93 research outputs found

    Geometric evolution of complex networks with degree correlations

    Get PDF
    We present a general class of geometric network growth mechanisms by homogeneous attachment in which the links created at a given time t are distributed homogeneously between a new node and the existing nodes selected uniformly. This is achieved by creating links between nodes uniformly distributed in a homogeneous metric space according to a Fermi-Dirac connection probability with inverse temperature β and general time-dependent chemical potential μ(t). The chemical potential limits the spatial extent of newly created links. Using a hidden variable framework, we obtain an analytical expression for the degree sequence and show that μ(t) can be fixed to yield any given degree distributions, including a scale-free degree distribution. Additionally, we find that depending on the order in which nodes appear in the network—its history—the degree-degree correlations can be tuned to be assortative or disassortative. The effect of the geometry on the structure is investigated through the average clustering coefficient ⟨c⟩. In the thermodynamic limit, we identify a phase transition between a random regime where ⟨c⟩→ 0 when β 0 when β>βc

    Social confinement and mesoscopic localization of epidemics on networks

    Get PDF
    Recommendations around epidemics tend to focus on individual behaviors, with much less efforts attempting to guide event cancellations and other collective behaviors since most models lack the higher-order structure necessary to describe large gatherings. Through a higher-order description of contagions on networks, we model the impact of a blanket cancellation of events larger than a critical size and find that epidemics can suddenly collapse when interventions operate over groups of individuals rather than at the level of individuals. We relate this phenomenon to the onset of mesoscopic localization, where contagions concentrate around dominant groups

    Master equation analysis of mesoscopic localization in contagion dynamics on higher-order networks

    Get PDF
    Simple models of infectious diseases tend to assume random mixing of individuals, but real interactions are not random pairwise encounters: they occur within various types of gatherings such as workplaces, households, schools, and concerts, best described by a higher-order network structure. We model contagions on higher-order networks using group-based approximate master equations, in which we track all states and interactions within a group of nodes and assume a mean-field coupling between them. Using the Susceptible-Infected-Susceptible dynamics, our approach reveals the existence of a mesoscopic localization regime, where a disease can concentrate and self-sustain only around large groups in the network overall organization. In this regime, the phase transition is smeared, characterized by an inhomogeneous activation of the groups. At the mesoscopic level, we observe that the distribution of infected nodes within groups of a same size can be very dispersed, even bimodal. When considering heterogeneous networks, both at the level of nodes and groups, we characterize analytically the region associated with mesoscopic localization in the structural parameter space. We put in perspective this phenomenon with eigenvector localization and discuss how a focus on higher-order structures is needed to discern the more subtle localization at the mesoscopic level. Finally, we discuss how mesoscopic localization affects the response to structural interventions and how this framework could provide important insights for a broad range of dynamics.Comment: 15 pages, 10 figure

    Social confinement and mesoscopic localization of epidemics on networks

    Get PDF
    Recommendations around epidemics tend to focus on individual behaviors, with much less efforts attempting to guide event cancellations and other collective behaviors since most models lack the higher-order structure necessary to describe large gatherings. Through a higher-order description of contagions on networks, we model the impact of a blanket cancellation of events larger than a critical size and find that epidemics can suddenly collapse when interventions operate over groups of individuals rather than at the level of individuals. We relate this phenomenon to the onset of mesoscopic localization, where contagions concentrate around dominant groups.Comment: 5 pages, 4 figure

    L’EROP : 10 ans pour le rétablissement des oiseaux de proie au Québec

    Get PDF
    L’Équipe de rétablissement des oiseaux de proie du Québec (EROP) a été fondée en 2004, à la suite de la fusion des équipes de rétablissement du faucon pèlerin (Falco peregrinus), du pygargue à tête blanche (Haliaeetus leucocephalus) et de l’aigle royal (Aquila chrysaetos). À ces espèces d’intérêt pour l’EROP s’est ajouté récemment le hibou des marais (Asio flammeus). À l’aide des plans de rétablissement de chacune des espèces, l’EROP veille à la mise en oeuvre de mesures de conservation (p. ex. acquisition de connaissances, sensibilisation, protection) visant à redresser la situation des populations d’oiseaux de proie en situation précaire au Québec. Cet article présente le mandat, le mode de fonctionnement et les principales réalisations de l’EROP au cours de la dernière décennie. The Québec raptor recovery team (EROP) was established in 2004 following the merger of the peregrine falcon (Falcoperegrinus), bald eagle (Haliaeetus leucocephalus) and golden eagle (Aquilachrysaetos) recovery teams. Recently, the short-eared owl (Asioflammeus) has also been added to the list of species covered by EROP. The team aims to foster conservation measures (e.g., data collection, public awareness and protection) to improve the population status of endangered birds of prey, and achieves this through the publication of species recovery plans. This article outlines the mission, and the working and main achievements of EROP over the past decade

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Search for single production of vector-like quarks decaying into Wb in pp collisions at s=8\sqrt{s} = 8 TeV with the ATLAS detector

    Get PDF

    Measurement of the charge asymmetry in top-quark pair production in the lepton-plus-jets final state in pp collision data at s=8TeV\sqrt{s}=8\,\mathrm TeV{} with the ATLAS detector

    Get PDF

    Measurements of top-quark pair differential cross-sections in the eμe\mu channel in pppp collisions at s=13\sqrt{s} = 13 TeV using the ATLAS detector

    Get PDF

    Measurement of the bbb\overline{b} dijet cross section in pp collisions at s=7\sqrt{s} = 7 TeV with the ATLAS detector

    Get PDF
    corecore