81 research outputs found

    Impact of gas hardening on the population properties of hierarchical black hole mergers in AGN disks

    Full text link
    Hierarchical black hole (BH) mergers in active galactic nuclei (AGNs) are unique among formation channels of binary black holes (BBHs) because they are likely associated with electromagnetic counterparts and can efficiently lead to the mass growth of BHs. Here, we explore the impact of gas accretion and migration traps on the evolution of BBHs in AGNs. We have developed a new fast semi-analytic model, which allows us to explore the parameter space while capturing the main physical processes involved. We find that effective exchange of energy and angular momentum between the BBH and the surrounding gas (hereafter, gas hardening) during inspiral greatly enhances the efficiency of hierarchical mergers, leading to the formation of intermediate-mass BHs (up to 10.000 solar masses) and triggering spin alignment. Moreover, our models with efficient gas hardening show both an anti-correlation between BBH mass ratio and effective spin, and a correlation between primary BH mass and effective spin. In contrast, if gas hardening is inefficient, the hierarchical merger chain is already truncated after the first two or three generations. We compare the BBH population in AGNs with other dynamical channels as well as isolated binary evolution.Comment: 21 pages, 15 figures, submitted to A&A, comments welcom

    Heat treatment cycle optimization for A707L5 copper-nickel steel

    Get PDF
    The mechanical properties of the A707L5 steel grade were studied as a function of the applied aging temperature. The results obtained are discussed on the basis of the microstructure analysis and precipitates were identified on the fracture surfaces observed by scanning electron microscopy assisted by a field emission gun (FEG-SEM). This steel grade appears to be particularly sensitive to the aging time-temperature, which significantly affected the precipitation phenomena. The annealing temperature and solution quenching involved in the thermal cycle significantly affect the perlite formation, the grain size and the ε-Cu precipitates that represent the main factors of influence ruling the mechanical properties

    A Machine Learning Approach for Mortality Prediction in COVID-19 Pneumonia: Development and Evaluation of the Piacenza Score

    Get PDF
    Background: Several models have been developed to predict mortality in patients with COVID-19 pneumonia, but only a few have demonstrated enough discriminatory capacity. Machine learning algorithms represent a novel approach for the data-driven prediction of clinical outcomes with advantages over statistical modeling.Objective: We aimed to develop a machine learning-based score-the Piacenza score-for 30-day mortality prediction in patients with COVID-19 pneumonia.Methods: The study comprised 852 patients with COVID-19 pneumonia, admitted to the Guglielmo da Saliceto Hospital in Italy from February to November 2020. Patients' medical history, demographics, and clinical data were collected using an electronic health record. The overall patient data set was randomly split into derivation and test cohorts. The score was obtained through the naive Bayes classifier and externally validated on 86 patients admitted to Centro Cardiologico Monzino (Italy) in February 2020. Using a forward-search algorithm, 6 features were identified: age, mean corpuscular hemoglobin concentration, PaO2/FiO(2) ratio, temperature, previous stroke, and gender. The Brier index was used to evaluate the ability of the machine learning model to stratify and predict the observed outcomes. A user-friendly website was designed and developed to enable fast and easy use of the tool by physicians. Regarding the customization properties of the Piacenza score, we added a tailored version of the algorithm to the website, which enables an optimized computation of the mortality risk score for a patient when some of the variables used by the Piacenza score are not available. In this case, the naive Bayes classifier is retrained over the same derivation cohort but using a different set of patient characteristics. We also compared the Piacenza score with the 4C score and with a naive Bayes algorithm with 14 features chosen a priori.Results: The Piacenza score exhibited an area under the receiver operating characteristic curve (AUC) of 0.78 (95% CI 0.74-0.84, Brier score=0.19) in the internal validation cohort and 0.79 (95% CI 0.68-0.89, Brier score=0.16) in the external validation cohort, showing a comparable accuracy with respect to the 4C score and to the naive Bayes model with a priori chosen features; this achieved an AUC of 0.78 (95% CI 0.73-0.83, Brier score=0.26) and 0.80 (95% CI 0.75-0.86, Brier score=0.17), respectively.Conclusions: Our findings demonstrated that a customizable machine learning-based score with a purely data-driven selection of features is feasible and effective for the prediction of mortality among patients with COVID-19 pneumonia

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Measurement of the W boson polarisation in ttˉt\bar{t} events from pp collisions at s\sqrt{s} = 8 TeV in the lepton + jets channel with ATLAS

    Get PDF

    Measurements of top-quark pair differential cross-sections in the eμe\mu channel in pppp collisions at s=13\sqrt{s} = 13 TeV using the ATLAS detector

    Get PDF

    Search for dark matter in association with a Higgs boson decaying to bb-quarks in pppp collisions at s=13\sqrt s=13 TeV with the ATLAS detector

    Get PDF

    Measurement of the charge asymmetry in top-quark pair production in the lepton-plus-jets final state in pp collision data at s=8TeV\sqrt{s}=8\,\mathrm TeV{} with the ATLAS detector

    Get PDF

    Charged-particle distributions at low transverse momentum in s=13\sqrt{s} = 13 TeV pppp interactions measured with the ATLAS detector at the LHC

    Get PDF

    Search for single production of vector-like quarks decaying into Wb in pp collisions at s=8\sqrt{s} = 8 TeV with the ATLAS detector

    Get PDF
    corecore