106 research outputs found
Protocols and Criteria for Acoustic Emission Monitoring of Fracture-Critical Steel Bridges
With bridge infrastructure in Minnesota aging, advancing techniques for ensuring bridge safety is a fundamental
goal of the Minnesota Department of Transportation (MnDOT). Developing health monitoring systems for
fracture-critical bridges is an essential objective in meeting the stated goal. This report documents the
implementation of two, 16-sensor, acoustic emission monitoring systems in one of the tie girders of the Cedar
Avenue Bridge, which is a fracture-critical tied arch bridge spanning the Minnesota River between Bloomington
and Eagan, MN. The goal of the project is to develop a process for using acoustic emission technology to monitor
one of the girders of the bridge while continuously collecting data from the monitoring systems. Given the cost of
acoustic emission sensing equipment, an approach was adopted to space the sensors as widely as possible. Fracture
tests were conducted on a specimen acoustically connected to the bridge to simulate fracture in a bridge member.
Sets of criteria were developed to differentiate between acoustic emission data collected during fracture and
ambient bridge (i.e. AE noise) data. The sets of criteria were applied to fracture test data and AE noise data to
determine the validity of the criteria. For each criteria set, a period of Cedar Avenue Bridge monitoring data was
analyzed. The results of the analysis of each period showed that the criteria could differentiate between the bridge
AE noise data and the fracture test data. The AE noise data never met all of the criteria in the set, whereas all
criteria were met during each of the applicable fracture tests
Performance of masonry buildings and churches in the 22 february 2011 christchurch earthquake
As part of the âProject Masonryâ Recovery Project funded by the New Zealand Natural Hazards Research Platform, commencing in March 2011, an international team of researchers was deployed to document and interpret the observed earthquake damage to masonry buildings and to churches as a result of the 22nd February 2011 Christchurch earthquake. The study focused on investigating commonly encountered failure patterns and collapse mechanisms. A brief summary of activities undertaken is presented, detailing the observations that were made on the performance of and the deficiencies that contributed to the damage to approximately 650 inspected unreinforced clay brick masonry (URM) buildings, to 90 unreinforced stone masonry buildings, to 342 reinforced concrete masonry (RCM) buildings, to 112 churches in the Canterbury region, and to just under 1100 residential dwellings having external masonry veneer cladding. In addition, details are provided of retrofit techniques that were implemented within relevant Christchurch URM buildings prior to the 22nd February earthquake and brief suggestions are provided regarding appropriate seismic retrofit and remediation techniques for stone masonry buildings.The authors acknowledge the financial support for Project Masonry from the New Zealand Natural Hazards Research Platform. The testing of adhesive anchors was undertaken in conjunction with the RAPID grant CMMI-1138614 from the US National Science Foundation. The investigation of the performance of residential brick veneers was financially supported by Brickworks Building Products Australia
Epicardial adipose excision slows the progression of porcine coronary atherosclerosis
BACKGROUND: In humans there is a positive association between epicardial adipose tissue (EAT) volume and coronary atherosclerosis (CAD) burden. We tested the hypothesis that EAT contributes locally to CAD in a pig model. METHODS: Ossabaw miniature swine (nâ=â9) were fed an atherogenic diet for 6Â months to produce CAD. A 15Â mm length by 3â5Â mm width coronary EAT (cEAT) resection was performed over the middle segment of the left anterior descending artery (LAD) 15Â mm distal to the left main bifurcation. Pigs recovered for 3Â months on atherogenic diet. Intravascular ultrasound (IVUS) was performed in the LAD to quantify atheroma immediately after adipectomy and was repeated after recovery before sacrifice. Coronary wall biopsies were stained immunohistochemically for atherosclerosis markers and cytokines and cEAT was assayed for atherosclerosis-related genes by RT-PCR. Total EAT volume was measured by non-contrast CT before each IVUS. RESULTS: Circumferential plaque length increased (pâ<â0.05) in the proximal and distal LAD segments from baseline until sacrifice whereas plaque length in the middle LAD segment underneath the adipectomy site did not increase. T-cadherin, scavenger receptor A and adiponectin were reduced in the intramural middle LAD. Relative to control pigs without CAD, 11ÎČ-hydroxysteroid dehydrogenase (11ÎČHSD-1), CCL19, CCL21, prostaglandin D(2) synthase, gp91phox [NADPH oxidase], VEGF, VEGFGR1, and angiotensinogen mRNAs were up-regulated in cEAT. EAT volume increased over 3Â months. CONCLUSION: In pigs used as their own controls, resection of cEAT decreased the progression of CAD, suggesting that cEAT may exacerbate coronary atherosclerosis
Field Research Is Essential to Counter Virological Threats
The interface between humans and wildlife is changing and, with it, the potential for pathogen introduction into humans has increased. Avian influenza is a prominent example, with an ongoing outbreak showing the unprecedented expansion of both geographic and host ranges. Research in the field is essential to understand this and other zoonotic threats. Only by monitoring dynamic viral populations and defining their biology in situ can we gather the information needed to ensure effective pandemic preparation.</p
Acoustic Emission Monitoring of a Fracture-Critical Bridge
With bridge infrastructure in Minnesota aging, advancing techniques for ensuring bridge safety is a fundamental goal of the Minnesota Department of Transportation (MnDOT). As such, developing health monitoring systems for fracture-critical bridges is an essential objective in meeting the stated goal. This report documents the acquisition, testing and installation of a 16-sensor acoustic emission monitoring system in the Cedar Avenue Bridge, which is a fracture-critical tied arch bridge in Burnsville, Minnesota. The overall goal of the project was to demonstrate that acoustic emission technology could be used for global monitoring of fracture-critical steel bridges. Project activities included the acquisition of the monitoring equipment, its testing to verify compliance with manufacturer specifications, installation of the equipment on the selected bridge, field testing to calibrate the system, development of data processing protocols for the acoustic emission (AE) data, and the collection of field data for a period of 22 months. Fracture tests of notched cantilever steel beams were conducted in the laboratory to provide characterization data for fracture events.University of Minnesota
Department of Civil Engineerin
Versailles project on advanced materials and standards (VAMAS) interlaboratory study on measuring the number concentration of colloidal gold nanoparticles
We describe the outcome of a large international interlaboratory study of the measurement of particle number concentration of colloidal nanoparticles, project 10 of the technical working area 34, "Nanoparticle Populations" of the Versailles Project on Advanced Materials and Standards (VAMAS). A total of 50 laboratories delivered results for the number concentration of 30 nm gold colloidal nanoparticles measured using particle tracking analysis (PTA), single particle inductively coupled plasma mass spectrometry (spICP-MS), ultraviolet-visible (UV-Vis) light spectroscopy, centrifugal liquid sedimentation (CLS) and small angle X-ray scattering (SAXS). The study provides quantitative data to evaluate the repeatability of these methods and their reproducibility in the measurement of number concentration of model nanoparticle systems following a common measurement protocol. We find that the population-averaging methods of SAXS, CLS and UV-Vis have high measurement repeatability and reproducibility, with between-labs variability of 2.6%, 11% and 1.4% respectively. However, results may be significantly biased for reasons including inaccurate material properties whose values are used to compute the number concentration. Particle-counting method results are less reproducibile than population-averaging methods, with measured between-labs variability of 68% and 46% for PTA and spICP-MS respectively. This study provides the stakeholder community with important comparative data to underpin measurement reproducibility and method validation for number concentration of nanoparticles
Versailles project on advanced materials and standards (VAMAS) interlaboratory study on measuring the number concentration of colloidal gold nanoparticles
We describe the outcome of a large international interlaboratory study of the measurement of particle number concentration of colloidal nanoparticles, project 10 of the technical working area 34, "Nanoparticle Populations" of the Versailles Project on Advanced Materials and Standards (VAMAS). A total of 50 laboratories delivered results for the number concentration of 30 nm gold colloidal nanoparticles measured using particle tracking analysis (PTA), single particle inductively coupled plasma mass spectrometry (spICP-MS), ultraviolet-visible (UV-Vis) light spectroscopy, centrifugal liquid sedimentation (CLS) and small angle X-ray scattering (SAXS). The study provides quantitative data to evaluate the repeatability of these methods and their reproducibility in the measurement of number concentration of model nanoparticle systems following a common measurement protocol. We find that the population-averaging methods of SAXS, CLS and UV-Vis have high measurement repeatability and reproducibility, with between-labs variability of 2.6%, 11% and 1.4% respectively. However, results may be significantly biased for reasons including inaccurate material properties whose values are used to compute the number concentration. Particle-counting method results are less reproducibile than population-averaging methods, with measured between-labs variability of 68% and 46% for PTA and spICP-MS respectively. This study provides the stakeholder community with important comparative data to underpin measurement reproducibility and method validation for number concentration of nanoparticles
Search for dark matter produced in association with bottom or top quarks in âs = 13 TeV pp collisions with the ATLAS detector
A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fbâ1 of protonâproton collision data recorded by the ATLAS experiment at âs = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements
Versailles project on advanced materials and standards (VAMAS) interlaboratory study on measuring the number concentration of colloidal gold nanoparticles
We describe the outcome of a large international interlaboratory study of the measurement of particle number concentration of colloidal nanoparticles, project 10 of the technical working area 34, "Nanoparticle Populations" of the Versailles Project on Advanced Materials and Standards (VAMAS). A total of 50 laboratories delivered results for the number concentration of 30 nm gold colloidal nanoparticles measured using particle tracking analysis (PTA), single particle inductively coupled plasma mass spectrometry (spICP-MS), ultraviolet-visible (UV-Vis) light spectroscopy, centrifugal liquid sedimentation (CLS) and small angle X-ray scattering (SAXS). The study provides quantitative data to evaluate the repeatability of these methods and their reproducibility in the measurement of number concentration of model nanoparticle systems following a common measurement protocol. We find that the population-averaging methods of SAXS, CLS and UV-Vis have high measurement repeatability and reproducibility, with between-labs variability of 2.6%, 11% and 1.4% respectively. However, results may be significantly biased for reasons including inaccurate material properties whose values are used to compute the number concentration. Particle-counting method results are less reproducibile than population-averaging methods, with measured between-labs variability of 68% and 46% for PTA and spICP-MS respectively. This study provides the stakeholder community with important comparative data to underpin measurement reproducibility and method validation for number concentration of nanoparticles
- âŠ