86 research outputs found

    Confronting Uncertainty in Wildlife Management: Performance of Grizzly Bear Management

    Get PDF
    Scientific management of wildlife requires confronting the complexities of natural and social systems. Uncertainty poses a central problem. Whereas the importance of considering uncertainty has been widely discussed, studies of the effects of unaddressed uncertainty on real management systems have been rare. We examined the effects of outcome uncertainty and components of biological uncertainty on hunt management performance, illustrated with grizzly bears (Ursus arctos horribilis) in British Columbia, Canada. We found that both forms of uncertainty can have serious impacts on management performance. Outcome uncertainty alone – discrepancy between expected and realized mortality levels – led to excess mortality in 19% of cases (population-years) examined. Accounting for uncertainty around estimated biological parameters (i.e., biological uncertainty) revealed that excess mortality might have occurred in up to 70% of cases. We offer a general method for identifying targets for exploited species that incorporates uncertainty and maintains the probability of exceeding mortality limits below specified thresholds. Setting targets in our focal system using this method at thresholds of 25% and 5% probability of overmortality would require average target mortality reductions of 47% and 81%, respectively. Application of our transparent and generalizable framework to this or other systems could improve management performance in the presence of uncertainty. &nbsp

    Enterobactin-Mediated Delivery of β-Lactam Antibiotics Enhances Antibacterial Activity against Pathogenic Escherichia coli

    Get PDF
    The design, synthesis, and characterization of enterobactin–antibiotic conjugates, hereafter Ent-Amp/Amx, where the β-lactam antibiotics ampicillin (Amp) and amoxicillin (Amx) are linked to a monofunctionalized enterobactin scaffold via a stable poly(ethylene glycol) linker are reported. Under conditions of iron limitation, these siderophore-modified antibiotics provide enhanced antibacterial activity against Escherichia coli strains, including uropathogenic E. coli CFT073 and UTI89, enterohemorrhagic E. coli O157:H7, and enterotoxigenic E. coli O78:H11, compared to the parent β-lactams. Studies with E. coli K-12 derivatives defective in ferric enterobactin transport reveal that the enhanced antibacterial activity observed for this strain requires the outer membrane ferric enterobactin transporter FepA. A remarkable 1000-fold decrease in minimum inhibitory concentration (MIC) value is observed for uropathogenic E. coli CFT073 relative to Amp/Amx, and time-kill kinetic studies demonstrate that Ent-Amp/Amx kill this strain more rapidly at 10-fold lower concentrations than the parent antibiotics. Moreover, Ent-Amp and Ent-Amx selectively kill E. coli CFT073 co-cultured with other bacterial species such as Staphylococcus aureus, and Ent-Amp exhibits low cytotoxicity against human T84 intestinal cells in both the apo and iron-bound forms. These studies demonstrate that the native enterobactin platform provides a means to effectively deliver antibacterial cargo across the outer membrane permeability barrier of Gram-negative pathogens utilizing enterobactin for iron acquisition.Pacific Southwest Regional Center of Excellence for Biodefense and Emerging Infectious DiseaseKinship Foundation. Searle Scholars ProgramMassachusetts Institute of Technology. Department of Chemistr

    Biosynthesis, structure, and folding of the insulin precursor protein

    Get PDF
    Insulin synthesis in pancreatic β-cells is initiated as preproinsulin. Prevailing glucose concentrations, which oscillate pre- and postprandially, exert major dynamic variation in preproinsulin biosynthesis. Accompanying upregulated translation of the insulin precursor includes elements of the endoplasmic reticulum (ER) translocation apparatus linked to successful orientation of the signal peptide, translocation and signal peptide cleavage of preproinsulin-all of which are necessary to initiate the pathway of proper proinsulin folding. Evolutionary pressures on the primary structure of proinsulin itself have preserved the efficiency of folding ("foldability"), and remarkably, these evolutionary pressures are distinct from those protecting the ultimate biological activity of insulin. Proinsulin foldability is manifest in the ER, in which the local environment is designed to assist in the overall load of proinsulin folding and to favour its disulphide bond formation (while limiting misfolding), all of which is closely tuned to ER stress response pathways that have complex (beneficial, as well as potentially damaging) effects on pancreatic β-cells. Proinsulin misfolding may occur as a consequence of exuberant proinsulin biosynthetic load in the ER, proinsulin coding sequence mutations, or genetic predispositions that lead to an altered ER folding environment. Proinsulin misfolding is a phenotype that is very much linked to deficient insulin production and diabetes, as is seen in a variety of contexts: rodent models bearing proinsulin-misfolding mutants, human patients with Mutant INS-gene-induced Diabetes of Youth (MIDY), animal models and human patients bearing mutations in critical ER resident proteins, and, quite possibly, in more common variety type 2 diabetes

    An Overview of Three Promising Mechanical, Optical, and Biochemical Engineering Approaches to Improve Selective Photothermolysis of Refractory Port Wine Stains

    Get PDF
    During the last three decades, several laser systems, ancillary technologies, and treatment modalities have been developed for the treatment of port wine stains (PWSs). However, approximately half of the PWS patient population responds suboptimally to laser treatment. Consequently, novel treatment modalities and therapeutic techniques/strategies are required to improve PWS treatment efficacy. This overview therefore focuses on three distinct experimental approaches for the optimization of PWS laser treatment. The approaches are addressed from the perspective of mechanical engineering (the use of local hypobaric pressure to induce vasodilation in the laser-irradiated dermal microcirculation), optical engineering (laser-speckle imaging of post-treatment flow in laser-treated PWS skin), and biochemical engineering (light- and heat-activatable liposomal drug delivery systems to enhance the extent of post-irradiation vascular occlusion)

    Nothing Lasts Forever: Environmental Discourses on the Collapse of Past Societies

    Get PDF
    The study of the collapse of past societies raises many questions for the theory and practice of archaeology. Interest in collapse extends as well into the natural sciences and environmental and sustainability policy. Despite a range of approaches to collapse, the predominant paradigm is environmental collapse, which I argue obscures recognition of the dynamic role of social processes that lie at the heart of human communities. These environmental discourses, together with confusion over terminology and the concepts of collapse, have created widespread aporia about collapse and resulted in the creation of mixed messages about complex historical and social processes

    Course of serum amyloid A (SAA) plasma concentrations in horses undergoing surgery for injuries penetrating synovial structures, an observational clinical study

    Get PDF
    Abstract Background Injuries penetrating synovial structures are common in equine practice and often result in septic synovitis. Significantly increased plasma levels of serum amyloid A (SAA) have been found in various infectious conditions in horses including wounds and septic arthritis. Plasma SAA levels were found to decrease rapidly once the infectious stimulus was eliminated. The purpose of the current study was to investigate the usefulness of serial measurements of plasma SAA as a monitoring tool for the response to treatment of horses presented with injuries penetrating synovial structures. In the current study plasma SAA concentrations were measured every 48 hours (h) during the course of treatment. Results A total of 19 horses with a wound penetrating a synovial structure were included in the current study. Horses in Group 1 (n = 12) (injuries older than 24 h) only needed one surgical intervention. Patients in this group had significantly lower median plasma SAA levels (P = 0.001) between 48 h (median 776 mg/L) and 96 h (median 202 mg/L) after surgery. A significant decrease (P = 0.004) in plasma SAA levels was also observed between 96 h after surgery (median 270 mg/L) and 6 days (d) after surgery (median 3 mg/L). Four horses (Group 2) required more than one surgical intervention. In contrast to Group 1 patients in Group 2 had either very high initial plasma concentrations (3378 mg/L), an increase or persistently high concentrations of plasma SAA after the first surgery (median 2525 mg/L). A small group of patients (n = 3) (Group 3) were admitted less than 24 h after sustaining a wound. In this group low SAA values at admission (median 23 mg/L) and peak concentrations at 48 h after surgery (median 1016 mg/L) were observed followed by a decrease in plasma SAA concentration over time. Conclusions A decrease in plasma SAA concentrations between two consecutive time points could be associated with positive response to treatment in the current study. Therefore, serial measurements of plasma SAA could potentially be used as an additional inexpensive, quick and easy tool for monitoring the treatment response in otherwise healthy horses presented with injuries penetrating synovial structures. However further studies will be necessary to ascertain its clinical utility

    Social Correlates of and Reasons for Primate Meat Consumption in Central Amazonia

    Get PDF
    Traditionally, humans have consumed nonhuman primates in many places, including throughout the Amazon region. However, primate consumption rates are changing with rising urbanization and market access. We characterize primate consumption in central Amazonia using 192 qualitative interviews with inhabitants in three rural villages and in the city of Tefé. We used a generalized linear model to investigate how individual consumer characteristics, such as age and gender, and livelihoods affected primate consumption. We also used principal coordinate analysis (PCoA), and word clouds and network text analyses, to describe reasons people gave for eating or avoiding primates. Our results show that men were more likely to say that they eat primates than women, and that the probability that a person said that they eat primates correlated positively with the percentage of their life lived in rural areas. People gave sentiment and ethical reasons not to eat primates. Custom influenced whether people said they eat primates both positively and negatively, while taste positively influenced whether people said they eat primates. A preference for other wild meats in rural areas, and for domestic meats in cities negatively influenced whether people said they eat primates. People also cited the perceptions that primates have a human-like appearance and that primate meat is unhealthy as reasons not to eat primates. People in urban areas also cited conservation attitudes as reasons for not eating primates. Our findings provide an understanding of factors influencing primate consumption in our study area and will be useful for designing tailored conservation initiatives by reducing hunting pressure on primates in rural settings and increasing the effectiveness of outreach campaigns in urban centers

    Structural and functional insights into oligopeptide acquisition by the RagAB transporter from Porphyromonas gingivalis

    Get PDF
    Porphyromonas gingivalis, an asaccharolytic member of the Bacteroidetes, is a keystone pathogen in human periodontitis that may also contribute to the development of other chronic inflammatory diseases. P. gingivalis utilizes protease-generated peptides derived from extracellular proteins for growth, but how these peptides enter the cell is not clear. Here, we identify RagAB as the outer-membrane importer for these peptides. X-ray crystal structures show that the transporter forms a dimeric RagA2B2 complex, with the RagB substrate-binding surface-anchored lipoprotein forming a closed lid on the RagA TonB-dependent transporter. Cryo-electron microscopy structures reveal the opening of the RagB lid and thus provide direct evidence for a ‘pedal bin’ mechanism of nutrient uptake. Together with mutagenesis, peptide-binding studies and RagAB peptidomics, our work identifies RagAB as a dynamic, selective outer-membrane oligopeptide-acquisition machine that is essential for the efficient utilization of proteinaceous nutrients by P. gingivalis
    corecore