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Hybrid Rocket Engine Design Utilizing a Polymer Matrix 

Encapsulating Pulverized Fuel 

Teague A. Aarant,1  Jared B. Bass,2 Timothy L. Grizzel,3 Seth R. Holladay,4 Matthew F. McVey,5 William B. 

Putthoff,6 Angus B. Shaw,7 Caroline M.C. Little,8 and James Evans Lyne* 

The University of Tennessee, Knoxville, Tennessee, 37996 

This study involved the use of a powder-filled, ABS matrix fuel grain as a means to 

overcome the low fuel regression rates and limited thrust typical of polymer-based hybrid 

rockets. Appropriately chosen powdered fuels do not melt or clump and consequently provide 

a high surface area and rapid combustion when the individual polymer cells rupture and 

discharge their contents into the combustion chamber. Previous experimental work has 

validated this concept, revealing faster combustion and higher total impulse values than those 

achieved using conventional, solid polymer grains. Because the initial studies served primarily 

as a proof of concept, their limited scope did not answer many questions regarding motor 

performance. The current paper describes the design and testing of an improved polymer 

matrix that allows more accurate characterization of motor performance, including the 

parameters of specific impulse and characteristic velocity, and presents results of testing at 

higher combustion pressures. The current design process focuses on optimizing the oxidizer 

to fuel ratio and accounting for and minimizing any powdered fuel losses previously observed. 

I. Introduction 

Hybrid rocket engines share some of the advantages of both solid and liquid propulsion. Specifically, they are 

substantially less complex than liquid bipropellant designs, since there is only one fluid handling system. They also 

are safer and less prone to explosion than solid motors and can be throttled, stopped and restarted like a liquid engine. 

The propellants typically are non-toxic and don't require the extreme safety precautions of many other propulsion 

designs. 

However, hybrids often have a fairly low thrust, which depends on the fuel burn rate. Numerous schemes have 

been developed to enhance the regression rate and improve thrust, including the use of multi-port combustion, vortex 

injection of the oxidizer, and the addition of metal and oxidizer particulates to the fuel grain [1-3]. Each of these 

approaches, however, has associated drawbacks, and, with notable exceptions, hybrids have not yet come into 

widespread use. Moreover, due to the increasing surface area of the fuel during a burn, oxygen to fuel ratios typically 

shift over the course of the burn and do not remain optimal.  

Three-dimensional printing has recently allowed the fabrication of complex geometries for rocket engines which 

would be impractical to machine [4-6]. These same features of 3-D printing may prove useful in addressing the issue 

of low regression rates, limited thrust and varying O:F ratio. Moreover, recent developments in the use of 3-D printed 

ABS for cryogenic applications [7] indicate that a printed fuel grain might be of use for propulsion in very cold 

environments such as during a Mars landing or ascent. 

 

II. Background and Preliminary Work 

 Inspired by the well-known phenomena of coal and grain dust explosions [8], our group has developed and 

tested a 3-D printed, ABS (acrylonitrile butadiene styrene) matrix, containing powdered fuel in the voids (Figure 1), 

Ref 9. The configuration incorporated a single combustion port. When the individual cells burned through, the 

powdered fuel was released into the combustion chamber, providing a high surface area for burning and leading to 
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both a higher regression rate and greater thrust than that produced by a solid polymer grain. This design requires the 

use of a powdered fuel that does not melt or clump prior to burning. Thus, polymers are not appropriate for use in the 

cells, but metal flakes, powdered graphite, pulverized coal, petroleum coke and other materials hold promise. 

 The potential of coal as an aerospace propellant is not a new idea. In fact, Hermann Oberth and others attempted 

to use both coal and graphite as fuels in early rocketry experiments but met with little success, largely because of the 

materials' high effective heats of vaporization [10]. In other efforts, Alexander Lippisch designed a ramjet burning 

granulated coal to power the P13A for the Luftwaffe during the Second World War. It is not clear if the plane was 

ever built, although a glider version was flight tested [11]. More recently, the possibility of using pulverized coal was 

briefly mentioned in a NASA report [12] and outlined in more detail in Ref. 13, where the results of combustion and 

regression rate testing are described. However, this work involved the use of a traditional, HTPB binder rather than a 

porous matrix, and the results were hindered by the formation of a surface char consisting of a mixture of HTPB and 

liquified coal. The authors felt that the char layer impeded the entrainment of coal particulates in the gas flow and 

degraded performance. This problem might be overcome by having the coal particulates discharge en masse into the 

flow from pockets in a printed matrix rather than being individually embedded in a binder.  

 

 
Fig. 1 Polymer matrix fuel grain. The one-inch diameter, single combustion port is in the 

center. Powdered, non-melting fuel is placed in the void spaces. 

 

A.  Grain Design and Fabrication 

 The grain design was developed in SolidWorks, and a stress/strain/displacement analysis was carried out to ensure 

that the cells did not prematurely rupture from the high pressure in the combustion chamber. This was performed 

assuming combustion pressures of 300, 500, and 1000 psia. Cell wall thicknesses were adjusted to maximize the 

powdered propellant volume, while maintaining structural integrity of the matrix. The CAD model was used to print 

the matrix in ABS at a layer thickness of 0.013 inches on a Fortus 250 MC FDM 3-D Printer at the University of 

Tennessee Knoxville. The grain was 25.4 cm in length by 6.2 cm in diameter, with a central port 2.54 cm in diameter. 

Approximately 50% of the matrix volume was void space, and 50% was ABS. The grain dimensions were chosen to 

be easily compatible with the existing thrust stand at the UT Knoxville Rocket Test Facility (described in the Appendix 

and in Reference 14). The void spaces ran the length of the grain to allow the powdered fuel materials to be packed 

into the matrix easily. Pulverized coal was obtained from the Tennessee Valley Authority in Knoxville. For other tests, 

commercially-sourced, powdered graphite was employed (General's Powdered Graphite). Petroleum coke was 

generously provided by the Oxbow Corporation and ground in house by our team members, producing a relatively 

non-uniform grain size. 
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B.  Thrust Stand Testing 

 Multiple live-fire tests were carried out, each under identical conditions except for the type of fuel. In each case, 

gaseous oxygen was used, regulated to a supply pressure of 800 psig and injected axially at the upstream end of the 

grain. Ignition was accomplished by means of three bundled commercial fireworks sparklers, lit using a 10 ohm, 1/4 

watt electrical resistor. All fuel grains had the same initial dimensions given previously for the printed matrix. The 

nozzle had a throat diameter of 0.5 inches and an area ratio of approximately 3.06. Run times were 4.6 seconds. 

Combustion pressures in these preliminary tests were very low and depended on the fuel in use, ranging from 

approximately 0.4 MPa to 0.7 MPa. Combustion pressure was not deliberately controlled but was a function of the 

fuel burn rate, coupled with the oxygen flow rate and throat diameter, with the latter two parameters consistent from 

run to run. Experimentally measured parameters included thrust, combustion chamber pressure, oxygen and fuel 

consumption, and oxygen supply pressure. Thrust was sampled at a rate of 100 HZ and smoothed using a 9-point 

running average.  

 Test results are summarized in Table 1. Oxygen consumption was reasonably consistent, with an average of 261.3 

gms and a standard deviation of 7.7 gms or 2.95%. Based on the initial port diameter, this gives an average oxygen 

flux of 11.2 gm/cm2/s. Some of the variation between runs is likely due to differences in the mass of oxygen supplied. 

This is supported by the two polypropylene data sets, where the case with a higher mass of supplied oxygen has a 

nearly proportional increase in total impulse. However, despite this minor inconsistency in the supplied 

oxygen mass, the trends are clear, and, overall, the printed matrix grains produced significantly higher total impulse 

than any of the commercially-sourced, polymer grains.  

 Thrust vs time profiles are shown in Figure 2 for selected cases, focusing on ABS, printed ABS and matrix grains. 

The printed, solid ABS offered a modest improvement over the commercially-sourced material, while the matrices 

increased the total impulse from 17 to 45 percent. Unexpectedly, the empty matrix provided the best ISP and total 

impulse, although its low density would almost certainly make its use impractical. While the reason for the relatively 

weak performance of the coal/graphite mixture is unclear, video records seemed to indicate that in the case of the 

graphite/aluminum mixture, the aluminum may have melted and clumped, leading to incomplete combustion. The 

petcoke powder was not as fine as the graphite or coal and likely had a lower combustion efficiency, yielding a lower 

total impulse. 

 Unfortunately, in all of these preliminary matrix tests, a significant amount of unburned, powdered fuel was ejected 

from the motor as the oxygen was cutting off, making an accurate determination of the mass of fuel consumed, O:F 

ratio, specific impulse and C* impossible. Similarly, kerosene ran out of the engine after the burn was completed, so 

an accurate mass determination was not possible in that case either. These uncertain results are indicated in Table 1 

by question marks adjacent to the relevant numbers. Therefore, for these cases, the indicated specific impulse values 

represent a lower limit for the actual value achieved. This problem would not, however, be an issue if the fuel grain 

were allowed to burn completely, as would be expected in a flight vehicle. In many cases the O:F ratio seems to be 

significantly lower than ideal. However, in the case of the powdered fuels, it is not entirely clear, since the fuel mass 

is not known with any precision. 
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Fig. 2 Preliminary thrust - time profiles for selected fuel grains. All conditions are the same in 

each test, except for the fuel type. The percentage values indicate improvement in total impulse 

above that for the commercially-sourced, solid ABS grain. 
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III. Current Effort 

 The results of the previous work validate the concept, showing that powdered fuels encased in a 3-D printed, ABS 

matrix can provide significantly higher thrust and total impulse than traditional polymeric fuels under identical 

conditions. While encouraging, these preliminary results leave many questions unanswered, including the following: 

 

1) What are the actual, achieved values for specific impulse and C* for the various matrix-based fuels? 

 

2) What effect would higher combustion pressures have on the relative performance of the various fuels tested? Would 

the advantages of the pulverized fuels be maintained? 

 

3) Can the experimental O:F ratio be used effectively to adjust the grain length and achieve improved performance? 

 

4) Could satisfactory performance be achieved using a powder-filled matrix with a more flight friendly oxidizer such 

as nitrous oxide? 

 

5) Could a catalyst be used in a motor employing nitrous oxide as the oxidizer to decrease the activation energy of the 

nitrous decomposition and thereby speed reaction rates and improve combustion efficiency? If so, what is the best 

approach to implement the catalyst? Significant work has previously been done on this topic at the University of 

Surrey, but difficulties were encountered with high temperature degradation of the catalyst materials [14]. 

 

6) What is the ideal design for an enclosing matrix? Are less expensive alternatives available to be used in lieu of the 

3-D printed matrix tested in this study? 

 

7) Would the addition of a post combustion chamber just upstream of the nozzle improve performance? 

 

8) What is the optimal method to achieve proper mixing of the powdered fuel and oxygen? 

 

A. Modified Polymer Matrix 

 To address the first of these questions, the matrix shown in Figure 3 was designed. This configuration allows all 

of the powdered fuel to be consumed prior to engine cutoff, without a risk of exposing the walls of the pressure vessel 

to hot combustion products. As a result, a more accurate determination can be made of the mass of fuel consumed, 

thereby permitting a true assessment of ISP, C* and O:F ratio.  

 

 
Fig. 3 ABS matrix designed to consume all the powdered fuel and allow a more accurate 

determination of C*, O:F ratio, and specific impulse. 

 

Testing was carried out using this matrix filled with powdered graphite. The burn duration was 4.6 seconds, the 

gaseous oxygen was regulated to a supply pressure of 1000 psi and injected not axially but with a vortex head-end, 

vortex injector. The oxidizer flow pattern can be appreciated in Figure 4, taken during motor shutdown using a 
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Plexiglas grain. The nozzle throat diameter was 1.02 cm. Experimental results for the modified polymer grain with 

graphite infill are shown in Table 2. 

 

 
Fig. 4 Vortex flow pattern from head end injection of gaseous oxygen. 

 

 
 

These results indicate that the low O:F ratios found in the preliminary testing (Table 1) were not due entirely to the 

loss of unburned, powdered fuel at engine shutdown. This seems to imply that virtually all of the oxidizer is consumed 

in the upstream portion of the combustion chamber, and fuel from the downstream portion is eroded from the walls 

but does not react. As a result, a shorter fuel grain (60% of the previous length) has been fabricated.  

 Initial testing of the shorter fuel grain showed much improvement in the O:F ratio following an identical burn time 

of 4.6 seconds, vortex-injected oxygen at a supply pressure of 1000 psi, and nozzle as in the previous full-length fuel 

grain test. Results for this polymer grain with graphite infill are shown in Table 3. 

 

 
 

While these results do show an improvement over the low O:F ratio of the original fuel grain, the shortened matrix 

overshot the optimal O:F ratio of approximately 1.75. This optimized value was determined by analysis of gaseous 

oxygen and ABS propellant with the heat of formation for ABS assumed to be 1097.4 kJ/kg [15]. Design and 

fabrication of a slightly increased fuel grain length (approximately 70% of the original length) is currently underway 

and will be tested in the near future as well as the addition of minor, varying percentages of powdered aluminum to 

the graphite infill. 
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B.  Future Development 

 Once these preliminary studies are completed, testing will be conducted with alternate matrix materials (injection 

moulded plastic, wax honeycomb, plastic honeycomb, etc). Furthermore, variation in the mixture of the powdered 

components implemented radially from the combustion port will be used (either with or without modulation of the 

oxidizer flow rate) to tailor the thrust profile to the specific needs of a potential mission. The use of such heterogeneous 

fuel blends will also be examined as a means to overcome another issue typical of hybrids, the shift in the O:F ratio 

over the course of a single burn. 
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Appendix 

Background and Test Facilities 

The University of Tennessee Knoxville has carried out hybrid rocket research since 1999. The on- campus test facility 

includes a covered concrete pad and steel frame thrust stand, storage facility, a sand-filled blast wall, pressure and 

force instrumentation, video monitoring equipment, solar power, and buried data and video feed cables leading to an 

18,000 lb concrete bunker. This facility has been used for several NASA- sponsored projects and has handled a range 

of propellants including liquid and gaseous oxygen, nitrous oxide, paraffin, kerosene, beeswax, ABS, PMMA, 

polypropylene, etc.  
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