1,025 research outputs found

    Decomposition of 1,1-Dichloroethane and 1,1-Dichloroethene in an electron beam generated plasma reactor

    Get PDF
    An electron beam generated plasma reactor is used to decompose low concentrations (100–3000 ppm) of 1,1-dichloroethane and 1,1-dichloroethene in atmospheric pressure air streams. The energy requirements for 90% and 99% decomposition of each compound are reported as a function of inlet concentration. Dichloroethene decomposition is enhanced by a chlorine radical propagated chain reaction. The chain length of the dichloroethene reaction is estimated to increase with dichloroethene concentration from 10 at 100 ppm initial dichloroethene concentration to 30 at 3000 ppm. Both the dichloroethane and dichloroethene reactions seem to be inhibited by electron scavenging decomposition products. A simple analytic expression is proposed for fitting decomposition data where inhibition effects are important and simple first order kinetics are not observed

    Sonoluminescing air bubbles rectify argon

    Get PDF
    The dynamics of single bubble sonoluminescence (SBSL) strongly depends on the percentage of inert gas within the bubble. We propose a theory for this dependence, based on a combination of principles from sonochemistry and hydrodynamic stability. The nitrogen and oxygen dissociation and subsequent reaction to water soluble gases implies that strongly forced air bubbles eventually consist of pure argon. Thus it is the partial argon (or any other inert gas) pressure which is relevant for stability. The theory provides quantitative explanations for many aspects of SBSL.Comment: 4 page

    Ultralong Copper Phthalocyanine Nanowires with New Crystal Structure and Broad Optical Absorption

    Full text link
    The development of molecular nanostructures plays a major role in emerging organic electronic applications, as it leads to improved performance and is compatible with our increasing need for miniaturisation. In particular, nanowires have been obtained from solution or vapour phase and have displayed high conductivity, or large interfacial areas in solar cells. In all cases however, the crystal structure remains as in films or bulk, and the exploitation of wires requires extensive post-growth manipulation as their orientations are random. Here we report copper phthalocyanine (CuPc) nanowires with diameters of 10-100 nm, high directionality and unprecedented aspect ratios. We demonstrate that they adopt a new crystal phase, designated eta-CuPc, where the molecules stack along the long axis. The resulting high electronic overlap along the centimetre length stacks achieved in our wires mediates antiferromagnetic couplings and broadens the optical absorption spectrum. The ability to fabricate ultralong, flexible metal phthalocyanine nanowires opens new possibilities for applications of these simple molecules

    Automated extraction of potential migraine biomarkers using a semantic graph

    Get PDF
    Problem Biomedical literature and databases contain important clues for the identification of potential disease biomarkers. However, searching these enormous knowledge reservoirs and integrating findings across heterogeneous sources is costly and difficult. Here we demonstrate how semantically integrated knowledge, extracted from biomedical literature and structured databases, can be used to automatically identify potential migraine biomarkers. Method We used a knowledge graph containing more than 3.5 million biomedical concepts and 68.4 million relationships. Biochemical compound concepts were filtered and ranked by their potential as biomarkers based on their connections to a subgraph of migraine-related concepts. The ranked results were evaluated against the results of a systematic literature review that was performed manually by migraine researchers. Weight points were assigned to these reference compounds to indicate their relative importance. Results Ranked results automatically generated by the knowledge graph were highly consistent with results from the manual literature review. Out of 222 reference compounds, 163 (73%) ranked in the top 2000, with 547 out of the 644 (85%) weight points assigned to the reference compounds. For reference compounds that were not in the top of the list, an extensive error analysis has been performed. When evaluating the overall performance, we obtained a ROC-AUC of 0.974. Discussion Semantic knowledge graphs composed of information integrated from multiple and varying sources can assist researchers in identifying potential disease biomarkers

    Calibration and Characterization of the IceCube Photomultiplier Tube

    Full text link
    Over 5,000 PMTs are being deployed at the South Pole to compose the IceCube neutrino observatory. Many are placed deep in the ice to detect Cherenkov light emitted by the products of high-energy neutrino interactions, and others are frozen into tanks on the surface to detect particles from atmospheric cosmic ray showers. IceCube is using the 10-inch diameter R7081-02 made by Hamamatsu Photonics. This paper describes the laboratory characterization and calibration of these PMTs before deployment. PMTs were illuminated with pulses ranging from single photons to saturation level. Parameterizations are given for the single photoelectron charge spectrum and the saturation behavior. Time resolution, late pulses and afterpulses are characterized. Because the PMTs are relatively large, the cathode sensitivity uniformity was measured. The absolute photon detection efficiency was calibrated using Rayleigh-scattered photons from a nitrogen laser. Measured characteristics are discussed in the context of their relevance to IceCube event reconstruction and simulation efforts.Comment: 40 pages, 12 figure

    Single hadron response measurement and calorimeter jet energy scale uncertainty with the ATLAS detector at the LHC

    Get PDF
    The uncertainty on the calorimeter energy response to jets of particles is derived for the ATLAS experiment at the Large Hadron Collider (LHC). First, the calorimeter response to single isolated charged hadrons is measured and compared to the Monte Carlo simulation using proton-proton collisions at centre-of-mass energies of sqrt(s) = 900 GeV and 7 TeV collected during 2009 and 2010. Then, using the decay of K_s and Lambda particles, the calorimeter response to specific types of particles (positively and negatively charged pions, protons, and anti-protons) is measured and compared to the Monte Carlo predictions. Finally, the jet energy scale uncertainty is determined by propagating the response uncertainty for single charged and neutral particles to jets. The response uncertainty is 2-5% for central isolated hadrons and 1-3% for the final calorimeter jet energy scale.Comment: 24 pages plus author list (36 pages total), 23 figures, 1 table, submitted to European Physical Journal

    Standalone vertex ïŹnding in the ATLAS muon spectrometer

    Get PDF
    A dedicated reconstruction algorithm to find decay vertices in the ATLAS muon spectrometer is presented. The algorithm searches the region just upstream of or inside the muon spectrometer volume for multi-particle vertices that originate from the decay of particles with long decay paths. The performance of the algorithm is evaluated using both a sample of simulated Higgs boson events, in which the Higgs boson decays to long-lived neutral particles that in turn decay to bbar b final states, and pp collision data at √s = 7 TeV collected with the ATLAS detector at the LHC during 2011

    Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC

    Get PDF
    Measurements are presented of production properties and couplings of the recently discovered Higgs boson using the decays into boson pairs, H →γ Îł, H → Z Z∗ →4l and H →W W∗ →lÎœlÎœ. The results are based on the complete pp collision data sample recorded by the ATLAS experiment at the CERN Large Hadron Collider at centre-of-mass energies of √s = 7 TeV and √s = 8 TeV, corresponding to an integrated luminosity of about 25 fb−1. Evidence for Higgs boson production through vector-boson fusion is reported. Results of combined ïŹts probing Higgs boson couplings to fermions and bosons, as well as anomalous contributions to loop-induced production and decay modes, are presented. All measurements are consistent with expectations for the Standard Model Higgs boson

    Measurement of the top quark pair cross section with ATLAS in pp collisions at √s=7 TeV using final states with an electron or a muon and a hadronically decaying τ lepton

    Get PDF
    A measurement of the cross section of top quark pair production in proton-proton collisions recorded with the ATLAS detector at the Large Hadron Collider at a centre-of-mass energy of 7 TeV is reported. The data sample used corresponds to an integrated luminosity of 2.05 fb -1. Events with an isolated electron or muon and a τ lepton decaying hadronically are used. In addition, a large missing transverse momentum and two or more energetic jets are required. At least one of the jets must be identified as originating from a b quark. The measured cross section, σtt-=186±13(stat.)±20(syst.)±7(lumi.) pb, is in good agreement with the Standard Model prediction
    • 

    corecore