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Frequency comb transferred by surface plasmon
resonance
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Frequency combs, millions of narrow-linewidth optical modes referenced to an atomic clock,

have shown remarkable potential in time/frequency metrology, atomic/molecular spectro-

scopy and precision LIDARs. Applications have extended to coherent nonlinear Raman

spectroscopy of molecules and quantum metrology for entangled atomic qubits. Frequency

combs will create novel possibilities in nano-photonics and plasmonics; however, its inter-

relation with surface plasmons is unexplored despite the important role that plasmonics plays

in nonlinear spectroscopy and quantum optics through the manipulation of light on a sub-

wavelength scale. Here, we demonstrate that a frequency comb can be transformed to a

plasmonic comb in plasmonic nanostructures and reverted to the original frequency comb

without noticeable degradation of o6.51� 10� 19 in absolute position, 2.92� 10� 19 in

stability and 1 Hz in linewidth. The results indicate that the superior performance of a

well-defined frequency comb can be applied to nanoplasmonic spectroscopy, quantum

metrology and subwavelength photonic circuits.
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T
he frequency comb of mode-locked femtosecond lasers
has led to remarkable advances in high-resolution
spectroscopy1,2, broadband calibration of astronomical

spectrographs3,4, time/frequency transfer over long distances5,6,
absolute laser ranging7–10 and inter-comparison of atomic
clocks11,12. It provides millions of well-defined optical modes
over a broad spectral bandwidth with high-level phase coherence
referenced to an atomic clock. Recently, the potential of frequency
comb has expanded to microscopic applications; high inter-mode
coherence within a short pulse duration enabled manipulating
atomic qubits13, operating quantum logic gates and performing
high-speed molecular detection by coherent Raman spectroscopy
through harnessing inter-mode beat frequencies between two
frequency combs at different repetition rates14.

Coupling surface plasmons (SPs)15,16, collective charge
oscillations produced by the resonant interaction of light and
free electrons on the interface of metallic and dielectric materials,
to frequency comb creates numerous advantages. First, SP can
allow for the frequency comb to access nanoscopic volumes that
surpass the diffraction limit17. Second, the field enhancement by
localized SP enables the highly sensitive detection of weak signals,
even from a single molecule (for example, surface-enhanced
Raman scattering)18. Third, next-generation photonic devices and
circuits can be implemented within a small subwavelength
volume by all-optical control of light properties (amplitude,
phase and polarization state) in plasmonic nanostructures within
ultrafast time scales19–22. However, the superior performance
of the frequency comb, such as absolute frequency uncertainty,
high-frequency stability and narrow linewidth, could deteriorate
during the photon-plasmon conversion process. For exploring
novel combination of frequency comb and SP resonance, it is
prerequisite to verify that frequency comb maintains its
performance under plasmonic resonance; however, there have
been no studies to date.

In the following, we report that frequency comb successfully
maintains core performances in photon-plasmon conversion by
exploiting plasmonic extraordinary transmission through a
subwavelength plasmonic hole array. This implies that the
original frequency comb can be transformed into a form of
plasmonic comb on metallic nanostructures and reverted to an
original frequency comb without noticeable degradation in
absolute frequency position, stability and linewidth. The superior
performance of well-defined frequency combs can therefore be
applied to various nanoplasmonic spectroscopy, coherent quan-
tum metrology and subwavelength photonic circuits.

Results
Frequency comb transferred by SP resonance. Figure 1 shows
the experimental apparatus to characterize the conservation of
frequency comb for the conversion from photon to SP. The fre-
quency comb is split into reference and measurement beams; one
part of the beam transmits through an acousto-optic modulator
(AOM) for a frequency shift of 40 MHz to construct a reference
frequency comb and the other part of the beam passes through
the plasmonic sample. The frequency comb structure in SP
resonance was generated by the exploitation of a metallic nano-
hole array used for extraordinary optical transmission (EOT) that
converted photon into SP. The small diameter of each hole pre-
vents light passing through the sample based on classical optics.
However, the SP-mediated tunnelling effect of nanohole array
drastically enhances optical transmittance23. These intriguing
optical phenomena have been studied widely for high-resolution
chemical sensing, ultrafast optical modulation, wavelength-
tunable optical filtering and subwavelength lithography24,25.
The physical origin of EOT has been attributed to resonant SP

polaritons (SPPs)26. The appropriate geometrical and material
parameters of nanohole array excite the SPP mode that allows the
transmission of light that contains plasmonic information inside
an EOT sample. The resonant nature of the SP changes the
transmitted spectral distribution, depending on sample design,
input polarization and incident angle. Plasmonic EOT can also
induce wavelength-dependent changes in optical frequency and
phase in addition to wavelength-dependent transmittance. The
optical frequency of a single frequency comb mode transmitted
through the plasmonic sample via SP resonance (fMEA) can be
expressed as

fMEA ¼ nfrþ fceoþDfsp ð1Þ

where fr is the pulse repetition frequency, fceo the carrier-envelope
offset frequency, and Dfsp the frequency and phase change
generated by SP resonance. Meanwhile, the optical frequency of
the single mode passing through the reference path (fREF) can be
expressed as

fREF ¼ nfrþ fceoþ fAOM ð2Þ

where fAOM denotes the intentional frequency shift by AOM. The
detection of the heterodyne beat-frequency generated by the
interference between the reference and measurement beams
enables the measurement of optical frequency difference,
(fREF� fMEA) at a radio-frequency (RF) regime using a fast
avalanche photodiode. This resultant frequency difference can
be simplified to fAOM�Dfsp, where fAOM works as the high-
frequency carrier to isolate Dfsp from the relatively strong low
frequency noise components.

Plasmonic extraordinary transmission. For transmitting fre-
quency combs through the subwavelength holes by SP resonance,
there are three important geometric parameters: hole diameter
(d), hole pitch (l) and Au film thickness (t; Fig. 2a). For maximum
optical transmission at a wavelength of 840 nm, three parameters
were optimized by solving Maxwell’s equations using finite-
difference time-domain (FDTD) method. Figure 2b,c show the
calculated plasmonic field distribution through the optimized
sample. The electric field around the hole was significantly
enhanced by SP in the periodic apertures, delivering the optical
energy through the hole. Figure 2a shows the scanning electron
microscope image of the fabricated nanohole array; all dimen-
sions were matched with optimized design parameters within a
geometric error of o5%. Figure 2d shows that the transmitted
optical spectrum coincided with the numerical FDTD results and
validated the numerical analysis. Minor deviations between the
two spectrums are expected by focusing geometry onto the
plasmonic sample. The plasmonic resonance conditions are dis-
similar in given transverse electric-transverse magnetic polariza-
tion if the angle of incidence is not surface normal. As a result,
plasmonic sample shows different transmission spectra for
transverse electric-transverse magnetic polarization at the inci-
dence angle of 45� (Fig. 2e); therefore, optical transmission of
our sample is dominated by the plasmonic EOT, not classical
diffraction theory.

Frequency comb structure after plasmonic transmission. The
transmitted frequency combs through the plasmonic sample
results in an interference with the reference frequency comb to
verify the frequency comb structure after the photon-plasmon
mode conversion by the EOT (Fig. 3a). For comparative analysis,
interference signals were obtained at three different wavelength
regimes with optical band-pass filters, representing on-resonance
(840 nm) and off-resonance (800 and 900 nm) positions.
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The coherence of a large number of frequency comb modes can
be deteriorated by temporal and spectral plasmonic dispersion,
phase noise and frequency noise during the propagation through
the plasmonic EOT sample. The frequency comb fundamentally
suffers from phase and frequency noises when passing through
the optical medium (for example, ambient air and optical fibre)
exposed to environmental variations, such as vibration, tempera-
ture variation and humidity change. Therefore, it has been an
important task to monitor and compensate the temporal and
spectral dispersion, phase noise and frequency noise generated in
the medium, as reported through long optical-fibre6 and through
ambient air27. SPs also suffer from the dispersion and phase
change by the medium and environmental disturbances, which
have not been investigated with the frequency comb for their
quantitative or qualitative analysis. Propagating SPs through the
EOT sample experience phase delay depending on their
wavelengths and spatial locations before and after tunnelling
through each subwavelength hole; this phase delay can be
additionally induced by the plasmonic dynamic damping,
imperfect sample geometry, surface roughness of the metal film
or air refractive index change around the sample. Therefore, the
total summation of the electromagnetic waves at the output side
of each hole may contain temporal and spectral dispersion, phase
distortion and frequency change.

Most noise sources of the frequency comb can be categorized
into intra-cavity and extra-cavity sources; intra-cavity noise
sources (including cavity length change, cavity loss fluctuations
and pump noise) cause frequency noise whereas extra-cavity
noise sources (induced by path-length fluctuation, shot noise
from the limited power or noise generated during super-
continuum generation) result in time-varying phase noise floor5.
In this investigation, plasmonic mode conversion by the EOT was

considered as an extra-cavity noise source that provided
wavelength-dependent power attenuation, phase shift and
frequency noise, similar to the supercontinuum generation
process. Noise contributions should be observed at fAOM�DfSP

in the form of linewidth broadening, frequency shift, signal-to-
noise (S/N) ratio reduction, increased phase noise or a higher
Allan deviation if the plasmonic frequency comb suffers from
phase or frequency noise during the plasmonic mode conversion.

Linewidth broadening and S/N ratio reduction in plasmonic
mode conversion process was initially evaluated by measuring
RF beat linewidth of fAOM�DfSP at three different wavelength
regimes (Fig. 3b). With different resolution bandwidths (RBWs),
there was no substantial degradation in the linewidth at 840 nm
before and after the installation of the plasmonic sample in the
beam path. The high-level S/N ratio of B60 dB beat signal
indicates that the plasmonic EOT provide no significant phase
noise to the frequency comb.

Phase noise and frequency stability was measured for the
quantitative analysis of frequency-dependent noise contributions.
Figure 4a shows the phase noise spectrum obtained by
monitoring one of high harmonics of the beat frequencies at
B1.2 GHz with and without the plasmonic sample; this confirms
that there was no noticeable frequency noise inclusion. For
high-precision frequency position measurement, the beat
frequency between reference and measurement frequency comb
was measured by a frequency counter for 3,000 s, resulting in
0.24 mHz frequency difference with a s.d. of 61 mHz (Fig. 4b).
This corresponds to 6.51� 10� 19, which proves that plasmonic
mode conversion provides no substantial degradation in the
frequency accuracy of the frequency comb. The stability of the
beat signal was measured to be 4.08� 10� 18 without the plas-
monic sample, 4.37� 10� 18 with the plasmonic sample at
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resonance wavelength of 840 nm for an averaging time of 100 s,
respectively (Fig. 4c). At the off-resonance wavelength, the
stability of beat signal was 4.59� 10� 18, signifying almost no
difference between on- and off-plasmonic resonance stabilities.
All the experiments pointed that plasmonic mode conversion
causes no substantial degradation to the frequency comb in terms
of linewidth, frequency position, S/N ratio and frequency
stability.

Discussions
All hundreds of thousands optical modes in the frequency comb
were firstly converted from photonic to plasmonic mode at the
input side of the plasmonic EOT sample and then reverted to
photonic mode at the other output side of the sample. It is known
to be practically difficult to directly measure the optical frequency
of the plasmonic mode so the characteristics of the plasmonic
comb were measured here in the far field. Because the plasmonic
and photonic modes are assumed to be mutually coherent, if
there is any change in the frequency comb characteristics during
the plasmonic propagation (in plasmonic mode) through the
sample, it should be monitored at the output side in the far field
(in photonic mode). Therefore, the beat-frequency detection
using the transmitted photonic mode in the far-field regime
enabled us to compare the qualities of the plasmonic comb with
the original frequency comb, which cannot be implemented in the

near-field regime. As the result of the comparison, there were no
noticeable degradation in linewidth, frequency shift, S/N ratio,
phase noise and Allan deviation. This implies that SP, the
collective electrons, can be regarded as information carrier as
precise as the optical frequency comb.

The frequency comb passing through the plasmonic EOT
sample experiences the different physical process with the light
reflection at a metallic mirror. Although both of the SP resonance
and the surface reflection are governed by free-electron oscillation
in conduction band of metals, the SP resonance additionally
requires the specific momentum matching between incident
photon and SP, whose relationship is determined by the
plasmonic dispersion relation. Therefore, it is natural to maintain
the coherence during the light reflection at metal surface
(governed by frequency conservation), which is not the case in
plasmonic structures (governed by frequency and momentum
matching). Once the incident photon (in photonic mode) is
converted into SP, it will propagate through the metal as the form
of SPPs (in plasmonic mode). This plasmonic propagation causes
temporal and spectral dispersions, phase variations and frequency
changes, which may degrade the inherently high coherence of the
optical frequency comb.

Plasmonic EOT is governed by not only the hole geometry28

but also hole pitch. Therefore, the incidence angle tuning of the
input beam can provide the change in plasmonic coupling mode
without dimensional changes, which can possibly cause some
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degradation in the frequency characteristics of the frequency
comb by providing different plasmonic field distribution and
enhancement. To test this, the beat spectrum was monitored

while the sample was rotated by up to 45� (for transverse
magnetic wave) as shown in Figure 2e. For the given condition, all
frequency characteristics were maintained in the same level with
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normal incidence case, which shows that no performance
degradation exist depending on plasmonic coupling or geo-
metrical parameters of the sample.

The linewidth broadening by plasmonic EOT was evaluated to
be o1 Hz, which is limited by RBW of the instrument in use
(Fig. 3b). A single RF beat-frequency corresponds to the
superposition of small RF beat contributions of 4104 frequency
comb modes, which proves that there is no significant
wavelength-dependent frequency or phase noise during the
plasmonic EOT. There was minor increase in spectral power in
the pedestal peaks at 12, 17 and 21 Hz when the frequency comb
passed through the plasmonic sample; this is expected to be
caused by the vibrational and thermal noises at the plasmonic
sample. The beat frequency, fAOM�DfSP, was found to be exactly
the same as the driving frequency of the AOM in all measured
spectra shown in Fig. 3b, which implies that the absolute
frequency position is well maintained in the plasmonic mode.
The ambient temperature and vibration on EOT sample were not
intentionally controlled so as to evaluate the performance in
normal laboratory environment conditions. Our results show that
the frequency comb structures are well maintained under
environmental disturbances, for example, temperature variation,
mechanical vibration and air fluctuation. This will enable us to
develop high-sensitivity frequency-comb-referenced SP sensors
working in harsh environments. The phase noise spectra in
Fig. 4a also shows a number of minor peaks at 0.2, 1.5, 300 and
600 kHz other than the low-frequency spectral peaks at 12, 17 and
21 Hz observed in Fig. 3b. At higher frequency than 10 kHz, there
is a flat noise floor without other spectral peaks or broad
pedestals. In S/N ratio measurement, the S/N ratio theoretically
could reach 68B75 dB in a 100 kHz RBW because there are
104B105 frequency comb modes in the pass-band of the optical

filter transmittance. The experimental S/N ratio with the
plasmonic sample on-resonance position was B60 dB; this minor
deviation could come from imperfect intensity balancing,
polarization matching and spatial beam mode-matching. The
S/N ratio at 900 nm was 54 dB, relatively lower than that at
800 nm because the quantum efficiency of the avalanche photo-
detector at 900 nm is B20% lower than that at 800 nm and the
filter bandwidth at 900 nm is 25% of that at 800 nm.

In this article, we have studied SP resonance effects on
frequency comb structure in the plasmonic EOT of light through
a subwavelength metallic nanohole array. The frequency comb
was transduced to plasmonic mode in the sample and reverted to
photonic mode without significant changes in linewidth,
frequency shift, S/N ratio, phase noise and Allan deviation. The
linewidth broadening was o1 Hz (instrument limited), frequency
inaccuracy was 6.51� 10� 19, S/N ratio was higher than 60 dB,
Allan deviation increased by 2.92� 10� 19 at 100 s averaging
time. This outstanding frequency comb performance in plasmo-
nic nanostructures enables a highly sensitive, high accurate and
broadband measurement with direct traceability to standards.
This inclusion of frequency comb has the potential to accelerate
progresses in various plasmonic applications such as bio-chemical
spectroscopy or sensing, quantum optics and sub-diffraction-
limit biomedical-imaging. With the aid of SP, frequency-comb-
referenced high-speed coherent anti-stokes Raman spectro-
scopy14 can be implemented in much smaller nanoscopic
volume being requested for single-molecule detection, for
example, surface-enhanced coherent anti-stokes Raman spectro-
scopy29. A large number of optical modes in a frequency comb as
the time and frequency standard can be coupled at the same time
with SP for broadband quantum metrology for entangled atomic
qubits or information carrier in subwavelength scale13,30.
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Localized field enhancement of SP will enable highly efficient
nonlinear optics31 coupled with high precision of frequency
comb, which is prerequisite for novel sub-diffraction-limit
nonlinear biomedical imaging and spectroscopy.

Methods
Frequency comb. A Ti:sapphire femtosecond laser delivers 4.8 fs pulses at a
repetition rate of 75 MHz over a broad spectral bandwidth from 1.03 to 2.06 eV
(Venteon UB, Venteon). For establishing a frequency comb, the pulse repetition
frequency (fr) and carrier-envelope offset frequency (fceo) were precisely locked to a
reference Rb atomic clock (FS725, Stanford Research Systems) with the aid of a f–2f
interferometer and phase-locked control loops (AVR32, TEM-Messtechnik &
XPS800-E, Menlosystems). One part of the beam was diverted to and transmitted
through an AOM for the frequency shift of 40 MHz to construct a reference
frequency comb. If the plasmonic frequency comb suffers from the phase or fre-
quency noise during the plasmonic mode conversion, the noise contributions
should be observed at fAOM�DfSP in the forms of linewidth broadening, frequency
shift, S/N ratio reduction, increased phase noise or higher Allan deviation. The
frequency comb excited the plasmonic sample with the whole-broadband spectrum
in a loose focusing geometry with an aspheric lens of 100 mm focal length. The
focused peak intensity at the plasmonic sample was set to be o0.1 MW cm� 2 not
to exceed the thermal damage threshold (B1 TW cm� 2 for Au). Input polariza-
tion state was set linear and its direction is parallel to the x axis of periodic holes on
plasmonic sample as denoted in Fig. 2e.

Plasmonic EOT sample: design and development. We exploited FDTD solution
(XFDTD8.3, Lumerical) to solve Maxwell’s equation for plasmonic near-field
distribution and transmitted spectrum. Through a series of iterative computations,
the optimal geometric parameters were determined as d¼ 200 nm, l¼ 530 nm and
t¼ 100 nm. The thickness, t was designed to be much thicker than the Au skin
depth (B20 nm) here to block the direct transmission through the Au film. The
designed nanohole array was fabricated using electron-beam lithography (Raith
150) onto 25-nm-thick ITO-coated quartz substrate.

Evaluation of plasmonic frequency comb. For comparative analysis, interference
signals were obtained at three different wavelength regimes – one at plasmonic on-
resonance (840 nm) and the others at off-resonance positions (800 and 900 nm) –
using optical band-pass filters. The resulting interference beat signal was obtained
by high-speed avalanche photodiode and analysed using a high-resolution RF
spectrum analyzer (N9020A, Agilent) and a RF frequency counter (53230A, Key-
sight Technologies). An exemplary RF spectrum is shown in Fig. 3b; the repetition
rate (fr) is located at 75 MHz, the beat frequency (fAOM�Dfsp) between the fre-
quency-shifted reference frequency comb and the plasmonic frequency comb is at
B40 MHz, and the beat frequency (fr� fAOMþDfsp) between the other nearby
reference frequency comb modes and the plasmonic frequency comb is at B35
MHz. Other minor spurious peaks are due to the imperfect sinusoidal modulation
of AOM; their positions match with beat frequencies between the fAOM-harmonics
and the reference frequency comb of 2fAOM� fr, 2fr� 3fAOM, 3fAOM� fr and
2(fr� fAOM).
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1. Hänsch, T. W. Nobel Lecture: passion for precision. Rev. Mod. Phys. 78,

1297–1309 (2006).
2. Hall, J. L. Nobel Lecture: defining and measuring optical frequencies. Rev. Mod.

Phys. 78, 1279–1295 (2006).
3. Steinmetz, T. et al. Laser frequency combs for astronomical observations.

Science 321, 1335–1337 (2008).
4. Wilken, T. et al. A spectrograph for exoplanet observations at the centimetre-

per-second level. Nature 485, 611–614 (2012).
5. Predehl, K. et al. A 920-kilometer optical fiber link for frequency metrology at

the 19th decimal place. Science 336, 441–444 (2012).
6. Giorgetta, F. R. et al. Optical two-way time and frequency transfer over free

space. Nat. Photon. 7, 434–438 (2013).
7. Newbury, N. R. Searching for applications with a fine-tooth comb. Nat. Photon.

5, 186–188 (2011).
8. Minoshima, K. & Matsumoto, H. High-accuracy measurement of 240-m

distance in an optical tunnel by use of a compact femtosecond laser. Appl. Opt.
39, 5512–5517 (2000).

9. Coddington, I., Swann, W. C., Nenadovic, L. & Newbury, N. R. Rapid and
precise absolute distance measurements at long range. Nat. Photon. 3, 351–356
(2009).

10. Lee, J., Kim, Y.-J., Lee, K., Lee, S. & Kim, S.-W. Time-of-flight measurement
with femtosecond light pulses. Nat. Photon. 4, 716–720 (2010).

11. Rosenband, T. et al. Frequency ratio of Alþ and Hgþ single-ion optical
clocks; metrology at the 17th decimal place. Science 319, 1808–1812 (2008).

12. Reinhardt, S. et al. Test of relativistic time dilation with fast optical atomic
clocks at different velocities. Nat. Phys. 3, 861–864 (2007).

13. Hayes, D. et al. Entanglement of atomic qubits using an optical frequency
comb. Phys. Rev. Lett. 104, 140501 (2010).

14. Ideguchi, T. et al. Coherent Raman spectro-imaging with laser frequency
combs. Nature 502, 355–358 (2013).

15. Stockman, M. Nanoplasmonics: past, present, and glimpse into future. Opt.
Express 19, 22029–22106 (2011).

16. Kauranen, M. & Zayats, A. V. Nonlinear plasmonics. Nat. Photon. 6, 737–748
(2012).

17. Willets, K. A. & Van Duyne, R. P. Localized surface plasmon resonance
spectroscopy and sensing. Annu. Rev. Phys. Chem. 58, 267–297 (2007).

18. Zhang, Y. et al. Coherent anti-Stokes Raman scattering with single-molecule
sensitivity using a plasmonic Fano resonance. Nat. Commun. 5, 4424 (2014).

19. Tame, M. S. et al. Quantum plasmonics. Nat. Phys. 9, 329–340 (2013).
20. Melikyan, A. et al. High-speed plasmonic phase modulators. Nat. Photon. 8,

229–233 (2014).
21. Haffner, C. et al. All-plasmonic Mach–Zehnder modulator enabling optical

high-speed communication at the microscale. Nat. Photon. 9, 525–528 (2015).
22. Dennis, B. S. et al. Compact nanomechanical plasmonic phase modulators. Nat.

Photon. 9, 267–273 (2015).
23. Ebbesen, T. W., Lezec, H. J., Chaemi, H. F., Thio, T. & Wolff, P. A.

Extraordinary optical transmission through sub-wavelength hole arrays. Nature
391, 667–669 (1998).

24. Barnes, W. L., Dereux, A. & Ebbesen, T. W. Surface plasmon subwavelength
optics. Nature 424, 824–830 (2003).

25. Wurtz, G. A. & Zayats, A. V. Nonlinear surface plasmon polaritonic crystals.
Laser Photon. Rev. 2, 125–135 (2008).

26. Garcia-Vidal, F. J., Martin-Moreno, L., Ebbesen, T. W. & Kuipers, L. Light
passing through subwavelength apertures. Rev. Mod. Phys. 82, 729–787 (2010).

27. Newbury, N. R. & Swann, W. C. Low-noise fiber-laser frequency combs. J. Opt.
Soc. Am. B 24, 1756–1770 (2007).

28. Yue, W. et al. Enhanced extraordinary optical transmission (EOT) through
arrays of bridged nanohole pairs and their sensing applications. Nanoscale 6,
7917–7923 (2014).

29. Steuwe, C., Kaminski, C. F., Baumberg, J. J. & Mahajan, S. Surface enhanced
coherent anti-Stokes Raman scattering on nanostructured gold surfaces. Nano
Lett. 11, 5339–5343 (2011).

30. Altewischer, E., Van Exter, M. P. & Woerdman, J. P. Plasmon-assisted
transmission of entangled photons. Nature 418, 304–306 (2002).

31. Almeida, E. & Prior, Y. Rational design of metallic nanocavities for resonantly
enhanced four-wave mixing. Sci. Rep. 5, 10033 (2015).

Acknowledgements
This work was supported by the Basic Science Research Program (NRF-
2013R1A1A2004932; NRF-2014R1A1A1004885), by Global Research Laboratory Pro-
gram (Grant No. 2009-00439), by the Leading Foreign Research Institute Recruitment
Program (Grant No. 2010-00471), by the Max Planck POSTECH/KOREA Research
Initiative Program (Grant No. 2011-0031558), by the NRF Grant (No. 2010-0021735),
by the Leading Foreign Research Institute Recruitment Program (Grant No.
2012K1A4A3053565) through the NRF funded by the MEST. This work was also
supported by a Grant (14CTAP-C077584-01) from Infrastructure and Transportation
Technology Promotion Research Program funded by Ministry of Land, Infrastructure
and Transport of Korean government. This work was also supported by Singapore
National Research Foundation (NRF-NRFF2015-02) and Singapore Ministry of
Education under its Tier 1 Grant (RG85/15).

Author contributions
The project was planned and overseen by Y.-J.K., D.E.K. and S.K. Plasmonic sample was
prepared and characterized by J.H.S., H.Y. and K.S. Frequency comb experiments were
performed by X.T.G., B.J.C., Y.-J.K. and S.K. All authors contributed to the manuscript
preparation.

Additional information
Competing financial interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

How to cite this article: Geng, X. T. et al. Frequency comb transferred by surface
plasmon resonance. Nat. Commun. 7:10685 doi: 10.1038/ncomms10685 (2016).

This work is licensed under a Creative Commons Attribution 4.0
International License. The images or other third party material in this

article are included in the article’s Creative Commons license, unless indicated otherwise
in the credit line; if the material is not included under the Creative Commons license,
users will need to obtain permission from the license holder to reproduce the material.
To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms10685 ARTICLE

NATURE COMMUNICATIONS | 7:10685 | DOI: 10.1038/ncomms10685 | www.nature.com/naturecommunications 7

http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://www.nature.com/naturecommunications

	title_link
	Results
	Frequency comb transferred by SP resonance
	Plasmonic extraordinary transmission
	Frequency comb structure after plasmonic transmission

	Figure™1Generation and characterization of plasmonic frequency comb.Part of the frequency comb experiences plasmonic mode conversion by passing through the plasmonic sample. The sample consists of a subwavelength nanohole array on an Au thin-film, enablin
	Discussions
	Figure™2Numerical simulation and characterization of fabricated plasmonic sample.(a) Scanning electron microscope image of the fabricated subwavelength nanohole array for plasmonic EOT. The fabricated nanohole has the diameter (d) of 200thinspnm, pitch (l
	Figure™3Evaluation of the plasmonic frequency comb by EOT.(a) Generation of RF beats by the interference between frequency-shifted (40thinspMHz) reference combs and plasmonic EOT combs. The beat spectra of plasmonically transmitted frequency comb and the 
	Figure™4Plasmonic frequency comb: phase noise and frequency stability.(a) Phase noise spectra at a 1.2-GHz RF carrier at on- and off-resonance wavelengths. (b) Time trace of the beat frequency with and without the plasmonic sample over 3,000thinsps. (c) A
	Methods
	Frequency comb
	Plasmonic EOT sample: design and development
	Evaluation of plasmonic frequency comb

	HänschT. W.Nobel Lecture: passion for precisionRev. Mod. Phys.78129713092006HallJ. L.Nobel Lecture: defining and measuring optical frequenciesRev. Mod. Phys.78127912952006SteinmetzT.Laser frequency combs for astronomical observationsScience321133513372008
	This work was supported by the Basic Science Research Program (NRF-2013R1A1A2004932; NRF-2014R1A1A1004885), by Global Research Laboratory Program (Grant No. 2009-00439), by the Leading Foreign Research Institute Recruitment Program (Grant No. 2010-00471),
	ACKNOWLEDGEMENTS
	Author contributions
	Additional information




