428 research outputs found

    The Functional Consequences of Mutualistic Network Architecture

    Get PDF
    The architecture and properties of many complex networks play a significant role in the functioning of the systems they describe. Recently, complex network theory has been applied to ecological entities, like food webs or mutualistic plant-animal interactions. Unfortunately, we still lack an accurate view of the relationship between the architecture and functioning of ecological networks. In this study we explore this link by building individual-based pollination networks from eight Erysimum mediohispanicum (Brassicaceae) populations. In these individual-based networks, each individual plant in a population was considered a node, and was connected by means of undirected links to conspecifics sharing pollinators. The architecture of these unipartite networks was described by means of nestedness, connectivity and transitivity. Network functioning was estimated by quantifying the performance of the population described by each network as the number of per-capita juvenile plants produced per population. We found a consistent relationship between the topology of the networks and their functioning, since variation across populations in the average per-capita production of juvenile plants was positively and significantly related with network nestedness, connectivity and clustering. Subtle changes in the composition of diverse pollinator assemblages can drive major consequences for plant population performance and local persistence through modifications in the structure of the inter-plant pollination networks

    Diversity of floral visitors to sympatric Lithophragma species differing in floral morphology

    Get PDF
    Most coevolving relationships between pairs of species are embedded in a broader multispecific interaction network. The mutualistic interaction between Lithophragma parviflorum (Saxifragaceae) and its pollinating floral parasite Greya politella (Lepidoptera, Prodoxidae) occurs in some communities as a pairwise set apart from most other interactions in those communities. In other communities, however, this pair of species occurs with congeners and with other floral visitors to Lithophragma. We analyzed local and geographic differences in the network formed by interactions between Lithophragma plants and Greya moths in communities containing two Lithophragma species, two Greya species, and floral visitors other than Greya that visit Lithophragma flowers. Our goal was to evaluate if non-Greya visitors were common, if visitor assembly differs between Lithophragma species and populations and if these visitors act as effective pollinators. Sympatric populations of L. heterophyllum and L. parviflorum differ in floral traits that may affect assemblies of floral visitors. Visitation rates by non-Greya floral visitors were low, and the asymptotic number of visitor species was less than 20 species in all populations. Lithophragma species shared some of the visitors, with visitor assemblages differing between sites more for L. heterophyllum than for L. parviflorum. Pollination efficacy experiments showed that most visitors were poor pollinators. Single visits to flowers by this assemblage of species resulted in significantly higher seed set in Lithophragma heterophyllum (30.6 ± 3.9 SE) than in L. parviflorum (4.7 ± 3.4 SE). This difference was consistent between sites, suggesting that these visitors provide a better fit to the floral morphology of L. heterophyllum. Overall, none of the non-Greya visitors appears to be either sufficiently common or efficient as a pollinator to impose strong selection on any of these four Lithophragma populations in comparison with Greya, which occurs within almost all populations of these species throughout their geographic ranges

    Nestedness of Ectoparasite-Vertebrate Host Networks

    Get PDF
    Determining the structure of ectoparasite-host networks will enable disease ecologists to better understand and predict the spread of vector-borne diseases. If these networks have consistent properties, then studying the structure of well-understood networks could lead to extrapolation of these properties to others, including those that support emerging pathogens. Borrowing a quantitative measure of network structure from studies of mutualistic relationships between plants and their pollinators, we analyzed 29 ectoparasite-vertebrate host networks—including three derived from molecular bloodmeal analysis of mosquito feeding patterns—using measures of nestedness to identify non-random interactions among species. We found significant nestedness in ectoparasite-vertebrate host lists for habitats ranging from tropical rainforests to polar environments. These networks showed non-random patterns of nesting, and did not differ significantly from published estimates of nestedness from mutualistic networks. Mutualistic and antagonistic networks appear to be organized similarly, with generalized ectoparasites interacting with hosts that attract many ectoparasites and more specialized ectoparasites usually interacting with these same “generalized” hosts. This finding has implications for understanding the network dynamics of vector-born pathogens. We suggest that nestedness (rather than random ectoparasite-host associations) can allow rapid transfer of pathogens throughout a network, and expand upon such concepts as the dilution effect, bridge vectors, and host switching in the context of nested ectoparasite-vertebrate host networks

    Varying Herbivore Population Structure Correlates with Lack of Local Adaptation in a Geographic Variable Plant-Herbivore Interaction

    Get PDF
    Local adaptation of parasites to their hosts due to coevolution is a central prediction of many theories in evolutionary biology. However, empirical studies looking for parasite local adaptation show great variation in outcomes, and the reasons for such variation are largely unknown. In a previous study, we showed adaptive differentiation in the arctiid moth Utetheisa ornatrix to its host plant, the pyrrolizidine alkaloid-bearing legume Crotalaria pallida, at the continental scale, but found no differentiation at the regional scale. In the present study, we sampled the same sites to investigate factors that may contribute to the lack of differentiation at the regional scale. We performed field observations that show that specialist and non-specialist polyphagous herbivore incidence varies among populations at both scales. With a series of common-garden experiments we show that some plant traits that may affect herbivory (pyrrolizidine alkaloids and extrafloral nectaries) vary at the regional scale, while other traits (trichomes and nitrogen content) just vary at the continental scale. These results, combined with our previous evidence for plant population differentiation based on larval performance on fresh fruits, suggest that U. ornatrix is subjected to divergent selection even at the regional scale. Finally, with a microsatellite study we investigated population structure of U. ornatrix. We found that population structure is not stable over time: we found population differentiation at the regional scale in the first year of sampling, but not in the second year. Unstable population structure of the herbivore is the most likely cause of the lack of regional adaptation

    Clinical Outcomes of Thirteen Patients with Acute Chagas Disease Acquired through Oral Transmission from Two Urban Outbreaks in Northeastern Brazil

    Get PDF
    Chagas disease is caused by a parasitic protozoan transmitted to humans by the contaminated feces of blood-feeding assassin bugs from the Triatominae subfamily. It may also be transmitted from mother to baby during pregnancy, by breastfeeding, blood transfusion or organ transplant. In rare cases, the disease can also be caused by accidental ingestion of contaminated food (sugar cane or açaí juice, drinking water, etc.). Acute Chagas disease often presents itself as a mononucleosis-like syndrome, with symptoms including fever, lymph node enlargement and muscle pain. The mortality rate of acute Chagas disease is high, mainly due to heart failure as a consequence of cardiac fiber lesions. There are few studies describing clinical outcomes and the disease progression of patients who receive therapeutic treatment, especially with regard to cardiac exam findings. In this report, the authors describe clinical findings from two micro-outbreaks occurring in impoverished towns in northeastern Brazil. Prior to receiving treatment, patient mortality rate was 28.6% in one of the outbreaks, and one pregnant woman experienced a spontaneous abortion due to the disease in the other outbreak. Most patients complained of fever, dyspnea, myalgia and periorbital edema. After receiving a two-month course of treatment, clinical symptoms improved and the number of abnormalities in cardiac exams decreased

    Observation of associated near-side and away-side long-range correlations in √sNN=5.02  TeV proton-lead collisions with the ATLAS detector

    Get PDF
    Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02  TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1  μb-1 of data as a function of transverse momentum (pT) and the transverse energy (ΣETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∼0) correlation that grows rapidly with increasing ΣETPb. A long-range “away-side” (Δϕ∼π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ΣETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos⁡2Δϕ modulation for all ΣETPb ranges and particle pT

    Evolution and networks in ancient and widespread symbioses between Mucoromycotina and liverworts

    Get PDF
    Like the majority of land plants, liverworts regularly form intimate symbioses with arbuscular mycorrhizal fungi (Glomeromycotina). Recent phylogenetic and physiological studies report that they also form intimate symbioses with Mucoromycotina fungi and that some of these, like those involving Glomeromycotina, represent nutritional mutualisms. To compare these symbioses, we carried out a global analysis of Mucoromycotina fungi in liverworts and other plants using species delimitation, ancestral reconstruction, and network analyses. We found that Mucoromycotina are more common and diverse symbionts of liverworts than previously thought, globally distributed, ancestral, and often co-occur with Glomeromycotina within plants. However, our results also suggest that the associations formed by Mucoromycotina fungi are fundamentally different because, unlike Glomeromycotina, they may have evolved multiple times and their symbiotic networks are un-nested (i.e., not forming nested subsets of species). We infer that the global Mucoromycotina symbiosis is evolutionarily and ecologically distinctive
    corecore