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Abstract

Background: Several models have been developed to predict mortality in patients with COVID-19 pneumonia, but only a few
have demonstrated enough discriminatory capacity. Machine learning algorithms represent a novel approach for the data-driven
prediction of clinical outcomes with advantages over statistical modeling.

Objective: We aimed to develop a machine learning–based score—the Piacenza score—for 30-day mortality prediction in
patients with COVID-19 pneumonia.

Methods: The study comprised 852 patients with COVID-19 pneumonia, admitted to the Guglielmo da Saliceto Hospital in
Italy from February to November 2020. Patients’ medical history, demographics, and clinical data were collected using an
electronic health record. The overall patient data set was randomly split into derivation and test cohorts. The score was obtained
through the naïve Bayes classifier and externally validated on 86 patients admitted to Centro Cardiologico Monzino (Italy) in
February 2020. Using a forward-search algorithm, 6 features were identified: age, mean corpuscular hemoglobin concentration,
PaO2/FiO2 ratio, temperature, previous stroke, and gender. The Brier index was used to evaluate the ability of the machine learning
model to stratify and predict the observed outcomes. A user-friendly website was designed and developed to enable fast and easy
use of the tool by physicians. Regarding the customization properties of the Piacenza score, we added a tailored version of the
algorithm to the website, which enables an optimized computation of the mortality risk score for a patient when some of the
variables used by the Piacenza score are not available. In this case, the naïve Bayes classifier is retrained over the same derivation
cohort but using a different set of patient characteristics. We also compared the Piacenza score with the 4C score and with a naïve
Bayes algorithm with 14 features chosen a priori.
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Results: The Piacenza score exhibited an area under the receiver operating characteristic curve (AUC) of 0.78 (95% CI 0.74-0.84,
Brier score=0.19) in the internal validation cohort and 0.79 (95% CI 0.68-0.89, Brier score=0.16) in the external validation cohort,
showing a comparable accuracy with respect to the 4C score and to the naïve Bayes model with a priori chosen features; this
achieved an AUC of 0.78 (95% CI 0.73-0.83, Brier score=0.26) and 0.80 (95% CI 0.75-0.86, Brier score=0.17), respectively.

Conclusions: Our findings demonstrated that a customizable machine learning–based score with a purely data-driven selection
of features is feasible and effective for the prediction of mortality among patients with COVID-19 pneumonia.

(J Med Internet Res 2021;23(5):e29058) doi: 10.2196/29058
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Introduction

Despite measureless efforts to limit the spread of COVID-19,
over 100 million people have been confirmed positive for
SARS-CoV-2 infection and more than 2 million people have
died from the virus worldwide, as of February 10, 2021 [1].
While these numbers are rapidly increasing day by day, hospitals
have been receiving requests beyond capacity and face extreme
challenges concerning a sharp increase in the demand for
medical resources as well as a shortage of hospital beds and
critical care equipment for the timely treatment of ill patients.
Additionally, the clinical spectrum of SARS-CoV-2 infections
ranges from asymptomatic status to severe viral pneumonia
with respiratory failure and even death, making reliable and
successful patient triaging challenging [2].

Data from epidemiological studies suggest that severe illness
occurs in approximately 20% of patients and that older age,
coexisting medical conditions, and cardiovascular risk factors
are associated with worse prognosis [3,4]. In this scenario,
identification of the key patient variables driving COVID-19
prognosis is of paramount importance to assist physicians in
the early prediction of the pathology trajectory and to improve
patient outcomes.

To date, several prognostic models combining clinical and
laboratory parameters have been proposed, but they included
mainly patients from the first wave of the COVID-19 pandemic.
This may cause a risk of bias, making these models unsuitable
for clinical decision in daily practice [5,6].

The increasing use of electronic health record (EHR) systems
has increased the availability of a large amount of data suitable
for machine learning analysis. The latter has already proven its
potential to support clinical decisions in many medical fields,
including the COVID-19 pandemic [7,8]. Therefore, the aim of
this study was to develop and validate a new scoring
technique—the Piacenza score—to predict the prognosis of
COVID-19 pneumonia, based on a machine learning technique
with a purely data-driven selection of prognostic features
collected at hospital admission.

We hypothesized that a machine learning score based on
data-driven selection of features, which is different from
inference statistics, could capture nonlinear relationships among
clinical features without human-biased intervention and predict
mortality for individual patients more accurately than the
currently available risk scores.

Methods

Population and Collected Data
The study was conducted at Guglielmo da Saliceto Hospital,
which serves a population of about 300,000 people in the area
of Piacenza, Emilia Romagna, in northern Italy. This region has
the second highest number of COVID-19 deaths in the country
(6219 as of December 7, 2020).

This study retrospectively analyzed the EHRs of a cohort of
852 patients diagnosed with COVID-19 pneumonia according
to the World Health Organization interim guidance and admitted
to the hospital from February to November 2020. COVID-19
infection was diagnosed by a positive result on a reverse
transcriptase–polymerase chain reaction (RT-PCR) assay of a
specimen collected on a nasopharyngeal swab. Pregnant women,
children (<18 years), and patients with a negative RT-PCR assay
were excluded from the study as well as patients presenting
with shock and coma.

Data collected in the EHR included patients’ demographic
information, comorbidities, triage vitals, and laboratory tests
and outcomes (including length of stay, discharge, readmission,
and mortality). Routine blood examinations at admission
comprised complete blood count, coagulation profile, and serum
biochemical tests (including renal and liver function, creatine
kinase, lactate dehydrogenase, electrolytes, and C-reactive
protein). A total of 62 patient characteristics were considered
in the score design and development. The study protocol was
approved by the local committee on human research.

Criteria for Discharge and Outcome
The criteria for discharge were at the discretion of the caregiver
physician. In most cases, the criteria encompassed absence of
fever for at least 3 days, as well as substantial clinical
improvement including clinical remission of symptoms and 2
throat-swab samples negative for SARS-CoV-2 RNA obtained
at least 24 hours apart. The primary outcome was 30-day
in-hospital mortality.

Piacenza Score Design
The Piacenza score is a machine learning–based COVID-19
mortality risk predictor. It was implemented using a naïve Bayes
approach, which is a probabilistic classifier describing the
dependence from the outcome of each variable characterizing
the patient, taken separately from the others. The naïve Bayes
algorithm was chosen due to the following advantages: (1) it
provides a probability of the final outcome, which thus
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represents the mortality risk; (2) it can handle both categorical
and continuous features; and (3) it can handle missing values,
thus providing a mortality risk even when all variable inputs
for a patient are not available. Moreover, it proved a successful
approach in predicting clinical outcomes in several medical
scenarios [9,10]. Other key advantages of using a naïve Bayes
classifier are its easy implementation, computational efficiency,
optimal scaling performance, and the fact that it achieves good
results even in small data sets. Furthermore, it is not influenced
by irrelevant features or outliers.

Its major limitation stands in the assumption at the core of the
method: features independence. Even if this assumption is
almost never satisfied, the classifier proved to reach reasonable
results in many scenarios, especially in text classification.
Another drawback of naïve Bayes is that if a categorical feature
presents a value in the test data set, which was not observed in
the training data set, then the model will be unable to make a
prediction. Nevertheless, this issue can be solved with various
smoothing techniques. Patients missing some features can be
easily handled. In fact, only the features’ probability
distributions need to be computed in training a naïve Bayes
classifier. Thus, no imputation was performed and all patients
were included in the training phase, since not all missing data
were considered for every feature. Furthermore, when applying
the trained model to make inferences, the final user can insert
missing data, still obtaining a reliable result.

Derivation and Test Cohorts
The EHRs of 852 patients were randomly split into derivation
(70%) and test (30%) cohorts. The derivation cohort was first
used to select, among the considered 62 patient features, the
most significant ones, and then to train the naïve Bayes classifier
using only the best predictors, while the predictive ability of
the estimated model was assessed on the test cohort.

Piacenza Score Development, Optimization, and
Identification of Variable Importance
The Piacenza score has been developed and tailored to (1)
minimize the number of clinical variables to be ingested and
(2) to maximize the overall prediction performance (ie, in terms
of maximization of the area under the receiver operating
characteristic curve [AUC]) and patient stratification ability.
The most significant patient features were identified through
the so-called forward-search approach [11].

The forward-search approach is a purely data-driven
dimensionality reduction technique that is able to identify, given
a large set of input features, the minimum combination of those
features, which maximizes the performance metrics associated
with a machine learning algorithm. The forward-search approach
was employed here to reduce the number of patient variables
from 62 to the 6 most relevant ones used to train the naïve Bayes
classifier.

Piacenza Score Evaluation and Metrics
The test cohort was used to assess the performance of the
Piacenza score. In order to increase the statistical significance
of the results, bootstrapping was used to randomly generate 100
test sets from the original test cohort. Moreover, an external

validation cohort has been considered to further validate the
Piacenza score performance. The external validation cohort
consisted of data from 86 patients with COVID-19 enrolled at
Centro Cardiologico Monzino Hospital (Milan, Italy).

The performance of Piacenza score was evaluated in terms of
discrimination and calibration capabilities. The discrimination
ability was determined by computing the receiver operating
characteristic (ROC) curve on the test cohort and the associated
AUC, together with its 95% CI. As additional metrics, the
negative predictive value (NPV), the positive predictive value
(PPV), the accuracy, the sensitivity, the specificity, and the F1
and F2 scores were computed. These metrics were calculated
for a threshold value obtained by maximizing the F2 score. The
calibration ability was derived by the so-called calibration plots,
which compare observed and predicted outcomes with associated
uncertainties. The Brier index was used to evaluate the ability
of machine learning to stratify and predict observed outcomes.
The Brier index is defined as the mean-squared difference
between the observed and predicted outcomes and ranges from
0 to 1, with 0 representing the best calibration.

Finally, the variable relative importance was quantified for the
identified 6 most relevant patient features. The relative
importance is a comparative measure of the patient feature’s
weight in determining the Piacenza risk score.

Usability, Flexibility, and Customization
The Piacenza score was specifically designed to be an easy,
fast, versatile, fair, open, and user-friendly tool. To reach this
goal, a web-based calculator of the score, via a website, was
released [12]. This calculator can be used by clinicians to
estimate a hospitalized patient’s risk of 30-day mortality.

We added a tailored version of the algorithm to the website,
which enables an optimized computation of the mortality risk
score for a patient even when some variables used by the
Piacenza score are not available. In this case, the naïve Bayes
classifier is retrained over the same derivation cohort but using
a different set of patient characteristics. Moreover, a second
naïve Bayes model has been presented as a possible example
of the Piacenza score’s customization and flexibility. The
above-mentioned model has been trained with the following 14
variables, chosen a priori by the physician for their association
with mortality in COVID-19 pneumonia: age, gender, diabetes,
length of symptoms before hospital admission, systolic blood
pressure, respiratory rate, PaO2/FiO2 ratio, platelets and
eosinophils count, neutrophil-to-lymphocyte ratio, C-reactive
protein, direct bilirubin, creatinine, and lactate dehydrogenase.
Finally, we compared the performance of the Piacenza score
with the above-mentioned “clinical” naïve Bayes classifier to
show the flexibility of the method, which can be easily retrained
with another subset of predictors.

Website Design and Development
The website has been developed in Python (Python Software
Foundation), using the Flask framework, and Hosting is
managed through Docker.

The site consists of three main pages: Home, Custom Analysis,
and Multiple Analysis. The Home and the Custom Analysis
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pages require submitting a form that is dynamically composed
in the backend through a Python dictionary variable. This allows
us to easily change the form without changing the HTML code.
The current dictionary contains the following fields
characterizing the features: name, type (continuous or binary),
measurement unit, information for the user, value, and
mandatory flag.

On the Home page, once a form is submitted, the backend
receives and sends the parsed data to the previously trained
naïve Bayes classifier, which computes the mortality risk that
is visualized on the website, typically in less than 1 second. On
the Custom Analysis page, once a form is submitted and parsed,
a naïve Bayes classifier is trained using only the specified
features. Since the overall training process may be
time-consuming as it also performs feature selection, the final
results are automatically sent to the email address specified by
the user after completing the training. The Multiple Analysis
page allows users to compute mortality risks for many patients,
without the need to manually fill in a form for every single
patient. Clinicians are requested to submit a CSV
(comma-separated values) file containing the values of the 6
features characterizing the Piacenza score. An example of the
structure of a CSV file is provided on the website.

Comparison With Conventional Risk Models
To further assess the performance of the Piacenza score, we
compared it with the 4C mortality score, which considers the
following predictors: age, gender, number of comorbidities,
respiratory rate, peripheral oxygen saturation (sO2), level of
consciousness (Glasgow coma scale), urea level, and C-reactive
protein. The same test cohort used to test the Piacenza score
was employed.

Statistical Analysis
Categorical variables were reported as count (%) and continuous
variables as mean (SD). A two-sided P value <.05 was
considered statistically significant. We used the Fisher exact

test to assess differences between binary variables and the Welch
two-sample t test to assess differences between continuous
variables. The overall implementation of all codes for the
machine learning score and analysis tools was performed in the
Python 3.7.4 environment. The Python libraries employed were
pandas (for data set management), NumPy (for numerical
computations), and sklearn (for data set preprocessing; eg, data
set splitting). The naïve Bayes classifier at the core of the
Piacenza score was manually implemented (without any
additional machine learning framework used) since an existing
algorithm for naïve Bayes classification dealing both with
continuous and categorical variables as well as missing data
was not available in the sklearn library. The forward-search
algorithm for feature selection was also manually implemented.

Results

Patient Characteristics and Events
A total of 852 patients with SARS-CoV-2 pneumonia were
hospitalized during the study period, of which 242 (28%) were
admitted to the intensive care unit (ICU). The mean age of the
patients was 70 (SD 14) years, and 599 (70%) were male.
Comorbidities were present in 602 patients (71%): mainly
arterial hypertension (n=499, 59%), dyslipidemia (n=205, 24%),
and diabetes (n=157, 18%). The mean time between onset of
symptoms and hospital admission was 6.5 (SD 3.9) days. Fever
(n=776, 91%), dyspnea (n=543, 64%), and cough (n=400, 47%)
were the most common symptoms at admission. A total of 293
patients (34%) died within 30 days after hospital admission.
The median time from hospital admission to discharge or death
was 9 days. A comparison of clinical characteristics between
survivors and nonsurvivors showed that the latter were older
(P<.001) and had a higher prevalence of hypertension and
cerebrovascular disease (P<.001); longer symptom duration
(P<.001); higher respiratory rate (P<.001); and lower SpO2

(P<.001), PaO2/FiO2 ratio (P<.001), and systolic blood pressure
at admission (P=.02) (Table 1).
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Table 1. Study population characteristics and a comparison of survivors and nonsurvivors.

P valueaDeceased patients (n=293)Patients discharged alive (n=559)All patients (N=852)Characteristic

.30213 (73)386 (69)599 (70)Gender (male), n (%)

.00178 (10)65 (14)70 (14)Age (years), mean (SD)

.001238 (81)364 (65)602 (71)Comorbidities, n (%)

.001205 (70)294 (53)499 (59)Hypertension

.00551 (17)58 (10)109 (13)Atrial fibrillation

.0754 (18)76 (14)130 (15)Chronic obstructive pulmonary disease

.6773 (25)132 (24)205 (24)Dyslipidemia

.0733 (11)42 (8)75 (9)Chronic kidney disease

.0267 (23)90 (16)157 (18)Diabetes

.2227 (9)38 (7)65 (8)Cancer

.00119 (6)9 (2)28 (3)Stroke

.239 (3)10 (2)19 (2)Peripheral artery disease

.2638 (13)58 (10)96 (11)Coronary artery disease

Symptoms

.0016.27 (4.16)6.71 (3.79)6.54 (3.94)Time from symptom onset to admis-
sion, mean (SD)

.32263(90)513(92)776 (91)Fever, n (%)

.002225(77)317(57)543 (64)Dyspnea, n (%)

.18120 (41)280 (50)400 (47)Cough, n (%)

.3256 (19)118 (21)174 (20)Fatigue, n (%)

.0511(4)66 (12)77 (9)Diarrhea, n (%)

.187 (2)36 (6.5)43 (5)Syncope, n (%)

Baseline clinical findings, mean (SD)

.001196.54 (92.70)270.54 (83.82)225.93 (96.34)PaO2/FiO2 ratio

.357.45 (0.07)7.46 (0.07)7.45 (0.07)pH

.7160.56 (20.54)59.68 (15.94)60.16 (18.58)PaO2

.6236.05 (11.58)35.36 (8.52)35.75 (10.37)PaCO2

.2324.81 (3.97)26.22 (9.12)25.43 (6.78)HCO3

aP value refers to either the Student t test or the chi-square test. Italicized values are significant.

Major laboratory markers were tracked upon admission.
Specifically, lactate dehydrogenase, creatine kinase,
cholinesterase, creatinine, and glycemia were significantly
higher in nonsurvivors than survivors (P<.001). Nonsurvivors
had a significantly lower lymphocyte and eosinophil percentage
and red blood cell count as well as lower hemoglobin, mean
corpuscular hemoglobin concentration (MCHC), and hematocrit

values (P<.001). Furthermore, nonsurvivors showed
significantly higher levels of inflammatory biomarkers such as
neutrophil count, C-reactive protein, and
neutrophil-to-lymphocyte ratio (P<.001). Other differences in
laboratory findings among the two groups are summarized in
Table 2.
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Table 2. Laboratory findings upon admission for the overall study sample and a comparison of survivors and nonsurvivors.

P valueaDeceased patients (n=293),
mean (SD)

Patients discharged alive (n=559),
mean (SD)

All patients (N=852), mean
(SD)

Laboratory parameter

.001159 (76)137 (59)145 (66)Glucose (mg/dl)

.00176 (54)47 (24)57 (40)Urea (mg/dl)

.0011.59 (1.27)1.06 (0.54)1.24 (0.90)Creatinine (mg/dl)

.24137 (7)137 (8)137 (8)Sodium (mEq/l)

.044.24 (0.65)4.14 (0.49)4.17 (0.55)Potassium (mEq/l)

.02100.05 (7.17)98.84 (7.19)99.26 (7.21)Chloride (mEq/l)

.020.82 (0.66)0.72 (0.35)0.75 (0.48)Total bilirubin (mg/dl)

.310.25 (0.37)0.21 (0.69)0.22 (0.60)Direct bilirubin (mg/dl)

.00479 (136)53 (37)61 (84)ASTb (U/L)

.9048 (103)47 (44)48 (70)ALTc (U/L)

.001509 (292)391 (160)430 (220)LDHd (U/L)

.001429 (932)231 (387)300 (637)Creatine kinase (U/L)

.0180 (63)69 (37)73 (48)Amylase (U/L)

.0656 (105)43 (46)47 (72)Lipase (U/L)

.0015576 (1812)6674 (1763)6275 (1858)Serum cholinesterase (U/L)

.028.63 (4.56)7.86 (4.72)8.12 (4.68)WBCe × 103/µl

.0014.51 (0.77)4.79 (0.68)4.69 (0.72)RBCf × 106/µl

.00113.14 (2.16)13.83 (1.72)13.59 (1.91)Hemoglobin (g/dl)

.00140.83 (6.22)42.37 (5.34)41.84 (5.70)Hematocrit (%)

.00390.80 (8.19)89.18 (5.62)89.74 (6.66)MCVg (fl)

.2329.28 (2.80)29.05 (2.12)29.13 (2.38)MCHh (pg)

.00132.17 (1.66)32.56 (1.15)32.43 (1.36)MCHCi (g/dl)

.22211.41 (97.72)221.08 (127.10)217.75 (117.90)Platelets × 103/µl

.00114.29 (1.99)13.27 (0.27)13.65 (1.65)RDWj (%)

.00180.56 (10.55)75.81 (11.75)77.45 (11.57)Neutrophils (%)

.00112.67 (8.15)16.48 (9.45)15.17 (9.20)Lymphocytes (%)

.026.36 (4.76)7.16 (4.01)6.89 (4.30)Monocytes (%)

.0010.20 (0.54)0.38 (1.05)0.32 (0.91)Eosinophils (%)

.030.98 (1.09)1.15 (0.94)1.09 (0.99)Lymphocytes × 103/µl

.770.51 (0.51)0.52 (0.35)0.51 (0.41)Monocytes × 103/µl

.040.02 (0.05)0.03 (0.08)0.02 (0.07)Eosinophils × 103/µl

.0017.11 (4.15)6.05 (3.41)6.41 (3.72)Neutrophils × 103/µl

.0217.03 (11.11)15.07 (5.83)15.84 (8.38)PTk (seconds)

.00966.27 (17.82)69.86 (14.38)68.40 (15.96)Prothrombin activity (%)

.011.51 (0.93)1.34 (0.65)1.40 (0.76)INRl

.0832.29 (7.22)31.32 (4.48)31.70 (5.74)PTTm (seconds)

.061.04 (0.25)1.00 (0.14)1.02 (0.19)PTT ratio

.00113.74 (9.17)9.85 (7.88)11.19 (8.55)C-reactive protein (mg/dl)
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P valueaDeceased patients (n=293),
mean (SD)

Patients discharged alive (n=559),
mean (SD)

All patients (N=852), mean
(SD)

Laboratory parameter

.00110.27 (8.68)6.78 (5.04)7.99 (6.74)NLRn

aP value refers to either the Student t test or the chi-square test. Italicized values are significant.
bAST: aspartate aminotransferase.
cALT: alanine aminotransferase.
dLDH: lactate dehydrogenase.
eWBC: white blood cell count.
fRBC: red blood cell count.
gMCV: mean corpuscular volume.
hMCH: mean corpuscular hemoglobin.
iMCHC: mean corpuscular hemoglobin concentration.
jRDW: red cell distribution width.
kPT: prothrombin time.
lINR: international normalized ratio.
mPTT: partial thromboplastin time.
nNLR: neutrophil-to-lymphocyte ratio.

Significant Predictors and the Piacenza Score
Using the forward-search algorithm, the following 6 most
important predictors at hospital admission were identified and
used to compute the Piacenza score: age, MCHC, PaO2/FiO2

ratio, temperature, previous cerebrovascular stroke, and gender.

The median of the ROC curve over 100 test cohorts (generated
through bootstrapping) is reported in Figure 1. The
corresponding median of the AUC is equal to 0.78 (95% CI
0.74-0.84) with a sensitivity of 94% and specificity of 37%.

The NPV of the Piacenza score was 93% with a PPV of 40%
(Table 3).

The calibration plot of the Piacenza score over the range of risk
showed a Brier score of 0.19. The risk deciles are grouped into
three levels: low risk (first to fifth deciles), intermediate risk
(sixth to eighth deciles), and high risk (ninth and tenth deciles).
A gradual and progressive increase in absolute event rates was
observed across risk classes for all the Piacenza scores (death:
14% [18/125] in low-risk deciles vs 36% [27/75] in
intermediate-risk deciles vs 66% [33/50] in high-risk deciles).

Figure 1. (A) Receiver operating characteristic (ROC) curves obtained by evaluating the Piacenza score (red curve) on the test cohort and on the
external validation cohort. (B) ROC curves obtained by evaluating the Piacenza score (red curve) and the naïve Bayes (NB) model trained with 14
manually chosen features (green curve). AUC: area under the ROC curve.
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Table 3. Negative predictive value (NPV), positive predictive value (PPV; or precision), accuracy, sensitivity (or recall), specificity, F1 score, and F2
score for all scores. These metrics have been calculated for a specific threshold value on the final risk score probability chosen by maximizing the F2
score, the reason being that F2 privileges a high recall and therefore a broader confidence for correctly identifying patients at risk.

F2 scoreF1 scoreSpecificitySensitivityAccuracyPPVNPVThresholdScores

0.740.560.370.940.550.400.930.16Piacenza score

0.720.530.440.950.570.370.970.16Piacenza score–external
validation

0.780.670.550.880.670.540.880.04Naïve Bayes model
trained with 14 manually
chosen features

0.760.560.340.990.530.390.980.124C mortality score

From the computed calibration plot, we can observe that the
mortality risk is underestimated only in the first few deciles,
while in the higher deciles the risk is slightly overestimated
(Figure 2A-D).

Regarding the relative importance of each features independent
from the others, age was the most important feature to predict
death followed by MCHC, PaO2/FiO2 ratio, previous
cerebrovascular stroke, gender, and temperature (Figure 3).

Figure 2. Risk of observed death according to deciles of event probability based on the Piacenza score (A), the Piacenza score on the external validation
data set (B), and the naïve Bayes (NB) model trained with 14 manually chosen features (C). For every single case, the corresponding calibration plots
with standard deviations calculated over the deciles are also shown below each respective graph (D, E, and F).
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Figure 3. Radar plot for the 6 Piacenza score predictors of death and for the 14 manually chosen features, showing their relative importance. Feature
importance is scaled with respect to the most important feature. NB: naïve Bayes, MCHC: mean corpuscular hemoglobin concentration, CRP: C-reactive
protein, LDH: lactate dehydrogenase, NLR: neutrophil-to-lymphocyte ratio, P/F: PaO2/FiO2, RR: respiratory rate, SBP: systolic blood pressure.

External Validation
The corresponding median of the AUC in the external validation
cohort was 0.79 (95% CI 0.68-0.89) with a Brier score of 0.16
(Figure 1A), a sensitivity of 95%, and a specificity of 44%
(Table 3).

The calibration plot is reported in Figure 2B and showed again
a gradual and progressive increase in absolute event rates across
risk classes (death: 10% [4/40] in low-risk deciles vs 29% [7/24]
in intermediate-risk deciles vs 38% [6/16] in high-risk deciles).

Comparison With the 4C Mortality Score and the
Naïve Bayes Model Using Manually Chosen Features
The median of the AUC was 0.78 (95% CI 0.73-0.83) with a
sensitivity of 99% and specificity of 34% for the 4C score when
evaluated on the test cohort. The corresponding Brier score was
equal to 0.26 (Figure 4). The naïve Bayes model with 14 features
chosen manually based on clinician experience achieved an
AUC of 0.80 (95% CI 0.75-0.86) with a sensitivity of 88%, a
specificity of 55%, and a Brier score of 0.17 (Figure 1B). The
detailed performance metrics of both scores are reported in
Table 3. The relative importance of the selected 14 features of
the naïve Bayes model is shown on the radar plot in Figure 3.

Figure 4. Performance of the 4C mortality score (both in terms of discrimination and calibration abilities) calculated on the test cohort. ROC: receiver
operating characteristic, AUC: area under the ROC curve.

The observed mortality increased gradually and progressively
for the naïve Bayes model with manually chosen
features—death: 14% (17/125) in low-risk deciles vs 32%
(14/75) in intermediate-risk deciles vs 72% (36/50) in high-risk
deciles. This was not observed for the 4C score—death: 33%
(41/125) in low-risk deciles vs 31% (23/75) in intermediate-risk

deciles vs 36% (18/50) in high-risk deciles. Both scores achieved
a satisfactory patient stratification only in the last three deciles
whereas the 4C mortality score overestimated the prediction in
the high-risk deciles and underestimated it in the low-risk ones
(Figures 2C-4).
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Discussion

Principal Findings
In this study, we developed and validated a machine
learning–based risk score—the Piacenza score—to predict
mortality risk among hospitalized patients with COVID-19
pneumonia. This score is based on only 6 variables that are
readily available at hospital admission.

Satisfactory performance, measured in terms of AUCs in both
the testing and external validation cohorts, was achieved with
excellent patient stratification. More specifically, the Piacenza
score showed a higher sensitivity with a lower specificity.
Likewise, it underestimated the mortality risk in the first three
risk deciles; slight overestimation occurred in the other deciles.
This behavior is acceptable and preferred in an acute setting
since the score has been designed as a screening predictive tool
capable of correctly identifying patients at low risk from those
at high risk of mortality.

In crowded hospitals, and with shortages of medical resources,
this simple model can help to quickly prioritize patients: if the
patient’s estimated risk is low, the clinician may choose to
monitor the patient, whereas a high-risk estimate might support
aggressive treatment or admission to the ICU. Data from China,
Europe, and the United States reported a hospitalization rate of
20% to 31%, an ICU admission rates from 17% to 35%, and an
in-hospital mortality rate between 15% and 40% [13]. In our
study, the in-hospital 30-day mortality rate was 34% with lower
survival rates for older patients with pre-existing comorbidities
and with clinical signs and symptoms suggesting respiratory
failure at hospital admission. In line with previous findings, we
found that the most common laboratory abnormalities among
patients who died were related to the inflammatory process,
renal and liver damage, and procoagulation status [14,15].

In the presence of a large number of patients requiring intensive
care and threatening to overwhelm health care systems around
the world, several models to predict survival and guide clinical
decisions in COVID-19 pneumonia were developed [16].
However, many of these models have been found to have a high
risk of bias, which could reflect their development based on a
small study population with high risk of overfitting and poor
generalization properties to new cohorts, and without clear
details of model derivation and testing [6].

The recent spread of artificial intelligence has brought novel
ways to combat current global pandemics by collecting and
analyzing large amounts of data, identifying trends, stratifying
patients on the basis of risk, and proposing solutions at the
population level instead of at the single individual level [17,18].

Comparison With Other Risk Stratification Scores
During the COVID-19 pandemic, machine learning approaches
have been used to predict the outbreak, to diagnose the disease,
to analyze chest x-ray and CT (computed tomography) scan
images, and more recently to predict mortality or progression
risk to severe respiratory failure [19,20].

Yuan and colleagues [21] developed a simple prognostic risk
score based on a logistic regression classifier that included 3

laboratory markers: lactate dehydrogenase, high-sensitivity
C-reactive protein, and lymphocyte percentage. This score was
developed from a cohort of 1479 patients and externally
validated in 2 independent cohorts, reaching an accuracy of
95% in predicting the risk of mortality. However, the model
comprised only Chinese patients during the early stages of the
outbreak and, more importantly, it seems to have a significant
selection bias as it did not include patients with mild and
moderate disease at admission [21].

The 4C mortality score, developed and validated by the
International Severe Acute Respiratory and Emerging Infections
Consortium, based on 8 clinical and laboratory variables,
achieved an AUC of 0.78 in predicting mortality. It is easy to
use and has a pragmatic design. In fact, to calculate the score,
no external tool or complex mathematical equation is required,
and results can be immediately retrieved at the bedside [5].
However, due to the rapidly evolving characteristics of the virus
and its impact on the population, the score should be
continuously updated. For example, the 4C score did not include
patients from the second wave of the pandemic. At the same
time, if a broad range of individuals are included, the score may
become unsuitable for more specific clinical scenarios, such as
patients affected by severe pneumonia.

The performance of our model is comparable with the 4C
mortality score applied to the test cohort used in this paper.
However, we remark that the 4C mortality score was derived
based on a population of 35,000 patients, while the naïve model
providing the Piacenza score was trained using information
coming only from 852 patients. This is indicative of the high
representativeness of the training cohort considered in our study.
Furthermore, although there is a similar discriminative power
between the 4C score and the Piacenza score, the latter score
showed better performance in stratifying patients according to
their mortality risk, which is of paramount importance in
selecting the appropriate treatment and for resource allocations.
We also externally tested our score, achieving good performance
and confirming that our data-driven model is robust despite its
reliance on variables deemed relevant in this context without
actually knowing their semantics.

Characteristics of the Piacenza Score
The Piacenza score contains parameters reflecting patient
demographics, comorbidity, and physiology at hospital
admission. It shares some characteristics with the 4C score such
as age, gender, comorbidities, and PaO2/FiO2 but also includes
unexplored features like temperature and MCHC deriving from
a substantially different selection of variables. Unlike traditional
scores based on logistic regression analysis mixed with a
knowledge-driven approach where a score is assigned by an
expert to each of the limited number of selected variables, the
proposed predictive model is purely data driven and is not
affected by a clinically oriented, potentially biased choice of
variables [22].

The Piacenza score is highly customizable and can be adapted
as more information becomes available on disease progression
and the impact of interventions like vaccines and new
pharmacological treatments. In fact, the naïve Bayes algorithm,
during its learning phase, generates a summary of the data set
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where each variable is associated with the outcome in terms of
a probabilistic dependence. This summary describes the
distribution of the current data set and can be quickly and easily
updated when a new observation is available, adapting itself to
changes within the population. Likewise, if new data are
available, they can be used to train a new version of the Piacenza
score and study the possible fingerprints of COVID-19 variants.

The Piacenza score is thus highly flexible; if the some of the
required variables are missing, the model can be retrained and
the physician can still receive a customized result (associated
with the best possible accuracy with respect to the variables
provided). The retraining process can take up to 10 hours,
depending on the number of features inserted. However,
depending on future requests, codes can be easily optimized
and run on more powerful hardware.

An example of a personalized model different from the Piacenza
score is the naïve Bayes model trained with 14 manually chosen
features, which showed a predictive power comparable to that
of the Piacenza score. Other models differ in performance;
however, as demonstrated, the variables age and PaO2/FiO2

ratio have the biggest contribution to the predictive power of
the model. Therefore, starting with age and the PaO2/FiO2 ratio
and adding more variables will lead to predictive performances
similar to that of the Piacenza score, which represents the best
combination for stratifying patients and predicting mortality.

Finally, our score’s predictors were not chosen a priori (like,
for example, the 4C mortality score) but as the product of a
machine learning–based optimization technique, which considers
the smallest possible subset of leading predictors associated
with the best possible performance.

The Piacenza Score Beyond the COVID-19 Pandemic
The approach proposed in our paper is suitable for risk
stratification and mortality assessment of other conditions as
well, such as heart failure (HF), which constitutes a growing
public health issue. In fact, although machine learning has made
significant contributions to health care in just a few years, little
evidence exists on the role of machine learning in predicting
mortality in patients with HF and in general with cardiovascular

diseases. In this context, several researchers have developed
prognostic risk scores for HF such as the Seattle Heart Failure
Model and the Meta-Analysis Global Group in Chronic Heart
Failure [23,24]. However, these models do not necessarily
predict mortality in patients with HF at the individual level and
do not present the same flexibility as the Piacenza score. When
dealing with cardiovascular diseases, the flexibility of the scores
is of crucial importance due to the continuous and rapid changes
in therapeutic strategies; this makes the above-mentioned scores
less useful or not reliable in clinical practice.

Limitations
This study has room for further improvement, which is left for
future work. First, given that the proposed machine learning
method is purely data driven, our model may vary if a different
data set is used. As more data become available, the model can
be refined and performance of the Piacenza score can further
increase. To this aim, we are currently looking forward to
subsequent large-sample and multicentered studies. Second, the
forward-selection algorithm (used to select the Piacenza score
predictors and most importantly to personalize the Piacenza
score on any other subset of features) may be an expensive
option to be considered and may surely be optimized in further
versions of the code. Finally, new variables such as d-dimer
and troponin, currently not available, but which are known to
be associated with a higher mortality risk in cases of COVID-19
pneumonia may be included in future analyses.

Conclusion
In conclusion, we have developed and validated robust machine
learning models, which could be used to predict the prognosis
of patients with COVID-19. The Piacenza score has several
advantages: first, it relies on objective clinical and laboratory
measurements not affected by human interpretation; second, it
was tested and validated in patients belonging to the second
wave of the pandemic; third, it is automatically generated
through a combination of variables widely available at hospital
admission and can be calculated through a user-friendly web
interface; and finally, as opposed to traditional epidemiological
predictive models, the Piacenza score has the added advantage
of adaptive learning, trend-based recalibration, and flexibility.
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