25 research outputs found

    Minimal information for studies of extracellular vesicles 2018 (MISEV2018):a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines

    Get PDF
    The last decade has seen a sharp increase in the number of scientific publications describing physiological and pathological functions of extracellular vesicles (EVs), a collective term covering various subtypes of cell-released, membranous structures, called exosomes, microvesicles, microparticles, ectosomes, oncosomes, apoptotic bodies, and many other names. However, specific issues arise when working with these entities, whose size and amount often make them difficult to obtain as relatively pure preparations, and to characterize properly. The International Society for Extracellular Vesicles (ISEV) proposed Minimal Information for Studies of Extracellular Vesicles (“MISEV”) guidelines for the field in 2014. We now update these “MISEV2014” guidelines based on evolution of the collective knowledge in the last four years. An important point to consider is that ascribing a specific function to EVs in general, or to subtypes of EVs, requires reporting of specific information beyond mere description of function in a crude, potentially contaminated, and heterogeneous preparation. For example, claims that exosomes are endowed with exquisite and specific activities remain difficult to support experimentally, given our still limited knowledge of their specific molecular machineries of biogenesis and release, as compared with other biophysically similar EVs. The MISEV2018 guidelines include tables and outlines of suggested protocols and steps to follow to document specific EV-associated functional activities. Finally, a checklist is provided with summaries of key points

    Minimal Symptom Expression' in Patients With Acetylcholine Receptor Antibody-Positive Refractory Generalized Myasthenia Gravis Treated With Eculizumab

    Get PDF
    The efficacy and tolerability of eculizumab were assessed in REGAIN, a 26-week, phase 3, randomized, double-blind, placebo-controlled study in anti-acetylcholine receptor antibody-positive (AChR+) refractory generalized myasthenia gravis (gMG), and its open-label extension

    Inhibition of FGFR2 and FGFR1 increases cisplatin sensitivity in ovarian cancer

    No full text
    Fibroblast Growth Factors (FGFs) have been implicated in malignant transformation, tumor mitogenesis, angiogenesis and chemoresistance. The aim of this study was to determine which FGFs and FGFRs play functional roles in epithelial ovarian cancer. Restriction enzyme analysis of mRNA revealed that transformation was associated with a switch in FGFR2 and FGFR3, from the IIIc to the IIIb isoform. There was widespread expression of FGFs, including FGF7, in all tissues but, FGF3 and FGF19 were expressed by malignant cell lines and cancer tissue but were not present in normal tissue. Using FGFR-specific shRNAi we demonstrated that reductions in FGFR2 inhibited proliferation of ovarian cancer cell lines in vitro (>50%, p < 0.006) and reduced cisplatin IC50 (>60%, p < 0.0001). Cell cycle analysis revealed increased cisplatin sensitivity was associated with increased G2/M arrest and increased apoptosis. FGFR2 shRNAi reduced growth rates of ovarian tumor xenografts by 20% (p < 0.006) and when combined with cisplatin caused a 40% reduction in proliferation rates (p < 0.007). In contrast, RNAi-induced reductions in FGFR1 increased SKOV3 cell numbers, with associated changes in cell cycle but had no effect on ES 2 cells. However, the cisplatin IC50 was reduced (>50%, p < 0.0001) by FGFR1 shRNAi in both cell lines and there was increased apoptosis (46–50%) compared with control cells (35%) (p < 0.004). Together our data suggest that combining FGFR2 inhibitors with platinum-containing cytotoxic agents for the treatment of epithelial ovarian cancer may yield increased antitumor activity. However, data on the inhibition of FGFR1 suggest that broad spectrum FGFR inhibitors may have unexpected effects on proliferation
    corecore