151 research outputs found

    Counterintuitive example on relation between ZT and thermoelectric efficiency

    Get PDF
    The thermoelectric figure of merit ZT, which is defined using electrical conductivity, Seebeck coefficient, thermal conductivity, and absolute temperature T, has been widely used as a simple estimator of the conversion efficiency of a thermoelectric heat engine. When material properties are constant or slowly varying with T, a higher ZT ensures a higher maximum conversion efficiency of thermoelectric materials. However, as material properties can vary strongly with T, efficiency predictions based on ZT can be inaccurate, especially for wide-temperature applications. Moreover, although ZT values continue to increase, there has been no investigation of the relationship between ZT and the efficiency in the higher ZT regime. In this paper, we report a counterintuitive situation by comparing two materials: although one material has a higher ZT value over the whole operational temperature range, its maximum conversion efficiency is smaller than that of the other. This indicates that, for material comparisons, the evaluation of exact efficiencies as opposed to a simple comparison of the ZTs is necessary in certain cases.Comment: 12 pages, 2 tables, 2 figure

    Hybrid-functional and quasi-particle calculations of band structures of Mg2Si, Mg2Ge, and Mg2Sn

    Full text link
    We perform hybrid functional and quasi-particle band structure calculations with spin-orbit interaction to investigate the band structures of Mg2Si, Mg2Ge, and Mg2Sn. For all Mg2X materials, where X = Si, Ge, and Sn, the characteristics of band edge states, i.e., band and valley degeneracies, and orbital characters, are found to be conserved, independent of the computational schemes such as density functional generalized gradient approximation, hybrid functionals, or quasi-particle calculations. However, the magnitude of the calculated band gap varies significantly with the computational schemes. Within density-functional calculations, the one-particle band gaps of Mg2Si, Mg2Ge, and Mg2Sn are 0.191, 0.090, and -0.346 eV, respectively, and thus severely underestimated compared to the experimental gaps, due to the band gap error in the density functional theory and the significant relativistic effect on the low-energy band structures. By employing hybrid-functional calculations with a 35% fraction of the exact Hartree-Fock exchange energy (HSE-35%), we overcame the negative band gap issue in Mg2Sn. Finally, in quasi-particle calculations on top of the HSE-35% Hamiltonians, we obtained band gaps of 0.835, 0.759, and 0.244 eV for Mg2Si, Mg2Ge, and Mg2Sn, respectively, consistent with the experimental band gaps of 0.77, 0.74, and 0.36 eV, respectively.Comment: 23 pages, including 84 references, 5 tables, 3 figure

    Development of a spray-ejector condenser for the use in a negative CO2 emission gas power plant

    Get PDF
    One promising solution for developing low-emission power technologies is using gaseous fuel combustion in pure oxygen when the exhaust gas mixture is composed of H2O and CO2, and where CO2 is separated after steam condensation. The paper presents the results of computational analyses providing to the Spray-Ejector Condenser (SEC) development, which is one of the crucial components of the negative CO2 gas power plant (nCO2PP) cycle development. The proposed design of the ejector-condenser to ensure the high effectivity of vapor condensation and CO2 compression with preparation to separation, ready for application in gas power cycle, is a novelty of this research. Different computational techniques leading to the development and better understating of ejector operation were applied. The main operating conditions in the characteristic connected with the developed nCO2pp cycle points were investigated to evaluate the impact of the operating conditions on SEC performances. The amount of motive water needed for the cooling purpose is susceptible to the inlet water pressure and temperature and strongly affects the generated pressure of the suction stream. The preliminary results confirm that the SEC's basic design and geometrical dimensions can be applied in the negative CO2 power plant cycle. Results from CFD modeling give the possibility to investigate the turbulent flow of water/steam/CO2 mixture together with the condensation process occurring at this same time. It is found that the average droplet diameter and motive water supplying method significantly effects the condensation intensity. The further direction of the presented computational research activities and results is to test various designs of Spray-Ejector Condensers that will enable the evaluation of the direct contact condensation process and develop the final geometrical design. © 2023 The AuthorsDevelopment of a spray-ejector condenser for the use in a negative CO2 emission gas power plantpublishedVersio

    Native point defects and low pp-doping efficiency in Mg2(Si,Sn)Mg_2 (Si,Sn) solid solutions: A hybrid-density functional study

    Get PDF
    We perform hybrid-density functional calculations to investigate the charged defect formation energy of native point defects in Mg2SiMg_2 Si, Mg2SnMg_2 Sn, and their solid solutions. The band gap correction by hybrid-density functional is found to be critical to determine the charged defect density in these materials. For Mg2SiMg_2 Si, MgMg interstitials are dominant and provide unintentional nn-type conductivity. Additionally, as the MgMg vacancies can dominate in MgMg-poor Mg2SnMg_2 Sn, pp-type conductivity is possible for Mg2SnMg_2 Sn. However, the existence of low formation energy defects such as MgSn1+Mg_{Sn}^{1+} and IMg2+I_{Mg}^{2+} in Mg2SnMg_2 Sn and their diffusion can cause severe charge compensation of hole carriers resulting in low pp-type doping efficiency and thermal degradation. Our results indicate that, in addition to the extrinsic doping strategy, alloying of Mg2SiMg_2 Si with Mg2SnMg_2 Sn under MgMg-poor conditions would be necessary to enhance the pp-type conductivity with less charge compensation.Comment: Main: 17 pages (including title, abstract, main, references, figure captions. 4 figures). This manuscript is accepted for publication in JALCOM. The article will be published as Gold Open Acces

    Superconducting undulator activities at the European X-ray Free-Electron Laser Facility

    Get PDF
    For more than 5 years, superconducting undulators (SCUs) have been successfully delivering X-rays in storage rings. The European X-Ray Free-Electron Laser Facility (XFEL) plans to demonstrate the operation of SCUs in X-ray free-electron lasers (FELs). For the same geometry, SCUs can reach a higher peak field on the axis with respect to all other available technologies, offering a larger photon energy tunability range. The application of short-period SCUs in a high electron beam energy FEL > 11 GeV will enable lasing at very hard X-rays > 40 keV. The large tunability range of SCUs will allow covering the complete photon energy range of the soft X-ray experiments at the European XFEL without changing electron beam energy, as currently needed with the installed permanent magnet undulators. For a possible continuous-wave (CW) upgrade under discussion at the European XFEL with a lower electron beam energy of approximately 7–8 GeV, SCUs can provide the same photon energy range as available at present with the permanent magnet undulators and electron energies. This paper will describe the potential of SCUs for X-ray FELs. In particular, it will focus on the different activities ongoing at the European XFEL and in collaboration with DESY to allow the implementation of SCUs in the European XFEL in the upcoming years

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Search for single production of vector-like quarks decaying into Wb in pp collisions at s=8\sqrt{s} = 8 TeV with the ATLAS detector

    Get PDF
    corecore