenIoT Consortium 27

a variety of in-network processing and data management techniques in order to

optimize processing times and/or reduce the required access to the sensor network

[Madden 2005], [Trigoni 2005]. For example [Lee 2006] proposes an in-network

materialized view that could be shared by multiple queries to reduce the number of

messages to the WSN. Another characteristic of the systems is that the aggregated

sensed results concern specific common spatial regions (i.e., provide aggregate data

from sensors residing in a specific geographical regions of high interest).

In general, the in-network processing approaches outlined above can be classified

into three broad categories, namely:

 Push Approaches, which proactively disseminate sensor readings to upstream

entities (nodes), since they anticipate that queries for their data/readings are

asked. Push approaches are useful when multiple queries are executed in the

network and their locations are not known in advance. Examples can be found in

[Ye 2002] and [Heinzelman 1999].

 Pull Approaches, which keep sensor silent until a request for their data arrives.

Upon this arrival, relevant sensors are traversed and their readings are collected

and aggregated in an access point (sink). Optimizations focus therefore in the

most appropriate ways to collect the readings. Example systems can be found in

[Yao 2002], [Intanagonwiwat 2000] and [Maddan 2002].

 Hybrid approaches, which comprise a two-step process aiming at leveraging the

advantages of both push and pull approaches [Li 2004]. The first step involves

pushing of sensor readings to collection points on the basis of a given algorithm.

Accordingly, the second step involves pulling readings from sinks on the basis of

application requirements. Hybrid approaches provide the means for spatial

efficiency in query retrieval (see for example [Lee 2006] and [Ratnasamy 2002]).

Note that optimizations in WSN have to deal with resource constraints, such as

memory limitations in the sensor nodes. Furthermore, they deal with the problem of

energy efficiency in sensor networks. In OpenIoT those problems are not the primary

ones to be solved, especially for the part of the platform that deal with virtual sensors

and which resides in the cloud. Moreover, the pull and push approaches outlined

above, give rise to ideas and techniques for optimizing the efficiency of OpenIoT in

serving multiple IoT services.

3.2.2.2 Caching in WSN

Caching is another technique that can reduce network traffic, while also enhancing

the availability of data to the users (sink). The caching concept involves maintaining

sensor (data streams) data to a cache memory in order to facilitate fast and easy

access to them. Likewise caching mechanisms could also maintain the sensor

queries themselves along with their data, which in the case of OpenIoT could obviate

the need to execute the results of previously executed SPARQL queries. In the area

Deliverable 5.1.2 Self-management and Optimization Framework

Copyright  2013 OpenIoT Consortium 28

of OpenIoT this has one extra benefit, which is associated with the cost of accessing

the cloud infrastructure.

A large number of caching algorithms for WSN have been proposed in literature and

an exhaustive presentation is out of the scope of this deliverable. However, among

the prominent examples are caching schemes based on the formulation of network

trees per sink and the subsequent identification of a common sub tree whose root is

used as the caching backbone [Li 2009]. There are also techniques that consider the

mobility patterns of the nodes in order to form groups [Chow 2007]. Moreover,

[Chand 2006] has introduced the formulation of non-overlapping clusters (for

caching) based on geographical proximity. In this case sensor networks (e.g.,

MANETs) are partitioned in equal size cluster, where each client looks for the data in

the case of a miss in the local cache of the node.

3.2.2.3 Optimizing Queries to Distributed Data Streams

Relevant to OpenIoT are also data streams system, which handle data from multiple

geographically distributed sources. Typical examples of such systems are e-science

systems leveraging multiple distributed sensor-driven measurements. In such

systems, the in-network processing techniques ([Madden 2005], [Yao 2002], [Ahmad

2004]), and source filtering [Olston 2003] facilitates load distribution and overall

boosts performance. In such systems it is also common to execute continuous

queries, i.e., recurrent queries running periodically and asking for the same data. A

popular optimization approach used in this case involves the construction of a query

plan (e.g., a plan involving specific join ordering) before the execution of the queries

as a pre-planning step. At run time, this plan is deployed in order to improve

performance [Pietzuch 2006].

These systems give rise to ideas about anticipating and pre-planning the number of

queries that are submitted to the OpenIoT system. As part of pre-planning a number

of (frequently used) multi-sensor queries could be cached in the scope of the

OpenIoT platform, thereby enabling the system to provide a fast response when

these queries are asked again.

3.2.3 Multi-Query Data Management and Caching Techniques in OpenIoT

On the basis of the schemes outlined above, OpenIoT employs a number of relevant

strategies as part of its management and optimization framework. These strategies

take into account the differences of the OpenIoT sensor-cloud from conventional

wireless sensors networks, in terms of both structures and costs.

3.2.3.1 Implementation of a Pull Approach at Local Scheduling

OpenIoT can be thought as a highly distributed network of multi-sensor nodes,

notably nodes of the X-GSN sensor middleware that stream data to the OpenIoT

Deliverable 5.1.2 Self-management and Optimization Framework

Copyright  2013 OpenIoT Consortium 29

cloud. A pull approach is adopted in terms of accessing the sensor networks of the

various nodes. As part of this approach:

 Each X-GSN node can maintain a list of services that need data from each of its

sensors/ICOs. For each sensor/ICOs and each service using the sensor, the

minimum frequency of data retrieval is also recorded (i.e. denoting the time

window that of the streaming for the jth sensor of the ith service).

 In cases when a X-GSN node is not streaming any data from a particular sensor

to the cloud, the system is saving in terms of bandwidth and costs associated with

cloud access. This rule can be changed only in the case when a cloud provider

specifies it otherwise. This can be the case when historical data are required from

a given sensors e.g., as part of the SLA (Service Level Agreement) with an end-

user.

 In all other cases the X-GSN node can stream data on the basis of the minimum

frequency among those specified for the sensors that participate in the active

services associated with the X-GSN node.

The above-mentioned pull approach can minimize the accesses to the cloud

infrastructure, which could be costly in terms of both latency and monetary cost. It is

be however possible for the OpenIoT platform to explicitly activate and deactivate

sensors in X-GSN. The activation or de-activation of X-GSN virtual sensors, in order

to optimize resources is performed by the OpenIoT Scheduler module, as described

in Section 3.7.2, through indirect sensor control.

3.2.3.2 Caching of sensor/ICO data

As already outlined, the access to the cloud infrastructure could be a precious

resource, especially in cases when it is associated with monetary cost. To this end,

OpenIoT attempts to cache frequently requested and used data to a store outside the

cloud infrastructure (e.g., to a local memory or even local database). The aim is to

allow queries to be answered through accessing the cache memory (or local storage)

rather than accessing the cloud infrastructure. This access capability is naturally

implemented at the Service Delivery and Utility Manager (SD&UM) component of the

OpenIoT infrastructure.

In order to understand and quantify the benefits of the caching mechanism, a cost

model is needed. This model/function quantifies the cost associated with access to

and maintenance of the cache for a given object O, and compares it to the respective

cost associated with access to the cloud infrastructure. In the above formulas K and

K’ denote the cost functions, while c/c’ and d/d’ denote parameters associated with

the monetary cost and the delay/latency associated with each of the access

modalities. An OpenIoT service is typically provided using a number of ICOs, where

q is the number of objects supporting the delivery of service Si and n is the number

of services running in the system at a given time instant. The caching mechanism

Deliverable 5.1.2 Self-management and Optimization Framework

Copyright  2013 OpenIoT Consortium 30

should therefore (at a given time instant) attempt to optimize (i.e. minimize) the

following cost quantity where:

 K0: The initial cost for purchasing and setup of the cache or local storage

 pij : The probability that service i uses sensor/ICO j.

 Oij : The jth ICO is in use by the ith service.

 l : The number of sensors/ICOs whose data is in the cache or local storage. The

capacity of the cache (or local storage placing a limitation on this parameter.

 m : The total number of sensors/ICOs available in the system at a given time

instant.

The above cost calculation is time dependent and hence we need to calculate an

integrated cost across a given time scale (e.g., days, weeks, months). In order to

minimize the cost we need to ensure that the requested services demand/select

objects whose data is in the cache with much higher probabilities than those whose

data is only accessible via the cloud.

To this end, caching could be based on the following policies:

 Location based data caching: Cache data related to popular locations, which

involves maintaining statistics about the frequency of accesses to sensors in each

location. For example in several applications (e.g., meteorological services) data

in popular locations (e.g., capital cities, densely populated cities, monuments, and

travel locations) are likely to be accessed more frequently compared to data in

other locations.

 Utility Driven data caching: This involves caching the data with the highest

utility. The latter could be either a user-assigned parameter, or calculated on the

basis of the utility metrics specified in D4.2 of the project.

 Caching based on the frequency of access: Such a policy is based on tracking

of the frequency of access to ICO data. The most frequently accessed data

streams are the ones cached that should be cached with high priority.

 Hybrid approaches using more than one of the above criteria: Combinations

of the above criteria are possible.

The previously listed policies can ensure that services access the cache with higher

probability that the cloud infrastructure, thereby economizing on latency and cost.

The potential improvement can be benchmarked and quantified based on ground

truth from the use of the OpenIoT prototype implementation (based on real or

simulated data). To this end, empirical probabilities (relative frequencies) could be

estimated on the basis of data sets associated with the operational use of the system

[Mood 1974].

Deliverable 5.1.2 Self-management and Optimization Framework

Copyright  2013 OpenIoT Consortium 31

3.2.3.3 Caching of sensor/ICO data based on frequency of requests

A specific approach implemented for caching of sensor/ICO data can be based on

the frequency by which data of specific sensors are requested by OpenIoT services.

The following algorithm can be periodically invoked, where a user/administrator

defined the frequency of algorithm invocation:

 All OpenIoT services using the data produced by the same sensors are clustered

into respective groups (i.e. equal to the number of sensors). This is possible and

supported by the data structures specified in the scope of deliverables D4.1 and

D2.3.

 For all groups larger than that a specific (user/administrator configured) number

i.e. a number denoting a critical mass of services using one ICO the OpenIoT

management system can do the following:

o Calculate the largest time-window of the data to be requested from all the

services.

o Cache all the data of the sensors for the specific time-window to the

SD&UM component.

o Update the cache (on a specific time interval based on the services) only

with the new data available.

o Check for new services available that comply with the rule, and update the

time-window and cache update interval respectively.

o Check for suspended/disabled services and update the time-window and

cache update interval respectively.

3.2.3.4 Caching of entire (SPARQL) Queries

Based on the current OpenIoT architecture, OpenIoT services are associated with

SPARQL queries denoting queries over the sensors/ICOs of the underlying IoT

infrastructures. Hence, in addition to caching sensor data, caching of SPARQL scripts

is also performed, on the basis of «frequency of request» criteria.

 Multi-query optimization of different query types (aggregate, location

monitoring, trajectory, point, region)

 Real-time/batch processing

 Data sharing

 Eligible resources per task

 Assigning sensors to queries to maximize a social welfare in the long-run

 Efficiently announcing sensor capabilities

Deliverable 5.1.2 Self-management and Optimization Framework

Copyright  2013 OpenIoT Consortium 32

The objective is to provide rapid access to frequently requested queries/services,

thereby economizing on the time needed to construct, validate and deploy the

services. Caching is performed at two levels:

 At the level of a complete SPARQL query, note that the probability of

requesting exactly the same query (in a short timescale) is relatively low.

 At the level of the execution plan of a SPARQL query and the individual sub-

queries that it comprises.

3.2.3.5 SD & UM Requests Caching Scenarios

Probably the most significant drawback of using triple stores for the deployment of

semantic web technologies is their performance. In comparison to relational

databases, there is an obvious trade-off between flexibility in information structuring

and raw performance. In order to approach the performance of relational databases,

implementing a caching solution would significantly increase the performance of triple

stores [Martin 2010].

Besides performance however, accessing remote data-stores like Amazon S3 or

Google Cloud Data-store, usually incurs an extra cost depending on the provider’s

pricing scheme. Indicatively, Amazon S3 charges $0.005 per 1,000 (Amazon Inc.) per

request, while Google Cloud charges $0.01 – $0.09 per 100k operations (an

operation may include a variable number of requests depending on the type) (Google

Inc.). It is therefore understandable, that besides increasing performance, caching

may potentially decrease the overall cost of operating the LSM Cloud Datastore.

In the context of T5.2 Resource Sharing & Management and in order to assess the

attainable level of cost reduction, a simulation is performed that is based on the Erfurt

Semantic Web Application Development Middleware [Martin 2010] as explained in

the following sections.

Deliverable 5.1.2 Self-management and Optimization Framework

Copyright  2013 OpenIoT Consortium 33

3.2.3.5.1 Erfurt Caching Architecture

The architecture of the Erfurt Middleware Architechture is illustrated in Figure 5:

HTTP

SPARQL Endpoint

Cache Proxy

A
d

ap
ters

SPARQL

SQL

Virtuoso

MySQL

Clients Web
Applications

MiddleWare Persistence

Figure 5. SPARQL Cache Architecture.

The specific implementation implements a small proxy layer, between the Web

Application and the SPARQL data-store endpoint (Figure 5. SPARQL Cache

Architecture). All SPARQL queries are routed through this proxy. When a query is

entered into the system the proxy layer checks if the result has already been cached.

In such a case, the result is returned to the client directly through the cache without

accessing the SPARQL data-store. In any other case the query is redirected to the

SPARQL data-store and the result is stored in the local cache before it is returned to

the client.

3.2.3.5.2 Cache Population and Maintenance

In general the architecture of caching solutions is quite simple and analogous to the

approach implemented by the Erfurt Middleware. Each object cached at the proxy

layer must be uniquely identifiable. At certain time intervals certain objects may be

invalidated. It is important however, that in contrast to caching implementations from

conventional web applications, cache objects are also invalidated based on updates

on the triple store. Additionally, it is important to cache objects of increased

complexity that are aggregators of multiple query results [Martin 2010]. An indicative

cache object schema is visualized below in Figure 6.

Deliverable 5.1.2 Self-management and Optimization Framework

Copyright  2013 OpenIoT Consortium 34

cache_query_result

result

resFormat

resFormat

Duration

timeStamp

invCount

hitCount has

m

cache_query_model

n

mid modellri

has

has

m

m

n
cache_object

content

lastMod

expire

has

oid

qid

1

n

cache_tag

tag

tid

cache_query_triple

tid subject predicate

object

Figure 6. Cache Population ER Diagram.

3.2.3.5.3 Berlin SPARQL Benchmark Results

In order to evaluate the Erfurt caching solution its querying performance was

measured against the Berlin SPARQL Benchmark [Bizer 2009]. The Berlin SPARQL

Benchmark is based on an e-commerce use case, simulating an end-user search for

products, vendors and reviews. The resulting SPARQL queries are grouped into

mixes, each one consisting of 25 queries. The queries are derived from twelve

different types and are instantiated by replacing parameters with concrete,

randomized values. The QueryMixes per Hour (QMpH) assessment then states, how

many of these query mixes a certain triples store is able to execute per hour. [Bizer

2009]

While in the original benchmark the probability for selecting a specific parameter is

equal for each parameter, in the cache benchmark the parameters are selected

according to the Pareto distribution, since this reflects practical use cases better and

enables the measurement of performance gain in such scenarios. The probability

density function that models the level of the cache hit rate increase according to the

increase of QMpH can be described by the following formula [Martin 2010]:

1
)(




a

a

x

ab
xP

The parameter a defines the distribution, whereas b defines the minimum value.

Applied to the benchmark scenario, this implies that we have a number of products or

offers that are queried more often than others. In the current benchmark

implementation, parameter a was varied in order to see how well the caching

Deliverable 5.1.2 Self-management and Optimization Framework

Copyright  2013 OpenIoT Consortium 35

implementation adopts to a wider or narrower spectrum of repeated queries. For the

Pareto principle (commonly known also as the 80/20 rule of thumb),

Table 2 shows how the choice of a broadens the distribution of the parameter (based

on a benchmark with 10 million triples and 12,500 queries).

Table 2. Cache hit/miss rate in relation to the choice of parameter a

Distr. Parameter linear a = 0.1 a = 0.3 a = 0.5 a = 1.0 a = 2.0 a = 4.0

Unique Queries 11718 6205 4147 2953 1694 624 142

Res Distribution 50.5/49.5 64/36 72/28 78/22 84/16 88/12 90/10

Therefore we can see that the wider the variety of queries, we have fewer unique

queries that are serviced directly from the LSM repository rather than the cache.

3.2.3.5.4 Application of Scenario on Cloud Datastores

As mentioned previously, a very important issue of using cloud data-stores is the

price per request payment scheme. Therefore, minimizing the number of requests

that occur directly on the LSM cloud repository which drastically reduce the overall

operational costs.

In the context of T5.2 Resource Sharing & Management, in order to demonstrate

and simulate scenarios associated with cloud data-store access and caching

solutions, a spreadsheet calculator prototype has been created that models the

various costs. This section examines such a particular scenario, aiming to determine

to what level a caching solution may provide benefits to the overall cost efficiency of

the system. In particular, this scenario is based on usage of the Amazon S3 Cloud

Data-store, which can be modelled easily, since it is based on a linear pricing scheme

($0.005/1000 requests). Additionally, the particular scenario also assumes the cache

miss rates previously displayed in

Table 2.

According to

Table 2, there are 7 scenarios examined that concern the cache hit/miss rate,

according to the a distribution parameter. These scenarios are:

 linear distribution

 a = 0.1

 a = 0.3

 a = 0.5

 a = 1

 a = 2

 a = 4

Deliverable 5.1.2 Self-management and Optimization Framework

Copyright  2013 OpenIoT Consortium 36

In the case of linear distribution, cache miss rate is at almost 50% while in the other

scenarios, the higher the a distribution parameter, the lower the miss rate. These

scenarios are compared primarily to the first column group on the chart where no

caching is used.

Additionally, for this scenario, yearly server operational costs that support a 20TB

cache have been taken into account. It is assumed that the server storage capacity is

sufficient to store all the query results obtained from the cloud data-store. For this

server setup the yearly cost of ownership is visualized in

Table 3:

Table 3. Caching Scenario - Server Cost of Ownership.

Caching Server Cost / Unit

Server Disk Capacity (TB) 5

Unit Cost(€) 3500

Lifespan (years) 3

PV Discount Rate (%) 5

Server Maintenance/year (€) 1500

Energy cost / year (€) 1000

Server Cost / Year (Present Value)

Cache Size Required (TB) 20

Servers Required 4

Cost / Year (PV) 22.635,00 €

Applying the above scenario, it is shown in Table 3 how the cost changes depending

on the variety of the query spectrum. All the categories that are displayed on the

horizontal axis in Figure 7 except the “no cache” category include cumulative costs.

This means that all the other categories have yearly server costs included along with

datastore usage costs.

Deliverable 5.1.2 Self-management and Optimization Framework

Copyright  2013 OpenIoT Consortium 37

Figure 7. Amazon S3 Data-store Prices Based on Caching and Spectrum Width.

As expected, for a low number of requests per hour, there is no benefit in using a

cache. In the first category at 600 Krph, even with a cache miss rate at 10% (a=4.0)

it is still preferable not to use any caching at all. In contrast, it is actually quite

inefficient to use a cache server at that level, since the costs is even greater. Even at

a medium-high number of hourly requests such as the second category at 1450 Krph

the scenario just hits the threshold where it becomes more efficient to use caching. In

the final category at 2000 Krph it is finally evident that at a high number of requests,

it is far more efficient to use the cache. This is visible at the extreme situation with a

10% cache miss rate, where the data-store usage costs for the high request category

at 2000 Krph, are marginally higher than even the low category with 1/3 of its rph

(600 Krph).

Consequently, in order to achieve an efficient caching solution there must be a clear

estimate first of all, of the average requests per hour on the cloud data-store, as well

as to what extent the caching storage capacity is sufficient.

Finally, it is also evident by this simulation that the determining factor for cache

performance is not the absolute number of queries. Rather, it is the variety of different

queries that are performed on the cloud data-store in order to quickly build up the

cache.

3.3 Cloud Optimization

Large amounts of data coming from ICOs and (virtual) sensors are expected in the

context of OpenIoT. This is a result of both the number of potential entities or things

that provide data to the cloud, and the high rates at which they can push

measurements. Such scenario that combines large volumes of data and high velocity

of data calls for scalable data management and querying solutions, spanning multiple

storage backends and processing units in the cloud. However, this is not a

straightforward task, as most cloud-storage systems are designed for batch

processing (e.g. Hadoop) or stored static data (e.g. HBase). In the use cases of

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

no cache 50% 36% 28% 22% 16% 12% 10%

€
/

y
e

a
r

Cache Miss Rate (%)

Cloud Datastore vs Cache Server Cost

2000

1450

600

Requests
per Hour

Deliverable 5.1.2 Self-management and Optimization Framework

Copyright  2013 OpenIoT Consortium 38

OpenIoT, these solutions are not adequate, as they would need to store all the raw

data measurements in the cloud, which is not efficient in terms of storage and can

potentially saturate the data backend.

In this section we propose a cloud-based framework for sensor data management,

which optimizes storage and querying of sensor time series measurements. In

particular, we exploit key-value stores and the MapReduce parallel computing

paradigm, two significant aspects of cloud computing, to realize indexing and

querying model-view sensor data in the cloud. In order to process range or point

queries on model-view sensor data, our KVI-index in the cloud store has shown good

performance in processing interval data, while current key-value built-in indices do

not support interval related operations. The interval index for sensor data

management not only works on static data sets, but it is dynamically updated based

on the new arriving segments of sensor data.

Various sensor data segmentation and modelling algorithms have been extensively

researched, such as PCA, PLA, DFT, etc. [Guo 2012], [Papaioannou 2011], [Ding

2008]. The core idea is to fragment the time series from one sensor into modelled

data segments, and then approximates each data segment by a mathematical

function with certain parameters [Guo 2012], [Papaioannou 2011], [Ding 2008], such

that a specific error norm is satisfied. The chosen mathematical model for each

segment takes as dependent variable the sensor value and as independent variable

the time-stamp. For simplicity, we refer to the modelled segment as a segment in the

rest of this deliverable. For example, in Figure 8 (a), the time series from a mobile

accelerometer sensor is divided into eight disjoint segments each of which is

modelled by a linear regression function and has associated time domain and value

range shown in Figure 8 (b). For model-view sensor data management, only the

segment models are materialized and therefore the query processing is performed on

the segments instead of the raw sensor data, as in [Thiagarajan 2008].

Figure 8. (a) Model view sensor data. (b) Polynomial models of segments. (c) Query

processing on the gridded segment.

Deliverable 5.1.2 Self-management and Optimization Framework

Copyright  2013 OpenIoT Consortium 39

We exploit key-value stores and the MapReduce parallel computing paradigm, two

significant aspects of cloud computing, to realize indexing and querying model-view

sensor data in the cloud. One modelled segment is characterized by its time and

value intervals [Deshpande 2006], [Thiagarajan 2008], [Papaioannou 2011] which

enables us to design a distributed interval index for querying sensor data segments.

The supported categories of queries on model-view sensor data to are as follows:

Time point or range query: return the values of one sensor at a specific time point

or during a time range.

Value point or range query: return the timestamps or time intervals when the values

of one sensor are equal to the query value or fall within the query value range. There

may be multiple time points or intervals of which sensor values satisfy the query

predicate.

The contributions of our work can be summarized as follows:

Innovative interval index: We propose an innovative interval index for model-view

based sensor data management in key-value stores, referred to as the KVI-index.

The KVI-index is a two-tier structure consisting of one lightweight and memory-

resident binary search tree and one index-model table materialized in the key-value

store. This composite index structure can dynamically accommodate new sensor

data segments very efficiently.

Intersection search: We introduce an enhanced intersection search algorithm

(iSearch+) that produces consecutive results suitable for MapReduce processing.

Hybrid modelled-segment query processing: After exploring the search

operations in the in-memory structure of the KVI-index for range and point queries

that locate modelled segments that may satisfy the query, we introduce a hybrid

query processing approach that integrates both range scan and MapReduce to

process these segments in parallel and identify the qualified ones.

3.3.1 Key-Value Interval Index

Our KVI-index is a novel in-memory and key-value composite index structure. The

virtual searching tree (vs-tree) resides in memory, while an index-model table in the

key-value store is devised to materialize the secondary structure (SS) of each node

in vs-tree.

3.3.1.1 In-memory structure

The in-memory vs-tree is a standard binary search tree shown in Figure 9 (a). Each

time (or value) interval is registered on only one node of vs-tree, which is the one

with the interval first overlaps along the searching path from root. This node is

Deliverable 5.1.2 Self-management and Optimization Framework

Copyright  2013 OpenIoT Consortium 40

defined as a registration node for the interval to index. Each node of vs-tree has an

associated secondary structure (SS), materialized in the key-value store, which

stores the substantial information of the modelled segments registered at this node.

All the operations on vs-tree are performed in memory and are thus very efficient. As

the domains of time and value of the sensor data are different, two vs-trees, one for

time stamps and another for values, are kept in memory simultaneously for

answering time and value queries respectively.

Figure 9. (a) In-memory vs-tree. (b) Index-model table in the key-value store. (c) One

segment of sensor data.

3.3.1.2 Index-model table

We designed a novel index-model composite storage schema, which enables one

key-value table not only to store the modelled segments, but also to materialize the

structural information of the vs-tree, i.e., the SSs for each tree node.

The index-model table is shown in Figure 9 (b). Each row corresponds to only one

modelled segment of sensor data, e.g., the data segment shown in Figure 9 (c). A

row key consists of the node value and the interval of an indexed segment at that

node. One modelled segment's time, value interval and coefficients are all stored in

different columns of the same row.

3.3.1.3 KVI-index updates

The complete segment-updating algorithm of KVI-index includes two processes:

registration node searching and materialization of modelled segments.

Deliverable 5.1.2 Self-management and Optimization Framework

Copyright  2013 OpenIoT Consortium 41

Figure 10. (a) rSearch. (b) Segment Materialization.

Registration node searching (rSearch)

As the segment model of sensor data is generated in real-time, the time (value)

domain of vs-tree should be able to catch up with the variation of that of sensor data.

Therefore, the update algorithm first involves a domain expansion process to

dynamically adjust the domain of the vs-tree according to the domain variation of the

sensor data. Then, the registration node can be found on the validated vs-tree. The

complete rSearch algorithm can be illustrated by Figure 10 (a).

Materialization of modelled segment

When materializing one segment into the SS of a node, the row-key may be chosen

in two ways. When no modelled segment has been stored at that SS, the row key is

the concatenation of the binary representations of the registration node and postfix

for the segment. When the SS has already been initialized, the time or value interval

of one segment to index is incorporated into the row key. In this way, different

segments stored in the same SS of a node do not overwrite each other.

3.3.2 Query Processing via KVI-index and MapReduce

In order to query model-view sensor data, the searching process of qualified

segments in KVI-index includes intersection and point searches which are

responsible for collecting the nodes that accommodate qualified segments in their

secondary structures SSs. Afterwards we design a novel hybrid parallel computing

and sequential scan approach for model filtering and gridding.

3.3.2.1 Enhanced interval intersection search

Given a time (resp. value) range query, iSearch+ first calls the rSearch to find the

registration node of the query range. The nodes on the searching path from the root

node to the one preceding the registration node form a node set. The iSearch+ stops

Deliverable 5.1.2 Self-management and Optimization Framework

Copyright  2013 OpenIoT Consortium 42

at the node, which is closest to the left-end point. All the nodes along the left-

descending path form a node set. Analogously, the nodes from the right-descending

path form another node set. Any node outside the search path does not have any

qualified segments.

3.3.2.2 Point search

We denote the point search by sSearch as it functions as the stabbing search in

interval data management. The sSearch is a binary search that records the nodes

along the descending path. Since there is no split searching, as in iSearch+, only one

node set is produced here.

3.3.2.3 Hybrid KVI-Scan-MapReduce query processing

Our idea is to design a hybrid KVI-Scan-MapReduce paradigm that combines both

range scan and MapReduce for processing SSs.

The height of vs-tree is bounded, and thus the amount of computation is limited. As

the SSs are sparsely distributed in the index-model table and each SS can be

considered as a small range of clustered index, the random-access and range-scan

based model filtering and gridding is suitable. The successive range from left and

right path sub-search delimits the tight boundaries of the sub-index-model table over

the relevant SSs that are suitable for distributed processing with MapReduce. This

hybrid paradigm eliminates the Map-phase processing of SSs of irrelevant nodes.

Moreover, it is non-intrusive for both the key-value store and MapReduce.

The functionalities of mappers and reducers are depicted in detail below.

Mapper: Each mapper gets the time (resp. value) interval of one segment to check

whether it intersects with the query time (resp. value) range. The qualified segments

are sent to the next reduce phase.

Reducer: Each reducer receives a list of qualified modelled segments. For each

segment, the reducer invokes a model gridding function to compute discrete values

for constructing query results.

Regarding the scan-based model filtering and gridding, as SSs are located in

different regions of the index-model table, the query processor makes use of thread

pool to process each SS in parallel.

3.4 Utility Based Optimization

In the OpenIoT context heterogeneous mobile and stationary sensing devices co-

exist. This heterogeneity makes it complex to efficiently acquire the data from the

different virtual and real sensors that feed the OpenIoT cloud. It is desirable that

based on the query requirements, the system could be able to optimize the

Deliverable 5.1.2 Self-management and Optimization Framework

Copyright  2013 OpenIoT Consortium 43

acquisition of data from the available sensors. However, this is not a trivial problem,

given the different user expectations, costs, type of queries, etc. In this section we

formulate the optimal data acquisition problem as a multi-query optimization with the

objective of maximizing the total utility and propose efficient heuristic solutions for

various query types and query mixes. This section is based on the theoretical and

experimental results described in detail in [Riahi 2013].

According to the OpenIoT architecture, the sensing devices communicate with GSN,

which in turn pushes the sensed data and their metadata to the cloud storage. The

OpenIoT Scheduler consults the cloud storage and finds out about the available

sensing data and the metadata. For the sake simplicity, in this section we ignore the

intermediaries between sensors and the scheduler and assume that sensors

communicate directly with the scheduler. In order to enable utility-based optimization,

sensing devices are expected to take measurements only when they are selected

by the scheduler to do so. We also make the following assumptions: (i) sensing

device owners ask for a payment for each provided measurement. (ii) Each sensor

has a specific sensing range. (iii) Each measurement includes a sensor-specific

inherent inaccuracy. In this section, we use the term sensor to refer to the actual

sensor on the sensing device, the sensing device, or even the combination of the

sensing device owner and the device she carries.

According to the OpenIoT architecture, end users submit queries to the scheduler by

defining services. The scheduler periodically collects the queries and tries to answer

them in an optimal way. The challenge is how to answer queries based on the data

availability and the capabilities of various sensors that may belong to different sensor

deployments. Therefore, we take a utility-driven approach, which aims at maximizing

the total utility for the queries posed by the end users. Utility maximization can be

achieved by selecting appropriate sensors for providing measurements, considering

the value of the measurements to the queries, the cost of obtaining such

measurements, and exploiting possible common data requirements among queries.

In the context of OpenIoT with diverse sets of end users who have different criteria

for evaluating the quality of the query results, ideally the scheduler relies on the end

users to provide a valuation function, 𝑣𝑞(.), with each query 𝑞. This function returns

the value of a set of measurements, which can be used as the answer to the query.

Users have a limited budget to spend for obtaining query answers. It is assumed that

the amount that can be paid in return to a specific response quality is embodied in

the valuation function of the query. This means that the return type of 𝑣𝑞(.) is of the

unit that is used for issuing payments. However, if end users are not experts in

defining the valuation functions, they can select one from a predefined set of

valuation functions when defining the services. Valuation functions can also be

assigned by the scheduler or the request definition module if the user wishes so.

Queries defined by end users can generally fall into two major categories, namely

one-shot queries and continuous queries:

Deliverable 5.1.2 Self-management and Optimization Framework

Copyright  2013 OpenIoT Consortium 44

 One-shot queries are executed only once. Major one-shot queries in our

context are point queries, spatial aggregate queries over a region, and queries

over trajectories.

 Continuous queries are continuously evaluated, and can be split into the two

sub-categories of monitoring queries and event detection queries.

Single-sensor queries only need one sensor reading while multi-sensor queries need

multiple sensor readings.

3.4.1 Problem Formulation

Without loss of generality, we assume that the system runs for a period of 𝑇, e.g.,

from 6 a.m. to 9 p.m. in a day. This period is discretized into several time slots of

fixed length, e.g., 5 minutes. We assume that all the sensors connect to a unique

scheduler and, if necessary, at the beginning of each time slot announce their

location and price of providing a measurement at that location.

The objective is to acquire data for the queries from the available sensors in order to

maximize the utility over 𝑇. Formally, we let 𝒬 denote the set of all queries issued

from time 1 to 𝑇, 𝒮𝑡 denote the set of available sensors at time slot 𝑡, and 𝐾: 𝒬 →

 ×𝑡=1
𝑇 2𝒮𝑡

 define an allocation scheme that assigns sensors to each query. 𝑌(𝐾, 𝑡) is a

function that returns the set of sensors that are assigned to all queries at time 𝑡. We

denote by 𝑐𝑠(𝐾, 𝑡) the cost of sensor s at time 𝑡 given the allocation 𝐾. Let 𝒦 denote

the set of all possible allocation schemes. The goal is to find allocation 𝐾∗ ∈ 𝒦 that

maximizes the social welfare:

𝐾∗ = argmax
𝐾∈𝒦

(∑ 𝑣𝑞(𝐾(𝑞)) − ∑ ∑ 𝑐𝑠(𝐾, 𝑡)

𝑠∈𝑌(𝐾,𝑡)

𝑇

𝑡=1𝑞∈𝒬

)

For solving the above optimization problem we need to know in advance all the

queries that are issued over 𝑇, and the location and cost of all the sensors at each

time slot. However, in the context of OpenIoT, users must be able to submit new

queries whenever they desire and it is not realistic to ask the users to pose all their

queries in the beginning of the period 𝑇. Due to the uncontrolled mobility of the

(mobile) sensors, their exact locations at a specific time slot cannot be determined a

priori. Moreover, the cost of a sensor might vary from one time slot to another based

on the preferences of the sensor owner. Due to the lack of access to all the required

information to solve the above long-term optimization problem, we resort to a myopic

approach, in which we try to maximize the utility at the current time slot without

considering the future state of the system. In this approach, when finding the optimal

allocation scheme, we only consider the queries and sensors that are available

during the current time slot. After finding the best allocation scheme, the cost of each

Deliverable 5.1.2 Self-management and Optimization Framework

Copyright  2013 OpenIoT Consortium 45

selected sensor is shared among queries that are answered using the measurement

from that sensor.

We solve the myopic multi-query optimization problem for the following query types:

 Single-sensor point queries, for which we provide optimal and approximate

solutions.

 Multiple-sensor one-shot queries including spatial aggregate queries, queries

over trajectories, multiple-sensor point queries, etc.

 Continuous queries

o Location monitoring queries

o Region monitoring queries

 Mix of the above query types

The algorithms that we used for achieving utility-based optimization for the

abovementioned query types are available in [Riahi 2013].

3.4.2 Cost Computation

Sensors owners participate in the system as long as the resource consumption on

their devices as well as their location privacy loss are compensated. In this regard,

each sensor asks for a certain price in return for providing a measurement to the

aggregator. Therefore, the cost of obtaining a measurement from sensor 𝑠 which is

located at 𝑙𝑠, consists of two components as demonstrated in the following equation:

𝑐𝑠(ℰ𝑠, 𝐻𝑠, 𝑙𝑠) = 𝑐𝑠
𝑒(ℰ𝑠) + 𝑐𝑠

𝑝(𝑝𝑠(𝐻𝑠, 𝑙𝑠)),

where ℰ𝑠 is the remaining energy, and 𝐻𝑠 is the history of revealed locations of 𝑠. 𝑐𝑠
𝑒

is a function that gives the energy cost of taking a measurement and transmitting it to

the aggregator, and 𝑐𝑠
𝑝
 is a function that calculates the cost of the sensor's privacy

loss due to revealing its location. The privacy loss is computed by the function 𝑝𝑠. We

do not impose any restrictions on the form of these two functions. When this cost

function is not available from the sensors, a default cost function can be assigned by

the scheduler to the sensor. Note that ℰ𝑠 can also represent the energy consumption

rate of the sensor depending on the type of sensors. The function must be selected

by the scheduler considering available constraints of the sensors and the

energy/bandwidth optimization objective.

3.4.3 Valuation functions

Generally, the value of a sensor reading for an application is a function of the quality

of that sensor reading and the quality of the sensor readings obtained so far. The

number of samples required for finding the value of a phenomenon depends on the

phenomenon itself and the trustworthiness of the sensors. For example, it might be

necessary to take redundant measurements to assess the trustworthiness of a

particular sensor that can be used for providing the measurements. For instance, a

single-sensor point query 𝑞 might have the following valuation function:

Deliverable 5.1.2 Self-management and Optimization Framework

Copyright  2013 OpenIoT Consortium 46

𝑣𝑞(𝑠) = {
𝐵𝑞𝜃𝑞,𝑠, 𝜃𝑞

𝑚𝑖𝑛 ≤ 𝜃𝑞,𝑠 ≤ 1

0, 𝜃𝑞,𝑠 < 𝜃𝑞
𝑚𝑖𝑛,

where 0 ≤ 𝜃𝑞,𝑠 ≤ 1 is the quality of the sensor reading, 𝜃𝑞
𝑚𝑖𝑛 is the minimum

acceptable quality by the query, and 𝐵𝑞 is the query budget. This implies that the user

is willing to pay 𝐵𝑞 for a sensor reading with the highest possible quality.

The quality of a sensor reading depends on the distance of the sensor from the

queried location (more accurately, it depends on the correlation between the

phenomenon value at the queried location and the location of the sensor,) the

inherent sensing inaccuracy, and the trustworthiness of the sensor. We assume that

this dependency is given by a user-defined function 𝑣𝑞(𝑠, 𝑙𝑞), where 𝑙𝑞 is the queried

location. The following is an example of such a function:

𝑣𝑞(𝑠, 𝑙𝑞) = {
(1 − 𝛾𝑠) (1 −

|𝑙𝑠 − 𝑙𝑞|

𝑑𝑚𝑎𝑥
) 𝜏𝑠, |𝑙𝑠 − 𝑙𝑞| ≤ 𝑑𝑚𝑎𝑥

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

where 𝛾𝑠 is the inaccuracy of 𝑠 measured in percentage of the value range of the

sensor, 0 ≤ 𝜏𝑠 ≤ 1 is the trustworthiness of 𝑠, 𝑙𝑠 is the current location of 𝑠, and 𝑑𝑚𝑎𝑥

is the maximum distance in which the sensors can be considered to provide data.

For spatial aggregate queries, which need more than one sensor, and sample

valuation function could be the following:

𝑣𝑞(𝑆𝑞) = 𝐵𝑞𝒢𝑞(𝑆𝑞)
∑ 𝜃𝑠𝑠∈𝑆𝑞

|𝑆𝑞|
,

where 𝒢𝑞 is a function that calculates the coverage of the selected sensors. A simple

coverage function can calculate the fraction of the area covered by the sensors, while

a more general function might also take into account the dispersion or the importance

of the locations that are covered by the selected sensors.

3.4.4 Experimental Evaluation

We used a real mobility dataset from Nokia campaign in Lausanne, Switzerland. The

simulations are run for 50 time slots. Figure 11 shows the average utility per time slot

achieved by different algorithms when we have only point queries. Figure 12

illustrates the average utility per time slot achieved by of our algorithm compared to a

baseline algorithm for spatial aggregate queries. Similar results for location

monitoring and region monitoring queries are illustrated in Figure 13 and Figure 14,

respectively. Figure 15 shows the average utility per time slot achieved by our multi-

Deliverable 5.1.2 Self-management and Optimization Framework

Copyright  2013 OpenIoT Consortium 47

query data acquisition algorithm and a baseline algorithm when a mix of queries of

different types is available.

Deliverable 5.1.2 Self-management and Optimization Framework

Copyright  2013 OpenIoT Consortium 48

Figure 11. Average utility per time slot

having only point queries.

Figure 12. Average utility per time slot

having only spatial aggregate queries.

Figure 13. Average utility per time slot

having only location monitoring queries.

Figure 14. Average utility per time slot

having only region monitoring queries.

Figure 15. Average utility per time slot

having a mix of point, aggregate, and

location monitoring queries.

Deliverable 5.1.2 Self-management and Optimization Framework

Copyright  2013 OpenIoT Consortium 49

3.5 Efficient Sensor Data Collection

In the area of ICOs big advances have been realized to enable ICO control (mainly

over the sensor networks data). However, full control over the data of multiple

devices has not been implemented yet, nor intelligent data services have been

deployed. In OpenIoT we seek for deployment of stream data processing

components enabling the deployment over multiple infrastructures (openness

feature). An efficient set of methods for data acquisition from heterogeneous sensors,

both static and mobile, allows filtering of incoming sensor data, or selecting relevant

sensor data sources.

In this context, we present two main contributions. The first (Section Error!

Reference source not found.) is an approach for efficient sensor data acquisition,

based on the utility-based optimization described in Section 3.4. The second is a

context-aware acquisition and filtering approach for mobile sensors, detailed in

Section 3.5.2.

3.5.1 Utility-based Sensor Data Acquisition

As we described in Section 3.4, based on utility functions, we can define optimization

schemes that maximize the total welfare for sensor data acquisition. One specific

outcome of this effort is a data acquisition framework that efficiently shares sensor

data among queries of different types. This framework optimizes the usage of

sensors, choosing them in such a way that the global utility is maximized.

In particular, the utility-based data acquisition approach is able to select a subset of

sensors S’ from the available set of sensor S, in such a way that a given utility

function is maximized. In this way, the system avoids acquiring data from (virtual)

sensors which are not needed by the queries posed by the users, or whose

contribution to the total utility is marginal. The cost computation and valuation

functions have been described in Section 3.4, and are provided as an input to the

data acquisition algorithms described here.

Nevertheless, and as it was explained above, the algorithms for data acquisition vary

depending on the type of queries that are received from users and/or applications.

We describe below the main characteristics of these data acquisition algorithms,

classified according to the type of query: single-sensor point query, multiple sensor

one-shot query, continuous queries, and a query mix. These types of queries are

commonly found in a pervasive sensor infrastructure such as the one in the OpenIoT

context. The full description of the algorithms can be found in [Rihai 2013].

Single-Sensor Point Queries: In the context of OpenIoT, these queries are limited to

observations that are available in one particular sensor (notice that the sensor may

be virtual). For this type of queries, we can express the optimization of sensor

allocation as a Binary Integer Linear Problem (BLIP). For his case, an ILP solver can

find the optimal solution, if the input size is not too large. On the other hand, if the

Deliverable 5.1.2 Self-management and Optimization Framework

Copyright  2013 OpenIoT Consortium 50

input size is large, a Heuristic Scheduling approximation algorithm is proposed. This

algorithm [Feige 2007], referred to as the Local Search algorithm, has been devised

to solve non-monotone submodular functions, as it is the case with this optimization

problem.

Multiple-Sensor One-shot Queries: In this case, the queries received have different

data requirements: multiple sensor observations are needed to be able to answer

them. This is the case for queries that operate over trajectories or over a spatial

extent. Moreover, the optimization function must be able to take advantage of the

possible overlapping of sensors readings (e.g. they might cover contiguous areas or

have other different topological relationships) and the value that each sensor

contributes to a query. This turns out to be a combinatorial problem: a sensor

assignment that maximizes the overall benefit must be selected, out of all possible

ones. The proposed greedy algorithm iteratively selects sensors that maximize the

partial overall utility. This algorithm has been shown to be faster and outputs a better

total utility if the utility functions are not submodular.

Continuous Queries: The proposed acquisition algorithms for continuous queries

target location and region monitoring queries. In both, the continuous nature of the

query implies a time period when the monitoring is performed, as well as a sampling

time. These algorithms attempt to get sensor observations according to the frequency

of the sampling time. Due to uncertainty, it is not guaranteed that data is acquired for

the required sampling time, so data can be acquired at other times, but with a fraction

of the expected value. In the case of the location monitoring queries, a point query is

created at every time slot; then a set of sensors is selected for those point queries

and for each sensor the correspondent payment is calculated.

In the case of region monitoring queries, sensor data is possible if the regions over

which the queries are executed overlap. Several queries may share subsets of

sensors (e.g. two queries requesting temperature values in the same area), or sensor

can provide similar data (e.g. two sensors providing humidity measurements in the

same location). A modified algorithm can take advantage of this, by providing a set of

weighted costs of sensors. As an example, if a subset of sensors was already

selected by another continuous query, then a weight of 0 can be assigned to that

subset of sensors.

Query Mix: When the aggregator receives queries of different types, it has the

possibility of sharing the sensors among them and hence increasing the total utility.

Indeed, since individually finding an optimal set of sensors for multiple point or

aggregate queries is NP-Complete, finding the optimal set of sensors for the

combination of queries is also NP-Complete. The proposed algorithm for the query

mix selects sensors by exploiting the commonalities of the queries posed to the

system. It first generates point queries for location and region monitoring queries.

Then, all queries are provided to the greedy algorithm used for multiple sensor one-

shot queries, so that it optimizes the total utility. Afterwards, the results of the point

Deliverable 5.1.2 Self-management and Optimization Framework

Copyright  2013 OpenIoT Consortium 51

queries are applied for continuous queries. As in this stage there might be queries

sharing the same sensors (e.g. regions overlapping), the payments need to be

adjusted accordingly. Finally, the selected sensors are requested to provide their

observations.

3.5.2 Context-Aware Acquisition and Filtering of Sensor Data in Mobile

Environments

Publish/subscribe middleware offers the mechanisms to deal with the challenges

related to continuous context-aware and energy-efficient acquisition and filtering of

sensor data in mobile environments, specifically in scenarios requiring opportunistic

mobile sensing that can potentially generate huge volumes of sensor data. Note that

this data needs to be transmitted into the cloud over mobile devices for which battery

and bandwidth are limiting resources. Thus we need to devise strategies to minimize

the number of data transmissions to the cloud while maintain adequate sensing

coverage for mobile sensing applications. Publish/subscribe middleware provides the

means for selective acquisition of sensor data from mobile wearable sensors as well

as filtering of sensor data on mobile devices prior to its delivery into the cloud for

further processing.

In this subsection we present the main concepts of a publish/subscribe component

running on mobile devices entitled Mobile Publish/Subscribe (MoPS). MoPS enables

selective sensor data acquisition and filtering in IoT environments where mobile

devices are applied as gateways for collecting and transmitting sensor data into the

cloud, while at the same time mobile devices receive the data of interest from the

cloud. In contrast to existing centralized database solutions which typically send all

sensed data into the cloud, MoPS supports flexible and controllable acquisition of

data and its subsequent transmission into the cloud only in situations when the

sensed data is indeed required by the the back-end system, i.e., the cloud. In other

words, the data should be produced and transmitted to the cloud only if it is valuable,

e.g., there is current interest by system users to be alerted about certain events, or

the data is needed for the data-mining tasks.

MoPS provides content-based filtering of sensor data on mobile devices based on

context, e.g., current data needs specified by application users, sensing coverage,

available bandwidth, or QoS-specific parameters defined by an application.

Moreover, it can even suppress the sensing process on wearable sensors. Similar to

[Sadoghi2011], MoPS supports a rich predicate language with an expressive set of

operators for the most common data types: relational operators, set operators, prefix

and suffix operators on strings, and the SQL BETWEEN operator. Hereafter we

explain the MoPS model and underlying design principles. Further details on MoPS

design and implementation are available in deliverable D3.4.1.

Publish/Subscribe Model. The MoPS model comprises a set of publishers, Pi, and

a set of subscribers, Sj, that interact over a hierarchical two-tier publish/subscribe

network composed of mobile brokers, MBk, and a cloud broker, CB. An example

Deliverable 5.1.2 Self-management and Optimization Framework

Copyright  2013 OpenIoT Consortium 52

model is shown in Figure 16. Publishers, e.g., wearable or built-in sensors, publish

data items and send them either to mobile brokers or directly to a cloud broker.

Subscribers, e.g. processes on mobile devices, can activate and dismiss

subscriptions by sending messages subscribe and unsubscribe to mobile or cloud

brokers, which in turn use the message notify for push-style delivery of matching data

items, i.e., items that satisfy subscription constraints, to subscriber processes.

A cloud broker is responsible for efficient matching of data items to active

subscriptions as well as their subsequent delivery to either subscribers, mobile

brokers, or other remote services, i.e., components that have defined matching

subscriptions.

P1

S1

publish
subscribe MB1

announce

(un)subscribe

publish

notify

P2

S2

notify

P

SMobile
Broker

Publisher

Subscriber

BrokerB

MB

(un)subscribe

publish

notify

Cloud
Broker

MB2 S2

an
n

o
u

n
ce

notify

subscribe

(u
n

)s
u

b
sc

ri
b

e

Figure 16. Publish/subscribe model and interaction.

The main novelty of the MoPS model compared to existing publish/subscribe

solutions is the implementation of mobile brokers running on mobile devices such as

smartphones and tablets. After their initial registration with the cloud broker, mobile

brokers can announce the type of data for publishers which they represent. For

example, P2 in Figure 16 is, e.g., a wearable gas sensor detecting levels of nitrogen

dioxide (NO2) and ozone (O3). After MB1 detects P2 because they exchange

signalling information over a Bluetooth connection, MB1 can define the type of data

items to transmit to its cloud broker B2 in the future. MB1 sends a message

announce(NO2,O3,x,y), where x=45.81302 and y=15.97781 represent MB1's current

geographical latitude and longitude. The reason for creating the announce message

is the following: We need to activate subscriptions from the cloud broker on MB1, but

only those that can potentially match future publications created by P2. Obviously, as

it is not desirable to activate all subscriptions from the cloud on a single mobile

device, the announce message is compared to existing subscriptions on B2. For

example, B2 identifies subscription si=[NO2 > 40μgm-3 AND 45.81<lat<45.82 AND

15.96<long<15.98] as a subscription potentially matching future publications of P2.

Thus, B2 sends a message subscribe to activate si on MB1. Further on, MB1

publishes P2's data items into the cloud, but only those that match si.

Deliverable 5.1.2 Self-management and Optimization Framework

Copyright  2013 OpenIoT Consortium 53

Selective and flexible data acquisition. By reusing the inherent features of the two-

tier publish/subscribe model, we provide a flexible mechanism to control the sensing

density over a predefined area covered by traces of mobile internet-connected

objects (MIOs). It requires an orchestration of the sensing process with activation of

adequate subscriptions on mobile brokers, as instructed by the back-end cloud

system based on the integrated crowdsensed data. If we assume the density

demand is predefined for an area as required by the application logic, MIOs residing

in this area during a certain time interval can be instructed either

(1) to transmit the sensed data into the cloud as additional data samples are needed

within this area for the particular time interval, or

(2) to restrain from such transmissions since the application has already acquired

sufficient data samples for the area.

This is the main mechanism for frequency reduction of data transmissions from MIOs

into the cloud which has the potential to greatly reduce energy consumption on MIOs.

Consider the following example in Figure 17. It depicts movement traces for three

MIOs m1, m2 and m3 within a certain area, and denotes time intervals [t11, t12] and [t21,

t22] within which the two MIOs perform data transmissions into the cloud (they are

marked by the symbol ), while m3 does not perform any transmissions. MIOs

perform transmissions at marked places because during the two time intervals

subscriptions matching the data acquired by m1 and m2 are active on those MIOs.

This does not impose any constraints on the sensing process as it largely depends

on MIO interaction with sensors in its vicinity. For example, if the sensing process is

pull-based, an MIO can invoke it periodically during the subscription activity periods.

If sensors are configured to perform periodic sensing, mobile brokers residing on

MIOs ignore the sensed data while it does not match any of the active subscriptions.

m1

t11
t12

ˣ
ˣ

ˣ

ˣ

m2
t21

t22

ˣ
ˣ

ˣ

ˣ
ˣ

m3

Figure 17. Movement traces and data transmissions.

Let us further explain who controls the activation of subscriptions on MIOs and how

the sensing density is controlled. The back-end cloud system is notified when an MIO

enters the depicted geographical area since MIOs are configured to announce their

available data sources when entering the area. This requires periodic GPS

positioning on MIOs which is potentially energy-greedy, but if other network-based

techniques are available for determining MIO location, this process should not

Deliverable 5.1.2 Self-management and Optimization Framework

Copyright  2013 OpenIoT Consortium 54

represent a major obstacle for application adoption. In addition, mobile devices need

to be aware of area boundaries that are important for the application logic. Since the

back-end system is aware of the data samples already acquired over an observed

area, it can decide whether to ship matching subscriptions to MIOs or not. In our

example in Figure 17, the application logic has decided that there are sufficient

measurements acquired for the depicted area from m1 and m2, and thus

subscriptions were not forwarded to m3.

Potential gains due to filtering of redundant data. To gain an insight into potential

energy gains due to flexible data acquisition and filtering of redundant data, we have

performed an analysis based on a real data set, the Mobile Data Challenge (MDC)

data set collected during the Lausanne Data Collection Campaign from October 2009

until March 2011 [Laurila 2012]. The analysis is done such that we have randomly

selected one day data traces for each of the 38 participant logs available in the MDC

data set. Each such data trace represents an MIO movement over one day where we

associate user locations with GSM cell identifiers. Two users are collocated if they

reside with the same GSM cell during the same time interval, when they can

potentially create redundant measurements. Our next assumption is that users carry

wearable sensors with periodic readings generated once in a minute or once every

five minutes. In addition, we assume that for our approach the required number of

daily measurements within a cell equals 30.

Table 4. Energy gains due to flexible data acquisition.

 No. of cells 1 min 5 min Our approach

1 822 40330 9344 2013

2 870 39686 9188 2011

3 942 41153 9884 2086

4 888 42068 9977 2071

5 777 39267 9250 1807

We have performed 10 iterations of the experiment with randomly selected daily

traces from 38 different users and Table 4 depicts our results for 5 selected

iterations. The second column lists the number of different cell identifiers found in all

traces. It varies from 777 to 942 different cells which tells us that there is not much

overlap in user movement (at most 5 to 9 users are collocated in the same cell in all

our experiments). The third and the fourth column list the number of daily data

measurements if sensors generate periodic readings once per minute or 5 minutes,

while the fifth column lists the number of such readings with our approach. One can

see that our approach generates only around 5% to 6% sensor readings and data

transmissions compared to 1/60 Hz measurements and 20% to 25% such readings

compared to 5/60 Hz measurements. Thus, based on this preliminary analysis with

unfavourable movement traces with low collocation probability, one can conclude that

potential energy gains are significant.

Deliverable 5.1.2 Self-management and Optimization Framework

Copyright  2013 OpenIoT Consortium 55

Modelling the number of published messages while varying the sensing

coverage. Here we investigate the number of messages generated by the MoPS

approach w.r.t the area covered by mobile sensing. We assume that a geographic

area can be divided into smaller location areas such as GSM cells and that a user

mobility model is purely random. Subscribers or application logic can define interest

in part of the geographic area and we want to compare the MoPS approach with a

traditional publish/subscribe approach which contributes all acquired sensor data to

the cloud broker. We define an analytical model to assess the number of transmitted

publications comparing the CUPUS approach with the traditional approach to

estimate potential gains in the number of transmitted messages from mobile phones

to the cloud which directly influence energy consumption on mobile devices. By

lowering the number of publications sent from a mobile device to the cloud, we can

reduce the consumption of two key resources on a mobile device, the battery life and

network bandwidth.

To calculate the savings in terms of the number of transmitted messages we use the

following parameters, which can be estimated for real applications:

 n - the total number of publishers

 c - the total number of cells

 cs - the number of cells with at least one subscription

 Pi - the number of publications generated by the i-th publisher

 ci - the number of cells through which the i-th publisher has passed

In our analysis we are assuming that the number of cells c is constant and that cells

do not overlap. Additionally, we assume that subscriptions are moving and are not

fixed to specific cells, but such that a proportion cs of cells with at least one

subscription is constant during the observed experiment.

The savings can then be calculated as the percent decrease in the number of

transmitted messages of our solution compared to the traditional one in which

publishers are publishing all available data objects to the rest of the system, while

with our solution only publications of interest to one or more users are published to

the rest of the system:

𝑺 =
𝑴𝒕𝒓𝒂𝒅−𝑴𝑴𝒐𝑷𝑺

𝑴𝒕𝒓𝒂𝒅
.

Since our solution generates additional control messages (i.e. announce messages

and responses to announce), we need to add their number to the number of

transmitted publications to calculate the total number of exchanged messages in our

solution. The number of messages generated by a single user Mi is equal to the sum

of his/her useful publications (i.e., publications that are delivered to subscribers) and

control messages (announce messages with replies to them), and can be calculated

as 𝑴𝒊 = 𝑷𝒊
𝒖 + 𝑨𝒊 = 𝑷𝒊 ∙ 𝒓𝒔 + 𝟐𝒄𝒊, where 𝑷𝒊

𝒖 is the number of transmitted useful

publications by the i-th publisher that is calculated as the product of the number Pi of

Deliverable 5.1.2 Self-management and Optimization Framework

Copyright  2013 OpenIoT Consortium 56

publications generated by the i-th publisher and 𝒓𝒔 =
𝒄𝒔

𝒄
 is the probability that a

randomly selected cell has at least one subscription. The number of control

messages Ai is defined as the number of cells through which a publisher is passing

ci, where in our case we can compare it with the number of GSM cell handovers that

are made during publisher movement.

Finally, from the previous equations we get the following percent decrease in the

number of transmitted messages for our solution:

𝑺 =
𝑴𝒕𝒓𝒂𝒅−∑ 𝑴𝒊

𝒏
𝒊

𝑴𝒕𝒓𝒂𝒅
=

∑ 𝑷𝒊
𝒏
𝒊 −∑ (𝑷𝒊∙𝒓𝒔+𝟐𝒄𝒊)𝒏

𝒊

∑ 𝑷𝒊
𝒏
𝒊

.

Hereafter, we analyse the number of transmitted messages in our approach when

compared to the traditional approach. Table 5 shows the default parameter values

used in the analysis. We analyse the influence of parameters rs, Pi and ci on the

percent decrease S. For each analysis, we changed a single parameter, while all

other parameters are fixed to default values in Table 5.

Table 5. Default parameter values.

Parameter Symbol Value

the number of cells c 1500

the number of publishers n 60

the percentage of cells with subscriptions rs 0.5

the average number of user publications Pi 1000

the average number of cells through which

a publisher has passed

ci 100

Figure 18 shows how the percent decrease changes with increasing percentage of

cells with subscriptions rs. As we can see, the percent decrease falls linearly with rs.

By increasing the value of parameter rs, we increase the number of cells for which

there is interest from subscribers. As expected, the advantage of our approach drops

when increasing rs due to the drop in retained publications. Obviously, if all cells are

covered by subscriptions, there is no value in data filtering on mobile phones as

announce messages represent an overhead: Our approach drops to 0 when rs

reaches 0.8, but it can cause significant savings when rs is in the range from 0 to 0.5.

Deliverable 5.1.2 Self-management and Optimization Framework

Copyright  2013 OpenIoT Consortium 57

Figure 18. Percent decrease in the number of messages for different percents of cells

with subscriptions.

In Figure 19 we can see how the percent decrease changes when we increase the

number of average publications per publisher Pi . As we can see in the figure, the

percent decrease grows sublinearly with Pi. By changing the value of parameter Pi

we model the frequency of publication production. Since our approach reduces the

number of transmitted publications, by increasing Pi, the gain of our approach also

grows under the assumption that rs=0.5.

From the previous analysis it can be concluded that the data filtering approach on

mobile devices can bring significant gains when the sensing area is below 50%.

Further savings are possible by filtering redundant data within highly covered areas.

Figure 19. Percent decrease in the number of messages when increasing the

number of average publications per publisher P_i.

Figure 20 shows how the percent decrease changes when increasing the number of

cells through which an average publisher has to passed through. As we can see in

the figure, the percent decrease drops linearly with ci. By increasing the value of

parameter ci we model the speed and mobility of publishers. Since our approach

generates additional announce messages when publishers are changing cells,

obviously the advantage of our approach drops when increasing ci.

Deliverable 5.1.2 Self-management and Optimization Framework

Copyright  2013 OpenIoT Consortium 58

Figure 20. Percent decrease in the number of messages when increasing the

number of cells through which a user passes through.

3.6 Request Type Optimization

Depending on the type of queries that users and applications dispatch to the

OpenIoT infrastructure, access and processing of streaming data resources can be

optimized in different ways. In particular, the dynamic nature of the data coming from

sensors and ICOs, calls for efficient query processing mechanisms that go beyond

traditional database management systems capabilities.

Moreover, given the potential diversity of sensor data sources, it is needed to

represent and query the ICO data through a holistic model that reflects the

application domain. Semantic Web and Linked Data technologies can answer to

some of these requirements, as they provide well-defined models (in the form of

ontologies) that can be interlinked, queried, and reasoned upon. Nevertheless,

existing Linked Data platforms are designed for static data storage and not suited for

streaming data processing,

To cope with dynamic streams of data coming from ICOs, in the OpenIoT project we

use LSM [Le-Phuoc 2011], a middleware with functionalities to transparently cater for

dynamic stream information [Nguyen 2012] and tailored to existing distributed sensor

infrastructures: from Twitter streams down to resource-constrained sensing

hardware. In the remainder of this section we highlight the optimization techniques

present in LSM, especially for efficient query and stream data processing.

3.6.1 Efficient Query Processing

The linked stream data model brings several advantages in data correlation

operations. The first advantage comes from the data acquisition and data distribution.

The graph-based layout gives the data processing operators the global view of the

whole dataset. Therefore, the query processor can filter the irrelevant data to a query

much earlier than the log-file approach does. Traditionally, the monitoring data

Deliverable 5.1.2 Self-management and Optimization Framework

Copyright  2013 OpenIoT Consortium 59

recorded in separated log files are partitioned by in individual services, processes,

etc., thus, cross-correlating the relevant data items among them needs to load all the

data into a relational storage before carrying out the correlation.

The push-based and incremental processing model of linked stream processing

engines provides much better performance than that of traditional relational database

engine. Because a query over the log streams on relation database is performed in

pull-based and one-shot fashion whereby any new snapshot of log stream needs the

full computation. Thanks to the push-based and RDF triple data model, the log data

can be pushed gradually per triples or a set of triples into the Data Correlation

Engine. This helps to avoid the overload of matching schema and data loading when

receiving a big monitored log file.

To meet the query processing demand of Data Correlation Engine, we evaluated a

Continuous Query Evaluation over Linked Stream (CQELS) engine [Lephuoc 2011].

This engine can consume very high throughput from log streams and can have

access to big persistent triple storages with millions of triples. The current version can

deal with thousands of concurrent queries corresponding to service matching policies

registered.

In OpenoT we aim at using a declarative language for defining stream processing

functionalities by using query-based data acquisition operator is used to collect or

receive data from data sources or gateways and can be pull-based or push-based.

By using SPARQL/CQELS the data transformation and alignment can be done to

produce a normalized RDF output format, thus a streaming operator streams the

outputs of the final operator of a workflow to the consuming stream data applications.

SPARQL/CQELS provides the engine for processing Linked data stream and Linked

data. It contains a definition of the language specification and the engine for

processing the input data.

The LSM architecture functionality is illustrated in Figure 21. It is divided in layers that
together cover the entire process, from data acquisition, to Linked Data, publishing
and access, until storage and applications by means of stream processing and
correlated data.

Deliverable 5.1.2 Self-management and Optimization Framework

Copyright  2013 OpenIoT Consortium 60

Figure 21. Linked Data Functionality by means of Linked Data in LSM.

3.6.2 Efficient Stream Data Processing

In OpenIoT we are witnessing more and more senor data services that are based on

cloud computing models, which can typically lead to unprecedented economies of

scale. These cloud computing infrastructures offer a pay-as-you-go model, as well as

standard software stack for various applications.

While OpenIoT takes into account existing tools and techniques for the virtualization

of computing resources, it also considers the possibility and the extent to which ICOs

can be virtualized, despite limitations imposed by their geographical locations,

administrative ownership and functional capabilities. OpenIoT indeed advocates the

creation of virtual sensors through the X-GSN middleware, which can encapsulate

internet-connected objects. On a higher level, the users of the OpenIoT cloud are

able to develop applications that leverage information from multiple sensors,

actuators and other devices. This abstracts users from specific ICOs, as they provide

their data requirements through high-level queries (e.g. SPARQL) in terms of well-

defined ontological models (e.g. SSN ontology). The Linked Sensor Middleware

(LSM) is the OpenIoT component that is in charge of handling these queries. This is

a first of a kind extension of existing cloud computing infrastructures: using

algorithms and strategies developed in OpenIoT, end-users are able to configure,

deploy and use IoT based services.

The use of near-real time stream data is a key enabler and driver in such diverse

application domains as smart cities, home automation, ambient assisted living, or

recommender systems. As on the Web, access to and integration of information from

large numbers of heterogeneous sources under diverse ownership and control is a

resource-intensive and cumbersome task without proper support.

Deliverable 5.1.2 Self-management and Optimization Framework

Copyright  2013 OpenIoT Consortium 61

In OpenIoT we have analysed LSM and others, e.g., SPARQL extensions to query

RDF streams: C-SPARQL, EP-SPARQL, CQELS, SPARQLStream, or middleware

that has been built for streaming data processing, e.g. SPITFIRE, GSN, etc. Still,

widespread access to real streams does not exist at the same level as for Web

resources. LSM, the Linked Stream Middleware6, addresses this problem, providing

access to more than 100,000 stream sources via a RESTful interface and a

SPARQL/CQELS endpoint. However, to the best of our knowledge, no general-

purpose infrastructure to support existing lower access thresholds for users and

developers has been developed.

In OpenIoT, the usage of LSM enables efficient query processing over both static

data (e.g. sensor metadata) and also streaming data (e.g. observations). LSM

transforms the data from virtual sensors into Linked Data stored in RDF. A SPARQL

query is a so-called one-shot query, and such queries typically refer to queries about

sensor metadata and historical sensor readings. The SPARQL endpoint of LSM

provides the interface to issue these types of queries. The currently deployed RDF

triple store by LSM, OpenLink Virtuoso, provides a Linked Data query processor that

supports the SPARQL 1.1 standard.

SPARQL queries are executed once over the entire collection and discarded after the

results are produced, but queries over Linked Stream Data are continuous

(registered in the system, and continuously executed as new data arrives). For

processing continuous queries over Linked Stream Data, the LSM provides the

CQELS engine [Le-Phuoc 2011]. The query processing in CQELS is done in a push-

based fashion, i.e., data entering the query engine triggers the processing. The

continuous queries are expressed in the CQELS language, which is an extension of

the SPARQL 1.1 standard.

3.7 Energy Efficiency and Bandwidth Optimization

ICOs are often used in remote monitoring and control applications, where software

running on general-purpose computers “pull” information from remote sensors and

“push” actuations into the network. The ICO themselves form a multi-hop network

communicating with one or more access points that interface between application

software and the ICO network. Therefore, two resources that are scarce are the ICO

are energy and link bandwidth.

The energy efficiency in ICO becomes an issue because each node in the network is

equipped with a battery, but it is sometimes quite difficult to change or recharge

batteries. Therefore, the crucial question is on how to prolong the autonomous ICO

lifetime as much as possible. Hence, maximizing the lifetime of an ICO network

through minimizing the energy consumption is an important challenge since sensors

6 Linked Stream middleware (LSM), lsm.deri.ie.

Deliverable 5.1.2 Self-management and Optimization Framework

Copyright  2013 OpenIoT Consortium 62

cannot be easily replaced or recharged due to their ad-hoc deployment in distant

locations and hazardous environments.

The bandwidth optimization in ICO becomes an issue because the network can be

concurrently used for different applications (measurements). As an example consider

a network monitoring temperature, light and noise in company offices and production

halls. In such applications, the relative importance of ICO data streams often

depends on the type and values of the data being sensed, and on how data from

different streams is correlated with each other. For example, if the goal of

temperature monitoring application is to actuate heating or cooling then it would

make sense to allocate more network bandwidth for data streams coming from

occupied rooms compared to empty rooms. As a more extreme example, if sensors

in an area detect abnormally high temperature, it may signify a disastrous event like

a fire, in which case it would be prudent to allocate almost all of the bandwidth to

those streams. Thus, as such ICO shared networks grow in size, they require a

bandwidth allocation method, by which the nodes can decide how to allocate network

bandwidth to the streams. The allocation method has to handle traffic that exhibits a

high degree of spatial correlation, when a group of nodes in close proximity all detect

an event of interest. Thus, it has to be able to change bandwidth allocations in the

network depending on observed phenomena.

3.7.1 Energy and Bandwidth Consumption on MIOs

In environments with MIOs and smartphones as described in Section 3.5.2, the

process of pushing messages from the cloud to smartphones can incur large energy

costs. A recent study shows that periodic transfers in mobile application which

account for only 1.7% of the overall traffic volume contribute to 30% of the total

handset radio energy consumption [Qian2012]. Thus here we investigate potential

solutions for sending sensor readings to user smartphones and evaluate

experimentally the incurred energy and bandwidth consumption.

Hereafter we briefly report three potential solutions that have been implemented and

tested to enable delivery of notify messages in the MoPS system: 1) persistent TCP

connection, 2) connection-less communication over HTTP where a REST web

service is running on a mobile phone, and 3) REST web service with Google Cloud

Messaging.

Persistent TCP connections are the simplest mechanism to implement, but can

cause significant overhead as keep-alive messages are needed to maintain an active

connection which prevents the processor from going into a sleep mode.

Connectionless REST-based communication between a mobile device and the cloud

is an alternative to permanent TCP connections. Both the mobile device and server

need to run a REST service: Whenever they want to communicate, they send HTTP

messages to the REST service entry-point. In comparison to TCP connections, this

mechanism is one step closer to push-based communication where situations of

Deliverable 5.1.2 Self-management and Optimization Framework

Copyright  2013 OpenIoT Consortium 63

temporary connection losses and failed handover do not affect the communication

mechanism.

This mechanism does not allow a power save mode, but reduces the generated

traffic over wireless interfaces and reduces the number of open connections. REST-

based mechanism allows a mobile service to use a single entry point for all incoming

messages, regardless of the sender, while the previous approach uses separate TCP

connections for each sender.

For a fully implemented push-based message delivery mechanism in mobile

environments we have used the Google Cloud Messaging (GCM) service. GCM is a

service provided by Google running as an intermediary between application servers

(cloud-based brokers in case of our prototype) and mobile devices running the

Android OS. GCM uses a simple format for messages limited to 4 KB. A mobile

service does not need to be in active state to receive such notifications: The Android

OS will start or wake up the service upon a received message. The mechanism does

not create, handle or destroy any additional connections, which makes it a true push-

based communication mechanism without additional overhead. Since the support for

the GCM service is an integral part of the Android operating system, GCM only

requires that a radio interface is online, and allows the processing unit to go to power

save mode. The GCM mechanism is used by various Google applications on mobile

devices and reuses the same connection for the delivery of all messages, thus

reducing the communication overhead to a minimum. The main drawback is limited

availability (only for AndroidOS) and dependency on a third party solution.

Experimental evaluation. In our evaluation scenario the previously listed

communication paradigms are tested such that we send sequentially notify

messages to smartphones, and measure battery power consumption and generated

network traffic at the wireless interface of a mobile device. Measurements are

performed on a Samsung Galaxy S4 Android phone. The power consumption of a

mobile device is measured with the PowerTutor application, and network traffic

monitoring is performed with the TrafficMonitor application. All other services, which

could potentially use the GCM for its purposes (e.g. Gmail application, other Google’s

services) were stopped during the evaluation phase.

At the beginning of the evaluation scenario, a mobile service registers itself at the

MoPS server, such that the server is aware of a mobile service and of the mobile

device address. After the registration, the mobile service no longer sends any data,

because evaluation scenario is focused on the resource consumption for various

receiving paradigms. The server generates a random data set of notification items,

and sends them to the registered mobile device. A data item consists of five

numbers, where each number is written with double precision, so a data item has the

size of 40 bytes. Small data items were used because we wanted to analyse the

receiving paradigm overhead. Larger amount of data would mask the overhead

resource consumption, because most of the resources would be spent to transfer the

data.

Deliverable 5.1.2 Self-management and Optimization Framework

Copyright  2013 OpenIoT Consortium 64

In first energy consumption test, the server has sent 1000 data items with an average

interval of 1 second between two consecutive notify operations on a Wi-Fi interface.

In this case the phone did not enter a power-save mode. The measured values of

energy consumption are shown in Table 6. The power consumption is measured in

mili Watts, the duration of each paradigm runtime necessary for receiving the entire

data sets in expressed seconds, and the consumed energy expressed in Joules. All

three paradigms need approximately the same time for receiving 1000 data items.

The GCM paradigm is the most favourable technique for sending notifications as it

consumes almost 50% of the energy required for TCP-based solution, while REST

has an overhead of almost 20% compared to TCP (Figure 22).

Table 6. Energy consumption on a Wi-Fi interface for receiving 1000 data items

Communication

paradigm

Power

consumption [mW]

Runtime [s] Energy

consumption [J]

TCP 103.6 1034 107.12

REST 118.57 1053 124.85

GCM 53.27 1041 55.46

Figure 22. Energy consumption on a Wi-Fi interface for receiving 1000 data items.

The second energy consumption test is done by sending 100 data items, with an

average interval of 10 seconds between each notify operation. In this case the

smartphone did enter a power-save mode between each receive operation. Results

of the second test are shown in Table 7. As one can notice the GCM paradigm once

again has the best performance, but in this test other two paradigms have much

better results than in the first test scenario (Figure 23). In general, the GCM service

shows the best results regarding energy consumption because no additional network

connections are needed while the processor can go to the power save mode.

Deliverable 5.1.2 Self-management and Optimization Framework

Copyright  2013 OpenIoT Consortium 65

Table 7. Energy consumption on a Wi-Fi interface for receiving 100 data items

Communication

paradigm

Power

consumption [mW]

Runtime [s] Energy

consumption [J]

TCP 67.73 1031 69.83

REST 77.67 1049 81.47

GCM 45.73 1017 46.51

Figure 23. Energy consumption on a Wi-Fi interface for receiving 100 data items.

Parallel with energy consumption tests, we also measured the bandwidth
consumption with TrafficMonitor application on the phone Wi-Fi interface. In the first
bandwidth consumption test, the server sent 1000 data items, with a 1 second
interval between each transmission. The TCP-based solution generates the least
amount of traffic, and our REST-based solution generates the largest amount of
traffic (approximately 5 times larger than pure TCP) as expected since entities
communicate using the HTTP protocol. The TCP paradigm provides the best results
because it introduces the least overhead. In addition to our data set, the data
transferred through the GCM connection also contains the identifier of the intended
recipient, while the REST solution is built on top of HTTP (Figure 24). The REST
paradigm generates much more traffic than the other two, especially for upload (i.e.
upload) as shown in Table 8.

Table 8. Bandwidth consumption on a Wi-Fi interface for receiving 1000 data items.

Communication

paradigm

Total bandwidth

[kB]

Download [kB] Upload [kB]

TCP 264.13 256.51 7.62

REST 1402.88 1293.29 109.59

GCM 973.81 958.73 15.08

0
10
20
30
40
50
60
70
80
90

[J]

10 seconds interval [s]

TCP

REST

GCM

Deliverable 5.1.2 Self-management and Optimization Framework

Copyright  2013 OpenIoT Consortium 66

Figure 24. Bandwidth consumption on a Wi-Fi interface for receiving 1000 data items.

The second bandwidth consumption test was done by sending 100 data items, with

an average interval of 10 seconds between each data transmission. The results of

the second test are shown in Table 9. The TCP-based solution once again generated

the least amount of traffic, and REST generated the largest amount of traffic (Figure

25).

Table 9. Bandwidth consumption on a Wi-Fi interface for receiving 100 data items.

Communication

paradigm

Total bandwidth

[kB]

Download [kB] Upload [kB]

TCP 52.82 45.05 7.77

REST 986.77 961.29 25.48

GCM 203.24 189.67 13.57

Figure 25. Bandwidth consumption on a Wi-Fi interface for receiving 100 data items.

0

200

400

600

800

1000

1200

1400

1600
[kB]

1 second interval [s]

TCP

REST

GCM

0

200

400

600

800

1000

1200
[kB]

10 seconds interval [s]

TCP

REST

GCM

Deliverable 5.1.2 Self-management and Optimization Framework

Copyright  2013 OpenIoT Consortium 67

After testing all three paradigms for battery consumption, power consumption and
generated network traffic we can conclude that the TCP solution generates the least
amount of traffic on a Wi-Fi network interface and the GCM paradigm consumes the
least energy, compared to the other two paradigms, especially when the time interval
between two consecutive data transmission is large enough such that the processor
can go to the power save mode. The REST paradigm consumes the most energy
and generates the biggest traffic on a Wi-Fi interface, so we can conclude that the
REST paradigm is ineffective in terms of energy consumption and generated network
traffic.

3.7.2 Bandwidth Optimization through Indirect Sensor Control

The most commonly used resource and therefore the most significant source of

bandwidth consumption on the OpenIOT platform, is expected to be the data

streamed from the sensors to the users. This section describes an optimization

strategy that addresses this issue and has been developed in the context of T5.2

Resource Sharing and Management.

The module responsible for streaming from sensors to the LSM is X-GSN. In the

current implementation of X-GSN, once a sensor is activated it streams data

continuously whether the data is actually needed from a service or not. This results in

a misuse of available bandwidth. In order to address this issue, a module that applies

Indirect Dynamic Sensor functionality has been implemented on top of the X-GSN

module.

As the name of the module implies, the control (activation/deactivation) of a sensor is

not to be controlled directly from the user. Rather, a user announces the creation of

a service which makes use of a group of sensors, to the Request Definition module.

The request is forwarded to the Scheduler which in turn creates a SPARQL triplet of

a “serviceID HAS sensorID” format on the LSM, which is represented by the

sensorServiceRelation entity, stating which sensors a particular service is intending

to use.

At the same time, a periodic timed task is running on the X-GSN module, which is

responsible for direct sensor management, querying the particular triple on the LSM

repository, in order to determine which sensors are being currently announced/

requested by users. The task compares the query results from the triplets, with the

list of virtual-sensors that are currently active on the X-GSN module. Then X-GSN

activates virtual sensors that have been found by the query but are not active on the

module and deactivate the virtual sensors that are active on the module but have not

been found in the query.

Deliverable 5.1.2 Self-management and Optimization Framework

Copyright  2013 OpenIoT Consortium 68

This process is illustrated in the sequence diagram in Figure 26 and flow chart

diagram in Figure 27.

Request
Definition

User

Announces
 Service Creation

/ Use of Sensor Group

Scheduler

Sends Service
Representation

X-GSN Dynamic Sensor Control
Loop

Service Creation

Returns
 ConfirmationReturns

 Confirmation

LSM

Store Service
Definition to LSM

X-GSN

activate / deactivate
sensor streaming

Periodically Request
Defined Services
/ Sensors Triples

Figure 26. Indirect Dynamic Sensor Control Sequence Diagram.

Start X-GSN
Module

Query Sensor /
Service triplet

on LSM

Check active
virtual sensors

Compare query
with active

virtual sensors

Activate /
deactivate

sensors
according to
query results

Perform Loop
at preset intervals

Figure 27. Indirect Dynamic Sensor Control Flow Chart.

The above process is expected to result in significant bandwidth conservation, since

sensors streams data only when they are actually used, as opposed to them

streaming on a constant basis.

Deliverable 5.1.2 Self-management and Optimization Framework

Copyright  2013 OpenIoT Consortium 69

3.7.2.1 Sensor Use Identification

To implement the Dynamic Sensor Control functionality, the X-GSN module needed

support a basic API that activates/deactivates virtual-sensors programmatically. The

original GSN framework does not support such an API, and sensor activation /

deactivation is performed by copying or removing accordingly the virtual sensor .xml

and metadata files, from the virtual-sensors directory within the GSN source folder.

In order not to temper with the existing code, an independent module for has been

implemented that performs the Dynamic Sensor Control functionality.

The module’s functionality can be described briefly as follows:

 By querying the LSM, an ArrayList<String> of active sensor names are
obtained

 Then the module scans the virtual-sensors directory for all .xml files
constructs a HashMap<String, File>, that maps sensor id Strings which are
obtained from the name property in the <sensor>.xml.metadata file, with File
Objects that correspond the virtual-sensor names

 The module scans the available virtual sensors from the LSM folder in the
X-GSN module, again mapping sensor id’s with corresponding files.

 The ArrayList<String> obtained from the query on the LSM is compared with
the first HashMap<String, File>. Any sensor names located in the HashMap
but not in the SPARQL query ArrayList are deactivated. This is performed by
deleting the corresponding .xml and .xml.metadata files from the directory

 Finally the ArrayList<String> obtained from the SPARQL query is compared
with the available sensors and activates them by copying the corresponding
files to the virtual-sensors directory

 This functionality is embedded in a TimerTask class (the DynamicControlTask
class) that is executed in predefined intervals

Deliverable 5.1.2 Self-management and Optimization Framework

Copyright  2013 OpenIoT Consortium 70

4 PROTOTYPE IMPLEMENTATIONS

In the previous sections, we have described the techniques, algorithms and

principles that we have conceived, designed and proposed for the self-management

and optimization framework of OpenIoT. We have supported our design choices and

algorithms with experimentation and evaluation over proof-of concept prototypes,

where applicable.

In this section we provide details about the prototypes that actually implement the

techniques and algorithms presented previously, within the components of the

OpenIoT architecture. This includes functional specifications and a summary of the

design decisions and technical details needed to adapt, modify or configure the

OpenIoT modules concerned. Specifically, we include:

 The Utility-based optimization implementation. It implements the cost and

valuation functions introduced in Section 3.4 and the acquisition algorithms in

Section 3.5.

 The Dynamic Sensor Control module, which implements the control of X-GSN

virtual sensors for Bandwidth optimization, as explained in Section 3.7.2. The

implementation details of the data acquisition and filtering mechanism for

mobile devices as specified in Section 3.5.2 are available in deliverable

D3.4.1.

 Caching Scenarios prototype. It describes the simulator that calculates cache

costs associated with accessing a cloud data-store, in combination with a local

caching solution, following Section 3.2.3.5.

 Cloud optimization implementation. It specifies the implementation of the

integration of LSM and X-GSN including the cloud optimization based on view-

models using memory indexes and Map Reduce-based query processing.

We have elaborated Table 10, which shows how the different techniques explained in

Section 3 relate to the implementation descriptions in this section. In the case of the

mobile publish subscribe system (MoPS) that addresses efficient data collection and

bandwidth optimization for mobile devices, the implementation is further described in

Deliverable 4.5.1. For LSM, full implementation details have already been provided in

Deliverable 3.3.1.

Deliverable 5.1.2 Self-management and Optimization Framework

Copyright  2013 OpenIoT Consortium 71

Table 10. Prototypes and module implementations vs. OpenIoT Management and

optimization Techniques.

Prototypes and module implementations vs.

OpenIoT Management and optimization

Techniques

U
tility

-b
a
s
e

d

o
p
tim

iz
a
tio

n

D
y
n
a
m

ic
 S

e
n
s
o
r

C
o
n
tro

l

C
a
c
h
in

g
 S

c
e
n
a
rio

s

S
im

u
lta

to
r

C
lo

u
d
 O

p
tim

iz
a
tio

n

M
o
b

ile
 P

u
b
lis

h

S
u
b
s
c
rib

e

L
S

M
 C

Q
E

L
S

Efficient Scheduling X X

Cloud Optimization X

Utility-based Optimization X

Efficient Sensor Data Collection X X

Request Types Optimization X

Energy Efficiency and Bandwidth Optimization X X

4.1 Utility Based Optimization

In this section we present the functional specification of the utility-based optimization

in OpenIoT described in Section 3.4.

4.1.1 Functional Specification

In OpenIoT utility-based data collection and query processing is performed in a

subcomponent of SD&UM. We refer to this subcomponent as Utility-based Optimizer

(UBO). Figure 28 depicts the high level functional architecture of utility-based

optimization in OpenIoT. UBO periodically retrieves the available queries from the

OpenIoT cloud database, the metadata of sensors in the regions requested by these

queries and the trust score of these sensors. Trust scores of sensors are calculated

by the trust assessment component described in Deliverable 5.2.1. Given these

information, UBO performs utility-based sensor selection to identify the sensors that

are used to answer the queries. After selection of sensors it might be necessary to

rewrite the SPARQL queries in order for them to read from selected sensors. These

rewritten queries are denoted by Queries* in Figure 28. The frequency of running

UBO optimizations is read from a configuration file. However, this frequency can be

updated based on the scheduling information of the requests that arrive to SD&UM.

Deliverable 5.1.2 Self-management and Optimization Framework

Copyright  2013 OpenIoT Consortium 72

Figure 28. High level functional architecture of utility-based optimization.

Figure 29 shows the functionality of UBO in more details. In the following we

describe the steps that are taken in each execution round of UBO.

1. All the OpenIoT Service Model Object (OSMO) objects available from the
Service Delivery and Utility Manager (SD&UM) are retrieved.

2. The SPARQL queries in OSMO objects are parsed and the required point
queries and spatial aggregate queries are created for each OSMO object. For
example, a query asking for a reading from sensors, is translated to a point
query asking for a sensor reading at the location of sensor s. A query asking
for the average value of sensor readings from a set of sensors S, is translated
into a spatial aggregate query asking for the average sensor reading in a
rectangular area that contains all the sensors in S.

3. The metadata of sensors which fall into the enclosing queried region are
retrieved from the Directory Service. The enclosing queried region is the
smallest region that contains all the regions defined in spatial aggregate
queries and the regions defined around the locations queried by point queries.

4. Utility-based multi-query optimization algorithm explained in Section 3.4 is run
against the extracted queries and the metadata for available sensors. The
result of this step is a set of sensor IDs.

5. New SPARQL queries for each OSMO object are created from the original
SPARQL queries based on the selected sensors.

6. If a selected sensor is not activated, a message is sent to X-GSN to activate
the sensor and push its data to LSM.

7. The new SPARQL queries are executed by forwarding them to the Directory
Service SPARQL interface.

8. The query execution results are forwarded to Request Presentation.

9. The cost of sensor readings is split among the queries and the corresponding
accounting information is sent to the Accounting & Billing module.

Deliverable 5.1.2 Self-management and Optimization Framework

Copyright  2013 OpenIoT Consortium 73

Figure 29. Utility-based query execution.

4.1.2 Required Information about Sensors and Queries

The UBO assigns a cost to each sensor. The cost value can be specified in the

sensor metadata, which is accessible to the UBO through SensorType objects. If the

cost information is not available in the metadata, we assume that at least information

about energy consumption of sensors is available in their metadata. Based on this

information, the UBO can assign a reasonable pre-defined cost to the corresponding

sensors.

In OpenIoT heterogeneous stationary or mobile devices are available. The device

owners, especially mobile device owners, can be concerned about possible leakage

of their privacy by providing data about themselves or about their surroundings. In

order to minimize privacy threats or to manage the level of privacy leakage, privacy

protection mechanisms are employed on the devices. OpenIoT cannot impose any

specific privacy protection mechanisms on the sensing devices. However, the privacy

requirements of the device owners must be considered while utility-based data

collection and query processing is performed. In order to achieve this important

requirement, we assume that the cost reported by the sensing device already

Deliverable 5.1.2 Self-management and Optimization Framework

Copyright  2013 OpenIoT Consortium 74

includes the cost of possible privacy loss as mentioned in Section 3.4.23.4.2. When

the cost information is not provided by the sensing devices, the assumption is that

the device owners are not concerned about their potential privacy loss; hence in

assigning the default cost only the energy consumption of the device is taken into

account.

When a user defines a new service through the Request Definition module, he/she

can assign a maximum budget for obtaining the query results. This maximum budget

along with a suitable predefined query-type specific quality assessment function

determines how much the data collected for answering the defined query is worth.

Examples of these functions can be found in Section 3.4.3. The budget information is

stored in each service’s OSMO object. If the query budget is not specified, the

average sensor reading cost is used as the budget of the query. If the query is

scheduled to run continuously, in each query execution round, this average cost is

considered as the budget.

4.2 Dynamic Sensor Control Module

4.2.1 Main Released Functionalities and Services

In the context of T5.2 Resource Sharing & Management, a Dynamic Sensor

Control module has been developed in order to extend the X-GSN module’s

functionality. The functionality of this module as described in Section 3.7.2

periodically queries the LSM for the active sensors and activates/deactivates the

relevant virtual sensors on the X-GSN module. In order to implement the module it

was necessary to provide and extension to the API of X-GSN that would perform

these queries that identify the currently active sensors. This module is explained in

further detail in 3.7.2.1.

4.2.2 Download, Deploy and Run

The current module is embedded in the X-GSN module, therefore the process to

download, install and run this module is already handled when performing the same

process with X-GSN. Refer to deliverable D4.3.1 for specific details.

4.2.2.1 Source Code Analysis

This section describes the architecture of the Dynamic Sensor Control code. Figure

30 represents the UML class diagram that facilitates the Sensor Use Identification

functionality (identify the X-GSN sensors that are used in the queries, and

activate/deactivate virtual-sensors accordingly, as in Section 3.7.2.1):

Deliverable 5.1.2 Self-management and Optimization Framework

Copyright  2013 OpenIoT Consortium 75

In Figure 30 the UML depicts the classes comprised in the Dynamic Sensor Control

Module. The Parser interface and the SensorParser implementation class are in

charge of parsing the RDF metadata in LSM, and extract the identifiers of the virtual

sensors. The DynamicControlTask class encapsulates the operations of activation

and de-activation of virtual sensors. It has a SparqlClient attached to be able to pose

SPARQL queries, get results (which can be later parsed) and get the virtual sensor

identifiers to activate or de-activate.

<<Interface>>

Parser<T>

+Collection<T>:parse(TupleQueryResult)

-SensorParser

+Collection<String>: parse(TupleQueryResult)

- Collection<String>: parseTQR(TupleQueryResult)

ParserFactory

+SensorParser: SENSOR_PARSER

SparqlClient

-SPARQLRepository: therepository

-TupleQueryResult: sparqlToQResult(String)

-Collection<T> getQueryResults(String, Parser<T>)

DynamicControlTask

-String: VIRTUAL_SENSORS_DIR

-String: AVAILABLE_SENSORS_DIR

-String: VIRTUAL_SENSORS_TAG

-String: VIRTUAL_SENSORS_TAGE_NAME_ATTR

-String: SENSOR_QUERY

-String: TEST_QUERY

-String: QUERY

-SparqlClient: sparqlClient

+void:run()

- void:activateSensor(File)

- void:deactivateSensor(File)

- Map<String,File>:getGSNSensors(String)

- String:getSensorNameFromFile(File)

- SparqlClient:loadSparqlClient()

- updateActiveSensors(List<String>, Map<String, File>, Map<String, File>)

DynamicControlTaskTimer

-Timer:instance

+Timer:getInstance()

+void:startTimer()

Figure 30. Dynamic Sensor Control UML Diagram

Also, the following tables analyse various class methods of the module’s

components.

Deliverable 5.1.2 Self-management and Optimization Framework

Copyright  2013 OpenIoT Consortium 76

<<Interface>> Parser<T>

Service Name Input Output Info

parse TupleQueryResult Collection<T>

This method should be

implemented by any class

implementing the

Parser<T> Interface

The Parser<T> interface is part of the Strategy Design Pattern that is used to

manage various Parser subclasses that are used from the SparqlClient. Each class

implementing this interface returns a Collection of the type defined at runtime.

ParserFactory

Service Name Input Output Info

SENSOR_PARSER void SensorParser

Sensor parser implements

the Parser<String> interface

meaning that the parse

method returns a Collection

of Strings.

ParserFactory implements a Static Factory Design pattern that creates objects that

implement the Parser<T> interface.

private inner class SensorParser

Service Name Input Output Info

parse TupleQueryResult Collection<String>
Simple calls the

parseTQR method

parseTQR TupleQueryResult Collection<String>

Implementation of the

actual parsing

functionality

SensorParser implements a Parser<String> interface and is the only concrete

implementation at the moment. Sensor parser parses TupleQueryResults and returns

Strings that represent a sensor ID. The parser is executed over the SPARQL query

results from LSM.

DynamicControlTask (Singleton)

Service Name Input Output Info

run void void

This is the main method of

the class that is executed

once a timer starts it

activateSensor File void Copies active sensors from

the LSM directory to the

Deliverable 5.1.2 Self-management and Optimization Framework

Copyright  2013 OpenIoT Consortium 77

virtual-sensors directory

deactivateSensor File void

Deletes inactive sensors

from the virtual-sensors

directory

getGSNSensors String Map<String, File>
Retrieves GSN sensors

from the specified path

loadSparqlClient void SparqlClient Loads the sparql client

getInstance void
Retrieves the singleton

instance

DynamicControlTask is the class providing the main dynamic sensor control

functionality. Since it is desirable that only a single task of that type is running at a

given time, it is implemented as a singleton. Other than that its’ main responsibilities

are using the SparqlClient class to query the LSM for active sensors and

activate/deactivate the corresponding virtual sensors. The activateSensor and

deactivateSensor method implements the copy and activation of sensors, if they are

announced in LSM. Conversely, the deactivate Sensor deletes inactive sensors in X-

GSN, thus optimizing the use of resources in the system.

DynamicControlTaskTimer (Singleton)

Service Name Input Output Info

getInstance void Timer
Retrieves the singleton

instance

startTimer void void Initiates the timer

The DynamicControlTaskTimer class simply starts/cancels the timed schedule for the

DynamicControlTask class. Similarly to the DynamicControlTask, we only want a

single Timer to be active. Therefore, this class is also implemented as a singleton.

SparqlClient

Service Name Input Output Info

getQueryResults String, Parser<T> Collection<T>

This method receives a

string query and a

Parser<T> with which the

query results are parsed. It

retrieves the results from

the LSM, inserts them into

the parser and returns a

Collection of objects

specified by the parser

algorithm that is selected.

Deliverable 5.1.2 Self-management and Optimization Framework

Copyright  2013 OpenIoT Consortium 78

sparqlToQResult String TupleQueryResult

This method receives a

Sparql query in String form

and returns a

TupleQueryResult which

can then be inserted into a

parser

Finally, the SparqlClient class is responsible for establishing a connection with the

LSM database, in order to perform queries and return results.

4.2.2.2 Configuration

Concerning the Dynamic Sensor Module itself, there is a limited set of functionalities

that can be configured in the conf/lsm_config.properties file. The file contains the

following lines that concern the specific module:

#DynamicControl

functionalGraph = http://lsm.deri.ie/OpenIoT/guest/functionaldata#

endPoint = http://lsm.deri.ie/sparql

virtualSensorsDir = virtual-sensors

availableSensorsDir = virtual-sensors/LSM

dynamicControl = true

#enter frequency of dynamic sensor control in minutes

dynamicControlPeriod = 5

The properties (Table 11) that can be configured are the following:

Property Explanation

functionalGraph The link to the RDF Graph that is to be queried

endPoint An LSM endpoint that is used to establish the

connection for the SparqlClient class

virtualSensorsDir This is the folder where active virtual sensors (xml files)

are expected to be found

availableSensorsDir This is the folder where available virtual sensors (xml

files) are expected to be found

dynamicControl This property states if the Dynamic Control actives

(True) or inactive (False). The default value is true

dynamicControlPeriod This property states the time interval, which the LSM

query for active sensors (in minutes).

Table 11. Dynamic Sensor Control Properties.

Deliverable 5.1.2 Self-management and Optimization Framework

Copyright  2013 OpenIoT Consortium 79

4.3 Caching Scenarios Simulation Prototype

In the context of T5.2 Resource Sharing & Management, a “Caching Scenarios

Simulation Prototype” has been developed. The purpose of the prototype is to

simulate the costs associated with accessing a cloud data-store, in combination with

a local caching solution. It is expected, that the simulator assists in estimating the

cost-efficiency of such a system, depending on the average request load and the

caching solution that is implemented.

4.3.1 Main Released Functionalities and Services

The above prototype simulator has been developed as an MS Excel Workbook. It is

separated into three distinct worksheets:

 Instructions

 User Input & Simulation Chart

 Chart Calculation Parameters

In further details the distinct workbooks have the following functionalities.

Instructions

In Figure 31 the simulator introductory screen is displayed, which explains the

functionality of the worksheet and how to use it. The particular worksheet is locked

entirely and cannot be edited. Further detailed instructions, on using the prototype

are included in the worksheet itself.

Figure 31. Caching Simulation Introductory Screen.

Deliverable 5.1.2 Self-management and Optimization Framework

Copyright  2013 OpenIoT Consortium 80

User Input & Simulation Chart

This worksheet is where the user can provide actual input and view the results on the

produced bar chart. The following figure (Figure 32) displays the relevant input cells

Figure 32. Caching Simulator User Input.

In the particular figure the orange cells are the ones expecting input from the user,

while the grey cells provide the related output. These inputs/results are used in

combination with other hard coded parameters in the “Chart Calculation

Parameters” worksheet in order to provide the resulting chart. Again this worksheet

is locked for editing besides the orange cells.

Deliverable 5.1.2 Self-management and Optimization Framework

Copyright  2013 OpenIoT Consortium 81

Chart Calculation Parameters

This worksheet contains parameters that are used to create the chart in the “User

Input & Simulation Chart” worksheet. Certain parameters are obtained from the

above worksheet, others are hardcoded in order to facilitate various calculations.

An indicative screen of the particular worksheet is displayed in Figure 33.

Figure 33. Caching Simulator Chart Calculation Parameters.

The figure above shows three tables. Their contents are described as follows:

 Table 1 includes hard coded cache miss parameters derived from the results

of the research paper “Improving the Performance of Semantic Web

Applications with SPARQL Query Caching” [Martin 2010]. Additionally, it

includes cost calculations for each rph category depending on the cache miss

rate.

 Table 2 calculates the costs per year resulting from the above parameters.

Deliverable 5.1.2 Self-management and Optimization Framework

Copyright  2013 OpenIoT Consortium 82

 Table 3 finally, simply distributes Table 2 parameters in such a way in order to

create a combined stacked bar chart in the “User Input & Simulation Chart”

worksheet.

4.3.2 Download, Deploy and Run

The workbook for the prototype is downloadable from URL:

https://websvn.deri.ie/wsvn/openiot/Deliverables/D512/ , filename: OpenIOT-D512-

Cache Cost Evaluation Simulation Prototype.xlsx.

The file is simply executed as a windows application and is ready to use.

4.4 Cloud Optimization Integration in GSN and LSM

4.4.1 Functional specification

Figure 34 illustrates the integration of model-view sensor data index and query

modules and the current components of OpenIoT, namely, GSN node and LSM.

In GSN node, we add the functionality module shown in Fig. 4 (a) which is in charge

of segmenting sensor time series on the fly and assigning the segments to

corresponding nodes in vs-tree. GSN node should maintain a vs-tree for each sensor

time series in memory. Instead of sending raw sensor data points to the cloud store in

LSM, GSN node only pushes the segments including the registration node, time

domain, value range and model coefficients of the segment, to the key-value store in

LSM. Then the key-value store HBase resident in LSM materializes the segment into

corresponding row of the model-view sensor data table.

Regarding querying model-view sensor data, our proposed hybrid query processing

scheme is embedded into LSM shown in Fig. 34 (b). When a query comes to the

LSM, in the first step the intersection or stabbing search on vs-tree in LSM delimits a

set of nodes that may host qualified segments. Then, the MapReduce based query

processing is invoked within the LSM cloud to fetch the potential qualified segments

from the key-value store, filter predicate-addressed segments and return the gridded

values as query results. Based on the current architecture of OpenIoT, the

components in the dot-dash red blocks of Fig. 34 (a) and (b) need to be

implemented.

https://websvn.deri.ie/wsvn/openiot/Deliverables/D512/

Deliverable 5.1.2 Self-management and Optimization Framework

Copyright  2013 OpenIoT Consortium 83

Figure 34. (a) GSN node. (b) Sensor data segments and KVI-index. (c) Key-value

stores in LSM. (d) KVI-index and MapReduce based query processing.

4.4.2 Query specification

Model-view sensor data management only modifies the internal mechanism of

indexing and querying sensor data, and therefore from the perspective of application

side, end-users can submit queries as usual. The following categories of queries are

supported by our model-view based approach in OpenIoT platform:

time point query: return the value of one sensor at a specific time point.

value point query: return the timestamps when the value of one sensor is equal to the

query value. There may be multiple time stamps of which sensor values satisfy the

query values.

time range query: return the values of one sensor during the query time range.

value range query: return the time intervals of which the sensor values are within the

query value range. There may be multiple time intervals of which sensor values

satisfy the query value range.

Concerning the query results, abstract functions of segments make little sense for

end-users and hence the gridding phase is necessary in the query processing in

order to generate user-friendly discrete data set as query results. Moreover, segment

gridding helps eliminate the part of one segment that is outside the query range. Fig.

4 gives an example illustrating the query results from the hybrid query processing

module in LSM are discrete data pairs representing the timestamps and sensor

values.

Deliverable 5.1.2 Self-management and Optimization Framework

Copyright  2013 OpenIoT Consortium 84

4.4.3 Experimental evaluation

To show the feasibility of our approach, we have conducted a series of experiments

described in this section. This proof-of-concept implementation is to be plugged to X-

GSN, but we already show the feasibility of the techniques initially presented in

Section 3.3. The results show important improvements in response time, compared

to raw data value storage.

4.4.3.1 Setup

We employ accelerometer data from mobile phones as sensor data set. The size of

raw sensor data is 22 GB including 200 million data points. After modeling, the

modelled segments of the sensor data take 12 GB, while there are around 25 million

modelled segments.

We developed our system using the versions of Hbase and Hadoop in Cloudera CDH

4.3.0. The experiments are performed on our own cluster that consists of 1 master

node and 8 slaves. The master node has 64GB RAM, 3TB disk space (4 x 1TB disks

in RAID5) and 12 cores, each of which is 2.30 GHz (Intel Xeon E5-2630). Each slave

node has 6 cores 2.30 GHz (Intel Xeon E5-2630), 32GB RAM and 6TB disk space (3

x 2TB disks). Nodes are connected via 1GB Ethernet. In the experiment results, we

refer to query selectivity as the ratio of the number of qualified modelled segments

over that of total modelled segments.

4.4.3.2 Results

We compare the model-view sensor data query processing with conventional one

over raw sensor data. Raw sensor data is a set of discrete data points each of which

has associated timestamp and value. We create two tables, which respectively take

the timestamp and sensor value as the row-keys, such that the query range or point

can be used as keys to locate the qualified data points. The query processor invokes

MapReduce to access the large size of data points for query results.

Deliverable 5.1.2 Self-management and Optimization Framework

Copyright  2013 OpenIoT Consortium 85

Figure 35. Range query results.

Figure 36. Point query results.

Figure 35. Range query results. (a) and (b) present the query response times for time

and value range queries. As shown in Figure 35, model-view approach takes around

30% less time than the raw sensor data method for both time and value range

queries. Although the raw sensor data based methods apply MapReduce to directly

access the qualified tuples via the row-key based range scan, the amount of raw

sensor data to process is much larger than that of the model-view approach. In

Figure 36, the processing time of the raw data based method is 2x less than that of

the model-view one in time point queries, because the raw data method can use the

query time point as index key to directly access the relevant data points, while our

hybrid approach requires to perform model filtering and gridding.

We also evaluate our KVI-Scan-MapReduce approach to compare with other model-

view sensor data querying approaches. Moreover, we experimentally explore the

factors that affect the performance of KVI-Scan-MapReduce. Please refer to [Guo

2013] for more details.

Deliverable 5.1.2 Self-management and Optimization Framework

Copyright  2013 OpenIoT Consortium 86

5 CONCLUSIONS

OpenIoT is working towards a blueprint framework and an associated middleware

platform that could enable the on-demand formulation of IoT services over a cloud-

computing infrastructure. Two of the main properties of the OpenIoT project are

related to its ability to manage itself, towards optimizing the use of resources. In

particular, as several users are serviced by OpenIoT and several services are

concurrently running over the OpenIoT infrastructure, it is important to ensure that

resources are used in an optimal way, which could also boost the availability and

reliability of the infrastructure. To this end, OpenIoT employs a variety of optimization

algorithms, which are structured within a framework for autonomic management of

the OpenIoT infrastructure (i.e. without human mediation).

The deliverable has presented a number of algorithms and techniques that are

employed for the management and resource optimization of the OpenIoT cloud

platform. These algorithms target a number of different optimization objectives and

employ a host of different mechanisms, in particular:

 Efficient scheduling functionalities are considered, mainly in order to ensure that

OpenIoT streams data only in cases where these data have been requested

and/or used.

 Caching mechanisms are prescribed with a view to accelerating access to sensor

data that are frequently required, to sensor services that are frequently used, as

well as to sensor data that reside in popular locations.

 Cloud optimization technologies are also presented, using model-based view for

sensor query representation and processing.

 Utility-driven algorithms are also employed in order to maximize the net benefit

(i.e. utility) measured as difference between the benefit of the provided

information and the cost of maintaining the system in terms of energy

consumption/bandwidth and the cost of ensuring privacy.

 Context-aware filtering for mobile environments, focused on efficiency on sensor

data collection.

 Semantic Web and Linked data techniques are used in order to efficiently

correlate different queries (e.g., sensor queries) to the OpenIoT system.

 The use of bandwidth allocation subject to spatial constraints is suggested in

order benefit from spatial correlations and maximizes the energy efficiency of the

network.

Several of the above algorithms are based on background research results of the

partners, while other are tailored to the structure and the mode of operation of the

OpenIoT system. In addition to describing these schemes, a specification and

implementation design has been presented, identifying the components of the

Deliverable 5.1.2 Self-management and Optimization Framework

Copyright  2013 OpenIoT Consortium 87

OpenIoT architecture that host and/or support these mechanisms. Specifically, we

have introduced the implementation details for the Dynamic Sensor control module,

the Utility-based optimization, the Cloud optimization integration, and the simulation

of caching scenarios. The project intends also to select some of the schemes for

integration over the open source OpenIoT platform. The rest schemes would serve

as exercises and projects for the open source community of the project, while also

being excellent themes for (open source) promotion activities like summer of code.

6 REFERENCES

[Abadi 2005] D. J. Abadi, S. Madden, and W. Linder, "REED: Robust, Efficient

Filtering and Event Detection in Sensor Networks", Proc. of the 31st VLDB

conference, Trondheim, Norway, 2005, pp. 769-780.

[Ahmad 2004] Y. Ahmad and U. Cetintemel. Network-aware query processing for

stream-based applications. In VLDB, 2004.

[Amazon Web Services], “Amazon Web Services, [Online]. Available:
http://aws.amazon.com/s3/#pricing.

[Bizer 2009]: The Berlin SPARQL Benchmark . In: International Journal on Semantic
Web & Information Systems, Vol. 5, Issue 2, Pages 1-24, 2009.

[Chand 2006] N. Chand, R.C. Joshi., M. Misra, “Cooperative caching strategy in

mobile ad hoc networks based on clusters,” Springer Wireless Personal

Communications, pp. 41-63, issue 1, October 2006.

[Chow 2007] C.Y. Chow, H.V.Leong, A.T.S. Chan, “GroCoca: Group-based peer-

topeer cooperative caching in mobile environment,” IEEE Journal on Selected

Areas in Communications, vol. 25, no. 1, January 2007.

[Clark 2003] Clark, D., Partridge, C., Ramming, J. C., Wroclawski, J. T. “A

Knowledge Plane for the Internet” SIGCOMM 2003, Karlsruhe, Germany, 2003.

[Deshpande 2006] Deshpande, Amol and Madden, Samuel. MauveDB: supporting

model-based user views in database systems. SIGMOD, 2006.

[Ding 2008] Ding, Hui and Trajcevski, Goce and Scheuermann, Peter and Wang,

Xiaoyue and Keogh, Eamonn. Querying and mining of time series data:

experimental comparison of representations and distance measures. VLDB

Endowment, 2008.

[DMTF-CIM] DMTF, Common Information Model Standards (CIM].

http://www.dmtf.org/standards/standard_cim.php

Deliverable 5.1.2 Self-management and Optimization Framework

Copyright  2013 OpenIoT Consortium 88

[Feige 2007]U. Feige et al. Maximizing non-monotone submodular functions. In Proc.

of FOCS, 2007.

[Google Inc.], “Google Cloud SQL Pricing,” [Online]. Available:
https://cloud.google.com/pricing/cloud-sql.

[Guo 2012] Guo, Tian and Yan, Zhixian and Aberer, Karl. An adaptive approach for

online segmentation of multi-dimensional mobile data. Proc. of MobiDE,

SIGMOD Workshop, 2012.

[Guo 2013] Guo, Tian; G. Papaioannou, Thanasis; Aberer, Karl. Model-View Sensor Data

Management in the Cloud. IEEE International Conference on Big Data 2013 (IEEE BigData

2013), Santa Clara, California, USA, October, 2013.

 [Heinzelman 1999] Heinzelman, W.R., Kulik, J., Balakrishnan, H.: Adaptive Protocols

for Information Dissemination in Wireless Sensor Networks. In: MOBICOM,

Seattle, WA. (Aug. 1999) 174–185

[Intanagonwiwat 2000] Intanagonwiwat, C., Govindan, R., Estrin, D.: Directed

Diffusion: a Scalable and Robust Communication Paradigm for Sensor

Networks. In: MOBICOM, Boston, MA. (Aug. 2000) 56–67

[Laurila2012] Laurila, J. K., Gatica-Perez, D., Aad, I., Blom, J., Bornet, O., Do, T.-M.-

T., Dousse, O., Eberle, J.,and Miettinen, M. The mobile data challenge: Big data

for mobile computing research. In Proc. Mobile Data Challenge by Nokia

Workshop, in conjunction with Int. Conf. on Pervasive Computing (2012).

[Lee 2006] K. C. K. Lee, W.-C. Lee, B. Zheng, and J. Winter. Processing multiple

aggregation queries in geo-sensor networks. In Proceeding of the 11th

International Conference on Database Systems for Advanced Applications

(DASFAA), pages 20—34, 2006.

[Lephuoc 2011] Danh Le-Phuoc, Hoan Nguyen Mau Quoc, Josiane Xavier Parreira,

and Manfred Hauswirth, The Linked Sensor Middleware: Connecting the real

world and the Semantic Web, at 9th Semantic Web Challenge co-located with

10th International Semantic Web Conference – ISWC 2011, October 23-27,

2011 Bonn, Germany.

[Li 2004] Li, X., Huang, Q., Zhang, Y.: Combs, Needles, Haystacks: Balancing Push

and Pull for Discovery in Large-Scale Sensor Networks. In: ACM SenSys,

Baltimore, MD. (Nov. 2004)

[Li 2009] J. Li, S. Li, J. Zhu, “Data Caching Based Queries in Multi_sink Sensor

Networks,” IEEE 5th International Conference on Mobile Ad-hoc and Sensor

Networks, 2009.

Deliverable 5.1.2 Self-management and Optimization Framework

Copyright  2013 OpenIoT Consortium 89

[Maddan 2002] Maddan, S., Franklin, M.J., Hellerstein, J.M., Hong,W.: TAG: a Tiny

Aggregation Service for Ad-Hoc Sensor Networks. In: OSDI. (Dec. 2002)

[Madden 2005] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. Tinydb:

an acquisitional query processing system for sensor networks. ACM

Transactions on Data Base Systems (TODS), 30(1):122—173, 2005.

[Martin 2010] Martin, M., Unbehauen, J., and Auer, S. Improving the Performance of

Semantic Web Applications with SPARQL Query Caching. In Proceedings of 7th

Extended Semantic Web Conference ESWC 2010. June 2010.

[Meng 2008] Min Meng, Jie Yang, Hui Xu, Byeong-Soo Jeong, Young-Koo Lee and

Sungyoung Lee, «Query Aggregation in Wireless Sensor Networks»,

International Journal of Multimedia and Ubiquitous Engineering, Vol. 3, No. 1,

January 2008

[Mood 1974] Mood A.M., Graybill F.A., Boes D.C. (1974) Introduction to the Theory of

Statistics (3rd Edition). McGraw-Hill.

[Olston 2003] C. Olston, J. Jiang, and J. Widom. Adaptive filters for continuous

queries over distributed data streams. In SIGMOD, 2003.

[Papaioannou 2011] T. Papaioannou, N. Bonvin and K. Aberer. Scalia: An Adaptive

Scheme for Efficient Multi-Cloud Storage

[Papaioannou 2011] T.G. Papaioannou and Riahi, M. and Aberer, K. Towards Online

Multi-model Approximation of Time Series., MDM, 2011.

[Pietzuch 2006] P. Pietzuch, J. Ledlie, J. Shneidman, M. Roussopoulos, M. Welsh,

and M. Seltzer. Network-aware operator placement for stream-processing

systems. In ICDE, 2006

[Qian2012] Qian, F., Wang, Z., Gao, Y., Huang, J., Gerber, A.,Mao, Z., Sen, S., and

Spatscheck, O. Periodic transfers in mobile applications: network-wide origin,

impact, and optimization. In Proc. of the 21st international conference on World

Wide Web, WWW'12, ACM (2012), 51-60.

[Ratnasamy 2002] Ratnasamy, S., Karp, B., Yin, L., Yu, F., Estrin, D., Govindan, R.,

Shenker, S.: GHT: A Geographic Hash Table for Data-Centric Storage. In:

WSNA, Altanta, GA. (Sep. 2002)

[Riahi 2013] M. Riahi, T. G. Papaioannou, I. Trummer and K. Aberer. Utility-driven

Data Acquisition in Participatory Sensing. 16th International Conference on

Extending Database Technology (EDBT), Genoa, Italy, March 18-22, 2013.

Deliverable 5.1.2 Self-management and Optimization Framework

Copyright  2013 OpenIoT Consortium 90

[Serrano 2008] Serrano, J. Martin. 2008 “Management and Context Integration

Based on Ontologies for Pervasive Service Operations in Autonomic

Communication Systems”, PhD Thesis, UPC 2008.

[Serrano 2012] Serrano J. Martin “Applied Ontology Engineering in cloud Services,

Networks and Management Systems”, Springer publishers, march 2012,

Hardcover, p.p. 222 pages, ISBN-10: 1461422353, ISBN-13: 978-1461422358.

[Thiagarajan 2008] Thiagarajan, Arvind and Madden, Samuel. Querying continuous

functions in a database system. SIGMOD, 2008.

[TMF-SID] SID - Shared Information Data model.

http://www.tmforum.org/InformationManagement/1684/home.html

[TMN-M3050] Telecommunications Management Networks - Management Services

approach - Enhanced Telecommunications Operations Map (eTOM)

http://www.catr.cn/cttlcds/itu/itut/product/bodyM.htm

[TMN-M3060] Telecommunications Management Networks - Principles for the

Management of Next Generation Networks.

http://www.catr.cn/cttlcds/itu/itut/product/bodyM.htm

[Trigoni 2005] N. Trigoni, Y. Yao, A. J. Demers, J. Gehrke, and R. Rajaraman. Multi-

query optimization for sensor networks. In Proceeding of the first IEEE

International Conference on Distributed Computing in Sensor Systems

(DCOSS), pages 307—321, 2005.

[Yao 2002] Y. Yao and J. Gehrke. The cougar approach to in-network query

processing in sensor networks. SIGMOD Record, 31(3):9—18, 2002.

[Ye 2002] Ye, F., Luo, H., Cheng, J., Lu, S., Zhang, L.: A Two-Tier Data Dissemination

Model for Large-Scale Wireless Sensor Networks. In: MOBICOM, Atlanta, GA.

(Sep. 2002) 148–159.

OpenIoT 2013

