34 research outputs found

    Stellar population and kinematics of NGC404

    Get PDF
    NGC404 is a nearly face-on nearby low-luminosity lenticular galaxy. Probing its characteristics provides a wealth of information on the details of possible evolution processes of dS0 galaxies which may not be possible in other, more distant objects. In order to study its kinematics and star formation history, we obtained long slit spectroscopy at the OHP 1m93 telescope along the major and minor axes of NGC404. The spectra have a resolution R = 3600 covering a wavelength range from 4600 to 5500 A. The data are fitted against the Pegase.HR stellar population models to derive simultaneously the internal stellar kinematics, ages and metallicities. Firstly, the global properties of the galaxy are analyzed by fitting a single model and to the data and looking at the kinematic variations and SSP equivalent age and metallicities as a function of radius. Afterwards, the stellar populations are decomposed into 4 components that are individually analyzed. NGC404 clearly shows two radial velocity inversions along its major axis. The kinematically decoupled core rotates in the same direction as the neutral hydrogen shell that surrounds the galaxy. We resolved the star formation history in the core of the galaxy ino 4 events: A very young (< 150 Myr, and [Fe/H] = 0.4) component with constant on-going star formation, a second young (430 Myr) component with [Fe/H] = 0.1, an intermediate population (1.7 Gyr) which has [Fe/H] = -0.05 and, finally, an old (12 Gyr) component with [Fe/H] = -1.26. The two young components fade very quickly with radius, leaving only the intermediate and old population at a radius of 25" (370 pc) from the centre. We conclude that NGC404 had a spiral morphology about 1 Gyr ago and that one or many merger events has triggered a morphological transition.Comment: 8 pages, 8 figures, accepted for publication in A&

    Age and metallicity gradients in early-type galaxies: A dwarf to giant sequence

    Get PDF
    We studied the stellar populations of 40 early-type galaxies using medium resolution long-slit spectroscopy along their major axes (and along the minor axis for two of them), from 10^7 Msol to 10^12 Msol (-9.2 > M_B > -22.4 mag). All the studied galaxies lie on the mass-metallicity and age-mass relations. The transition type dwarfs deviate from the latter relation having younger mean age, and the low-mass dwarf spheroidals have older ages, marking a discontinuity in the relation, possibly due to selection effects. In all mass regimes, the mean metallicity gradients are approximately -0.2 and the mean age gradients +0.1 dex per decade of radius. The individual gradients are widely spread: 0.1<Age<0.4 -0.1 < \nabla_{\rm Age} < 0.4 and 0.54<[Fe/H]<+0.2-0.54 < \nabla_{[{\rm Fe/H}]} < +0.2 . We do not find evidence for a correlation between the metallicity gradient and luminosity, velocity dispersion, central age or age gradient. Likewise, we do not find a correlation between the age gradient and any other parameter in bright early-type galaxies. In faint early-types with MB17M_B \gtrsim -17 mag, on the other hand, we find a correlation between the age gradient and luminosity: the age gradient becomes more positive for fainter galaxies. We conclude that various physical mechanisms can lead to similar gradients and that these gradients are robust against the environmental effects. In particular, the gradients observed in dwarfs galaxies certainly survived the transformation of the progenitors through tidal harassment or/and ram-pressure stripping. The diversity of metallicity gradients amongst dwarf elliptical galaxies may reflect a plurality of progenitors' morphologies. The dwarfs with steep metallicity gradients could have originated from blue compact dwarfs and those with flat profiles from dwarf irregulars and late type spirals. (Abridged)Comment: 31 pages, 16 figures. Accepted for publications in MNRA

    Local Luminous Infrared Galaxies. I. Spatially resolved observations with Spitzer/IRS

    Get PDF
    We present results from the Spitzer/IRS spectral mapping observations of 15 local luminous infrared galaxies (LIRGs). In this paper we investigate the spatial variations of the mid-IR emission which includes: fine structure lines, molecular hydrogen lines, polycyclic aromatic features (PAHs), continuum emission and the 9.7um silicate feature. We also compare the nuclear and integrated spectra. We find that the star formation takes place in extended regions (several kpc) as probed by the PAH emission as well as the [NeII] and [NeIII] emissions. The behavior of the integrated PAH emission and 9.7um silicate feature is similar to that of local starburst galaxies. We also find that the minima of the [NeIII]/[NeII] ratio tends to be located at the nuclei and its value is lower than that of HII regions in our LIRGs and nearby galaxies. It is likely that increased densities in the nuclei of LIRGs are responsible for the smaller nuclear [NeIII]/[NeII] ratios. This includes the possibility that some of the most massive stars in the nuclei are still embedded in ultracompact HII regions. In a large fraction of our sample the 11.3um PAH emission appears more extended than the dust 5.5um continuum emission. We find a dependency of the 11.3um PAH/7.7 um PAH and [NeII]/11.3um PAH ratios with the age of the stellar populations. Smaller and larger ratios respectively indicate recent star formation. The estimated warm (300 K < T < 1000 K) molecular hydrogen masses are of the order of 10^8 M_Sun, which are similar to those found in ULIRGs, local starbursts and Seyfert galaxies. Finally we find that the [NeII] velocity fields for most of the LIRGs in our sample are compatible with a rotating disk at ~kpc scales, and they are in a good agreement with H-alpha velocity fields.Comment: Comments: 52 pages, accepted for publicacion in ApJ

    A High Spatial Resolution Mid-Infrared Spectroscopic Study of the Nuclei and Star-Forming Regions in Luminous Infrared Galaxies

    Get PDF
    We present a high spatial (diffraction-limited) resolution (~0.3") mid-infrared (MIR) spectroscopic study of the nuclei and star-forming regions of 4 local luminous infrared galaxies (LIRGs) using T-ReCS on the Gemini South telescope. We investigate the spatial variations of the features seen in the N-band spectra of LIRGs on scales of ~100 pc, which allow us to separate the AGN emission from that of the star formation (SF). We compare our Gemini T-ReCS nuclear and integrated spectra of LIRGs with those obtained with Spitzer IRS. The 9.7um silicate absorption feature is weaker in the nuclei of the LIRGs than in the surrounding regions. This is probably due to the either clumpy or compact environment of the central AGN or young, nuclear starburst. We find that the [NeII] luminosity surface density is tightly and directly correlated with that of Pa-alpha for the LIRG star-forming regions (slope of 1.00+-0.02). Although the 11.3um PAH feature shows also a trend with Pa-alpha, this is not common for all the regions. We also find that the [NeII]\Pa-alpha ratio does not depend on the Pa-alpha equivalent width (EW), i.e., on the age of the ionizing stellar populations, suggesting that, on the scales probed here, the [NeII] emission line is a good tracer of the SF activity in LIRGs. On the other hand, the 11.3um PAH\Pa-alpha ratio increases for smaller values of the Pa-alpha EW (increasing ages), indicating that the 11.3um PAH feature can also be excited by older stars than those responsible for the Pa-alpha emission. Additional high spatial resolution observations are essential to investigate, in a statistical way, the star formation in local LIRGs at the smallest scales and to probe ultimately whether they share the same physical properties as high-z LIRGs, ULIRGs and submillimiter galaxies.Comment: 23 pages (apjstyle), 19 figures, accepted for publicacion in Ap

    VLT-VIMOS integral field spectroscopy of luminous and ultraluminous infrared galaxies II. Evidence for shock ionization caused by tidal forces in the extra-nuclear regions of interacting and merging LIRGs

    Full text link
    LIRGs are an important class of objects in the low-z universe bridging the gap between normal spirals and the strongly interacting and starbursting ULIRGs. Studies of their 2D physical properties are still lacking. We aim to understand the nature and origin of the ionization mechanisms operating in the extranuclear regions of LIRGs as a function of the interaction phase and L_IR by using IFS data obtained with VIMOS. Our analysis is based on over 25300 spectra of 32 LIRGs covering all types of morphologies and the entire 10^11-10^12 L_sun range. We found strong evidence for shock ionization, with a clear trend with the dynamical status of the system. Specifically, we quantified the variation with interaction phase of several line ratios indicative of the excitation degree. While the [NII]/Ha ratio does not show any significant change, the [SII]/Ha and [OI]/Ha ratios are higher for more advanced interaction stages. We constrained the main mechanisms causing the ionization in the extra-nuclear regions using diagnostic diagrams. Isolated systems are mainly consistent with ionization caused by young stars. Large fractions of the extra-nuclear regions in interacting pairs and more advanced mergers are consistent with ionization caused by shocks. This is supported by the relation between the excitation degree and the velocity dispersion of the ionized gas, which we interpret as evidence for shock ionization in interacting galaxies and advanced mergers but not in isolated galaxies. This relation does not show any dependence with L_IR. All this indicates that tidal forces play a key role in the origin of the ionizing shocks in the extra-nuclear regions. We also showed what appears to be a common [OI]/Ha-sigma relation for the extranuclear ionized gas in interacting (U)LIRGs. This needs to be investigated further with a larger sample of ULIRGs.Comment: Accepted for publication in Astronomy and Astrophysics. Some figures were removed due to space limitations. A version with the whole set of figures can be seen at http://www.damir.iem.csic.es/extragalactic/publications/publications.htm

    Stellar Population Trends in S0 Galaxies

    Get PDF
    We present stellar population age and metallicity trends for a sample of 59 S0 galaxies based on optical SDSS and NIR J & H photometry. When combined with optical g and r passband imaging data from the SDSS archive and stellar population models, we obtain radial age and metallicity trends out to at least 5 effective radii for most of the galaxies in our sample. The sample covers a range in stellar mass and light concentration. We find an average central light-weighted age of ~ 4 Gyr and central metallicity [Z/H] ~ 0.2 dex. Almost all galaxies show a negative metallicity gradient from the center out, with an average value of Delta[Z/H]/Delta(log(r/Re)) = -0.6. An age increase, decrease, and minimal change with radius is observed for 58%, 19%, and 23%, respectively, for a mean age gradient of Delta(age)/Delta(log(r/Re)) = 2.3 Gyr dex^{-1}. For 14 out of 59 galaxies, the light-weighted age of the outer region is greater than 10 Gyr. We find that galaxies with both lower mass and lower concentration have younger light-weighted ages and lower light-weighted metallicities. This mass-metallicity relation extends into the outer regions of our S0 galaxies. Our results are consistent with the formation of S0 galaxies through the transformation of spiral galaxy disks. Determining the structural component that makes up the outer region of galaxies with old outksirts is a necessary step to understand the formation history of S0 galaxies.Comment: accepted to MNRA

    PMAS Optical Integral Field Spectroscopy of Luminous Infrared Galaxies. II.-- Spatially resolved stellar populations and excitation conditions

    Full text link
    The general properties of luminous and ultraluminous infrared galaxies (LIRGs and ULIRGs) in the local universe are well known since large samples of these objects have been the subject of numerous spectroscopic works. There are, however, relatively few studies of large samples of LIRGs and ULIRGs using integral field spectroscopy (IFS). We analyze optical (3800-7200A) IFS data taken with the Potsdam Multi-Aperture Spectrophotometer (PMAS) of the central few kiloparsecs of 11 LIRGs. To study the stellar populations we fit the optical stellar continuum and the hydrogen recombination lines of selected regions. We analyze the excitation conditions of the gas using the spatially resolved properties of the brightest optical emission lines. The optical continua of the selected regions are well fitted with a combination of evolved (~0.7-10Gyr) and ionizing (1-20Myr) stellar populations. The latter is more obscured than the evolved population, and has visual extinctions in good agreement with those obtained from the Balmer decrement. Except for NGC 7771, there is no clear evidence for an important contribution to the optical light from an intermediate-aged population (~100-500Myr). Even after correcting for the presence of stellar absorption, a large fraction of spaxels with low observed equivalent widths of Halpha in emission still show enhanced [NII]/Halpha and [SII]/Halpha ratios. These ratios are likely to be produced by a combination of photoionization in HII regions and diffuse emission. These regions of enhanced ratios are generally coincident with low surface brightness HII regions and diffuse emission detected in the Halpha and Pa-alpha images. Using the PMAS line ratios and the NICMOS Pa-alpha photometry of HII regions we find that the fraction of diffuse emission in LIRGs varies from galaxy to galaxy, and it is generally less than 60% as found in other starburst galaxies. (Abridged)Comment: Accepted for publication in A&
    corecore