2,517 research outputs found

    Scheduling MapReduce Jobs under Multi-Round Precedences

    Full text link
    We consider non-preemptive scheduling of MapReduce jobs with multiple tasks in the practical scenario where each job requires several map-reduce rounds. We seek to minimize the average weighted completion time and consider scheduling on identical and unrelated parallel processors. For identical processors, we present LP-based O(1)-approximation algorithms. For unrelated processors, the approximation ratio naturally depends on the maximum number of rounds of any job. Since the number of rounds per job in typical MapReduce algorithms is a small constant, our scheduling algorithms achieve a small approximation ratio in practice. For the single-round case, we substantially improve on previously best known approximation guarantees for both identical and unrelated processors. Moreover, we conduct an experimental analysis and compare the performance of our algorithms against a fast heuristic and a lower bound on the optimal solution, thus demonstrating their promising practical performance

    Does Intragastric Balloon Treatment for Obesity in Chronic Kidney Disease Heighten Acute Kidney Injury Risk?

    Get PDF
    Background: The outcomes of intragastric balloon (IGB) placement to achieve weight loss in obese patients with chronic kidney disease (CKD) have not been reported to date. This study aimed to assess the safety and efficacy of the IGB as a weight-loss treatment among this patient population. Methods: A prospective, single-arm, ‘first in CKD' interventional study was conducted in patients with a body mass index >35 kg/m2 and CKD stages 3-4, referred for weight loss. After clinical assessment, the IGB was endoscopically inserted into the stomach and kept in place for 6 months. Complications, adverse events, acceptability, weight loss and metabolic responses were monitored over 6 months. Results: Eleven participants were recruited over 18 months. Two patients withdrew (1 prior to IGB insertion and 1 early removal after 3 days due to persistent vomiting) from the study; 9 patients completed the study. There were 5 episodes of acute kidney injury (AKI), occurring in 3 patients. After 6 months, the mean body mass decreased by 9.6% (SD ±6.8). Median waist circumference and total cholesterol decreased significantly (-7.7 cm; interquartile range (IQR) -15.3 to -3.9; and -0.2 mmol/l; IQR -0.6 to -0.05, respectively), with no changes in estimated glomerular filtration rate, blood pressure, triglycerides, adipokines, inflammation, or arterial stiffness measured by carotid-femoral pulse wave velocity. At IGB removal, there was 1 new case each of gastritis and esophagitis. Conclusions: Treatment with IGB has only moderate efficacy on weight loss; yet it results in a high rate of complications in obese patients with established CKD. The risk of AKI may be raised due to increased risk of dehydration secondary to gastrointestinal symptoms associated with IGB placement and reduced baseline kidney function

    Dark Matter, Muon g-2 and Other SUSY Constraints

    Full text link
    Recent developments constraining the SUSY parameter space are reviewed within the framework of SUGRA GUT models. The WMAP data is seen to reduce the error in the density of cold dark matter by about a factor of four, implying that the lightest stau is only 5 -10 GeV heavier than the lightest neutralino when m_0, m_{1/2} < 1 TeV. The CMD-2 re-analysis of their data has reduced the disagreement between the Standard Model prediction and the Brookhaven measurement of the muon magnetic moment to 1.9 sigma, while using the tau decay data plus CVC, the disagreement is 0.7 sigma. (However, the two sets of data remain inconsistent at the 2.9 sigma level.) The recent Belle and BABAR measurements of the B -> phi K CP violating parameters and branching ratios are discussed. They are analyzed theoretically within the BBNS improved factorization method. The CP parameters are in disagreement with the Standard Model at the 2.7 sigma level, and the branching ratios are low by a factor of two or more over most of the parameter space. It is shown that both anomalies can naturally be accounted for by adding a non-universal cubic soft breaking term at M_G mixing the second and third generations.Comment: 16 pages, 7 figures, plenary talk at Beyond The Desert '03, Castle Ringberg, Germany, June 9, 2003. Typos correcte

    Implementation of routine outcome measurement in child and adolescent mental health services in the United Kingdom: a critical perspective

    Get PDF
    The aim of this commentary is to provide an overview of clinical outcome measures that are currently recommended for use in UK Child and Adolescent Mental Health Services (CAMHS), focusing on measures that are applicable across a wide range of conditions with established validity and reliability, or innovative in their design. We also provide an overview of the barriers and drivers to the use of Routine Outcome Measurement (ROM) in clinical practice

    Many faces of low mass neutralino dark matter in the unconstrained MSSM, LHC data and new signals

    Full text link
    If all strongly interacting sparticles (the squarks and the gluinos) in an unconstrained minimal supersymmetric standard model (MSSM) are heavier than the corresponding mass lower limits in the minimal supergravity (mSUGRA) model, obtained by the current LHC experiments, then the existing data allow a variety of electroweak (EW) sectors with light sparticles yielding dark matter (DM) relic density allowed by the WMAP data. Some of the sparticles may lie just above the existing lower bounds from LEP and lead to many novel DM producing mechanisms not common in mSUGRA. This is illustrated by revisiting the above squark-gluino mass limits obtained by the ATLAS Collaboration, with an unconstrained EW sector with masses not correlated with the strong sector. Using their selection criteria and the corresponding cross section limits, we find at the generator level using Pythia, that the changes in the mass limits, if any, are by at most 10-12% in most scenarios. In some cases, however, the relaxation of the gluino mass limits are larger (20\approx 20%). If a subset of the strongly interacting sparticles in an unconstrained MSSM are within the reach of the LHC, then signals sensitive to the EW sector may be obtained. This is illustrated by simulating the bljblj\etslash, l=eandμl= e and \mu , and bτjb\tau j\etslash signals in i) the light stop scenario and ii) the light stop-gluino scenario with various light EW sectors allowed by the WMAP data. Some of the more general models may be realized with non-universal scalar and gaugino masses.Comment: 27 pages, 1 figure, references added, minor changes in text, to appear in JHE

    The Mitochondrial Ca(2+) Uniporter: Structure, Function, and Pharmacology.

    Get PDF
    Mitochondrial Ca(2+) uptake is crucial for an array of cellular functions while an imbalance can elicit cell death. In this chapter, we briefly reviewed the various modes of mitochondrial Ca(2+) uptake and our current understanding of mitochondrial Ca(2+) homeostasis in regards to cell physiology and pathophysiology. Further, this chapter focuses on the molecular identities, intracellular regulators as well as the pharmacology of mitochondrial Ca(2+) uniporter complex

    Common Variants at 10 Genomic Loci Influence Hemoglobin A(1C) Levels via Glycemic and Nonglycemic Pathways

    Get PDF
    OBJECTIVE Glycated hemoglobin (HbA1c), used to monitor and diagnose diabetes, is influenced by average glycemia over a 2- to 3-month period. Genetic factors affecting expression, turnover, and abnormal glycation of hemoglobin could also be associated with increased levels of HbA1c. We aimed to identify such genetic factors and investigate the extent to which they influence diabetes classification based on HbA1c levels. RESEARCH DESIGN AND METHODS We studied associations with HbA1c in up to 46,368 nondiabetic adults of European descent from 23 genome-wide association studies (GWAS) and 8 cohorts with de novo genotyped single nucleotide polymorphisms (SNPs). We combined studies using inverse-variance meta-analysis and tested mediation by glycemia using conditional analyses. We estimated the global effect of HbA1c loci using a multilocus risk score, and used net reclassification to estimate genetic effects on diabetes screening. RESULTS Ten loci reached genome-wide significant association with HbA1c, including six new loci near FN3K (lead SNP/P value, rs1046896/P = 1.6 × 10−26), HFE (rs1800562/P = 2.6 × 10−20), TMPRSS6 (rs855791/P = 2.7 × 10−14), ANK1 (rs4737009/P = 6.1 × 10−12), SPTA1 (rs2779116/P = 2.8 × 10−9) and ATP11A/TUBGCP3 (rs7998202/P = 5.2 × 10−9), and four known HbA1c loci: HK1 (rs16926246/P = 3.1 × 10−54), MTNR1B (rs1387153/P = 4.0 × 10−11), GCK (rs1799884/P = 1.5 × 10−20) and G6PC2/ABCB11 (rs552976/P = 8.2 × 10−18). We show that associations with HbA1c are partly a function of hyperglycemia associated with 3 of the 10 loci (GCK, G6PC2 and MTNR1B). The seven nonglycemic loci accounted for a 0.19 (% HbA1c) difference between the extreme 10% tails of the risk score, and would reclassify ∼2% of a general white population screened for diabetes with HbA1c. CONCLUSIONS GWAS identified 10 genetic loci reproducibly associated with HbA1c. Six are novel and seven map to loci where rarer variants cause hereditary anemias and iron storage disorders. Common variants at these loci likely influence HbA1c levels via erythrocyte biology, and confer a small but detectable reclassification of diabetes diagnosis by HbA1c

    Frequency comb transferred by surface plasmon resonance

    Get PDF
    Frequency combs, millions of narrow-linewidth optical modes referenced to an atomic clock, have shown remarkable potential in time/frequency metrology, atomic/molecular spectroscopy and precision LIDARs. Applications have extended to coherent nonlinear Raman spectroscopy of molecules and quantum metrology for entangled atomic qubits. Frequency combs will create novel possibilities in nano-photonics and plasmonics; however, its interrelation with surface plasmons is unexplored despite the important role that plasmonics plays in nonlinear spectroscopy and quantum optics through the manipulation of light on a sub-wavelength scale. Here, we demonstrate that a frequency comb can be transformed to a plasmonic comb in plasmonic nanostructures and reverted to the original frequency comb without noticeable degradation of &lt;6.51 x 10(-19) in absolute position, 2.92 x 10(-19) in stability and 1Hz in linewidth. The results indicate that the superior performance of a well-defined frequency comb can be applied to nanoplasmonic spectroscopy, quantum metrology and subwavelength photonic circuits.open

    Faster growth with shorter antigens can explain a VSG hierarchy during African trypanosome infections:a feint attack by parasites

    Get PDF
    The parasitic African trypanosome, Trypanosoma brucei, evades the adaptive host immune response by a process of antigenic variation that involves the clonal switching of variant surface glycoproteins (VSGs). The VSGs that come to dominate in vivo during an infection are not entirely random, but display a hierarchical order. How this arises is not fully understood. Combining available genetic data with mathematical modelling, we report a VSG-length-dependent hierarchical timing of clonal VSG dominance in a mouse model, consistent with an inverse correlation between VSG length and trypanosome growth-rate. Our analyses indicate that, among parasites switching to new VSGs, those expressing shorter VSGs preferentially accumulate to a detectable level that is sufficient to trigger a targeted immune response. This may be due to the increased metabolic cost of producing longer VSGs. Subsequent elimination of faster-growing parasites then allows slower-growing parasites with longer VSGs to accumulate. This interaction between the host and parasite is able to explain the temporal distribution of VSGs observed in vivo. Thus, our findings reveal a length-dependent hierarchy that operates during T. brucei infection. This represents a ‘feint attack’ diversion tactic utilised by these persistent parasites to out-maneuver the host adaptive immune system

    Observation of associated near-side and away-side long-range correlations in √sNN=5.02  TeV proton-lead collisions with the ATLAS detector

    Get PDF
    Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02  TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1  μb-1 of data as a function of transverse momentum (pT) and the transverse energy (ΣETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∼0) correlation that grows rapidly with increasing ΣETPb. A long-range “away-side” (Δϕ∼π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ΣETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos⁡2Δϕ modulation for all ΣETPb ranges and particle pT
    corecore