112 research outputs found

    Consequences of habitat fragmentation on the reproductive success of two Tillandsia species with contrasting life history strategies

    Get PDF
    Fragmentation of natural habitats generally has negative effects on the reproductive success of many plant species; however, little is known about epiphytic plants. We assessed the impact of forest fragmentation on plant pollinator interactions and female reproductive success in two epiphytic Tillandsia species with contrasting life history strategies (polycarpic and monocarpic) in Chamela, Jalisco, Mexico, over three consecutive years. Hummingbirds were the major pollinators of both species and pollinator visitation rates were similar between habitat conditions. In contrast, the composition and frequency of floral visitors significantly varied between habitat conditions in polycarpic and self-incompatible T. intermedia but not in monocarpic self-compatible T. makoyana. There were no differences between continuous and fragmented habitats in fruit set in either species, but T. makoyana had a lower seed set in fragmented than in continuous forests. In contrast, T. intermedia had similar seed set in both forest conditions. These results indicate that pollinators were effective under both fragmented and continuous habitats, possibly because the major pollinators are hummingbird species capable of moving across open spaces and human-modified habitats. However, the lower seed set of T. makoyana under fragmented conditions suggests that the amount and quality of pollen deposited onto stigmas may differ between habitat conditions. Alternatively, changes in resource availability may also cause reductions in seed production in fragmented habitats. This study adds to the limited information on the effects of habitat fragmentation on the reproductive success of epiphytic plants, showing that even related congeneric species may exhibit different responses to human disturbance. Plant reproductive systems, along with changes in pollinator communities associated with habitat fragmentation, may have yet undocumented consequences on gene flow, levels of inbreeding and progeny quality of dry forest tillandsias.Fil: Sáyago, Roberto. Universidad Nacional Autónoma de México; México. Universidad Autonoma de Guerrero; MéxicoFil: Quesada, Mauricio. Universidad Autonoma de Guerrero; México. Universidad Nacional Autónoma de México; MéxicoFil: Aguilar, Ramiro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; ArgentinaFil: Ashworth, Lorena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; ArgentinaFil: Lopezaraiza-Mikel, Martha. Universidad Nacional Autónoma de México; México. Universidad Autonoma de Guerrero; MéxicoFil: Martén-Rodríguez, Silvana. Universidad Nacional Autónoma de México; Méxic

    A global review of pollination syndromes: a response to ollerton et al. 2015

    Get PDF
    In a recent literature review, we demonstrated that the evolution of floral traits is driven by adaptation to the most effective pollinators. In a critique of this study, Ollerton et al. 2015 claimed there were apparent flaws with data collection, analyses and interpretation of results. We disagree since many of OLT´s observations and recommendations are subjective and overlook basic aspects of meta-analysis. Here, we address the main criticisms of Ollerton et al 2015.Fil: Aguilar, Ramiro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Instituto Multidisciplinario de Biología Vegetal (p); ArgentinaFil: Martén Rodríguez, Silvia . Universidad Nacional Autónoma de México; México. Instituto de Ecología; MéxicoFil: Avila Sakar, Germán. The University of Winnipeg; CanadáFil: Ashworth, Lorena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Instituto Multidisciplinario de Biología Vegetal (p); ArgentinaFil: Lopezaraiza Mikel, Martha. Universidad Autónoma de Guerrero; MéxicoFil: Quesada, Mauricio. Universidad Nacional Autónoma de México; Méxic

    A scientific note on the first record of nesting sites of Peponapis crassidentata (Hymenoptera: Apidae)

    Get PDF
    Fil: Delgado Carrillo, Oliverio. Escuela Nacional de Estudios Superiores, Morelia, Mexi; México. Universidad Nacional Autónoma de México; MéxicoFil: Lopezaraiza Mikel, Martha. Universidad Autonoma de Guerrero; México. Universidad Nacional Autónoma de México; MéxicoFil: Ashworth, Lorena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; Argentina. Universidad Nacional Autónoma de México; MéxicoFil: Aguilar, Ramiro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; Argentina. Universidad Nacional Autónoma de México; MéxicoFil: Lobo, Jorge A.. Universidad de Costa Rica; Costa RicaFil: Quesada, Mauricio. Universidad Nacional Autónoma de México; Méxic

    Invasive Mutualists Erode Native Pollination Webs

    Get PDF
    Plant–animal mutualisms are characterized by weak or asymmetric mutual dependences between interacting species, a feature that could increase community stability. If invasive species integrate into mutualistic webs, they may alter web structure, with consequences for species persistence. However, the effect of alien mutualists on the architecture of plant–pollinator webs remains largely unexplored. We analyzed the extent of mutual dependency between interacting species, as a measure of mutualism strength, and the connectivity of 10 paired plant–pollinator webs, eight from forests of the southern Andes and two from oceanic islands, with different incidences of alien species. Highly invaded webs exhibited weaker mutualism than less-invaded webs. This potential increase in network stability was the result of a disproportionate increase in the importance and participation of alien species in the most asymmetric interactions. The integration of alien mutualists did not alter overall network connectivity, but links were transferred from generalist native species to super-generalist alien species during invasion. Therefore, connectivity among native species declined in highly invaded webs. These modifications in the structure of pollination webs, due to dominance of alien mutualists, can leave many native species subject to novel ecological and evolutionary dynamics

    The structure and robustness of nocturnal Lepidopteran pollen-transfer networks in a Biodiversity Hotspot

    Get PDF
    1. The role of nocturnal moths within plant-pollinator networks is poorly understood but could be important in the context of declining biodiversity and the ecosystem services they provide. 2. For the first time, this study examined the role of moths as pollen vectors in the Mediterranean Biodiversity Hotspot. Light traps were used to sample moths in SW Portugal in 2010. The pollen on moth head parts was collected, identified, and counted to construct a nocturnal pollen-transfer and flower-visitor network. 3. A total of 257 moths belonging to 95 species were captured in 11 trapping sessions in 2010; 196 moths (76%) carried pollen and the total number of pollen grains counted and identified was 9064. 4. The pollen-transfer network exhibited a high degree of selectivity (H20) but low robustness when the most-to-least connected plants were made extinct in the network. The flower-visitor network (based on the incidences of interactions by individual moths), however, exhibited high linkage density and was generally more robust to simulated plant or moth extinction. 5. Including nocturnal moths in plant–pollinator networks will provide a better understanding of their robustness to species extinctions due to environmental change as well as the impacts on ecosystem structure and functioning. Nocturnal pollen–transfer networks could be developed for identifying key species for targeted conservation

    The Functional Consequences of Mutualistic Network Architecture

    Get PDF
    The architecture and properties of many complex networks play a significant role in the functioning of the systems they describe. Recently, complex network theory has been applied to ecological entities, like food webs or mutualistic plant-animal interactions. Unfortunately, we still lack an accurate view of the relationship between the architecture and functioning of ecological networks. In this study we explore this link by building individual-based pollination networks from eight Erysimum mediohispanicum (Brassicaceae) populations. In these individual-based networks, each individual plant in a population was considered a node, and was connected by means of undirected links to conspecifics sharing pollinators. The architecture of these unipartite networks was described by means of nestedness, connectivity and transitivity. Network functioning was estimated by quantifying the performance of the population described by each network as the number of per-capita juvenile plants produced per population. We found a consistent relationship between the topology of the networks and their functioning, since variation across populations in the average per-capita production of juvenile plants was positively and significantly related with network nestedness, connectivity and clustering. Subtle changes in the composition of diverse pollinator assemblages can drive major consequences for plant population performance and local persistence through modifications in the structure of the inter-plant pollination networks

    The potential for indirect effects between co‐flowering plants via shared pollinators depends on resource abundance, accessibility and relatedness

    Get PDF
    Co-flowering plant species commonly share flower visitors, and thus have the potential to influence each other's pollination. In this study we analysed 750 quantitative plant-pollinator networks from 28 studies representing diverse biomes worldwide. We show that the potential for one plant species to influence another indirectly via shared pollinators was greater for plants whose resources were more abundant (higher floral unit number and nectar sugar content) and more accessible. The potential indirect influence was also stronger between phylogenetically closer plant species and was independent of plant geographic origin (native vs. non-native). The positive effect of nectar sugar content and phylogenetic proximity was much more accentuated for bees than for other groups. Consequently, the impact of these factors depends on the pollination mode of plants, e.g. bee or fly pollinated. Our findings may help predict which plant species have the greatest importance in the functioning of plant-pollination networks

    Effect of invader removal: pollinators stay but some native plants miss their new friend

    Get PDF
    Removal of invasive species often benefits biological diversity allowing ecosystems’ recovery. However, it is important to assess the functional roles that invaders may have established in their new areas to avoid unexpected results from species elimination. Invasive animal-pollinated plants may affect the plant–pollination interactions by changing pollinator availability and/or behaviour in the community. Thus, removal of an invasive plant may have important effects on pollinator community that may then be reflected positive or negatively on the reproductive success of native plants. The objective of this study was to assess the effect of removing Oxalis pescaprae, an invasive weed widely spread in the Mediterranean basin, on plant–pollinator interactions and on the reproductive success of co-flowering native plants. For this, a disturbed area in central Portugal, where this species is highly abundant, was selected. Visitation rates, natural pollen loads, pollen tube growth and natural fruit set of native plants were compared in the presence of O. pes-caprae and after manual removal of their flowers. Our results showed a highly resilient pollination network but also revealed some facilitative effects of O. pes-caprae on the reproductive success of co-flowering native plants. Reproductive success of the native plants seems to depend not only on the number and diversity of floral visitors, but also on their efficiency as pollinators. The information provided on the effects of invasive species on the sexual reproductive success of natives is essential for adequate management of invaded areas.This work is financed by FEDER funds through the COMPETE Program and by Portuguese Foundation for Science and Technology (FCT) funds in the ambit of the project PTDC/ BIA-BIC/110824/2009, by CRUP Acc¸o˜es Integradas Luso- Espanholas 2010 with the project E10/10, by MCI-Programa de Internacionalizacio´n de la I ? D (PT2009-0068) and by the Spanish DGICYT (CGL2009-10466), FEDER funds from the European Union, and the Xunta de Galicia (INCITE09- 3103009PR). FCT also supported the work of S. Castro (FCT/ BPD/41200/2007) and J. Costa (CB/C05/2009/209; PTDC/ BIA-BIC/110824/2009). The work of V. Ferrero was supported by the Fundacio´n Ramo´n Areces
    corecore