445 research outputs found

    Up-regulation of ZO-1 expression and barrier function in cultured human corneal epithelial cells by substance P

    Get PDF
    AbstractThe effects of the sensory neurotransmitter substance P on the expression of tight junction proteins and on barrier function in human corneal epithelial cells were investigated. The expression of ZO-1, but not that of occludin or claudin-1, was increased by substance P in a concentration- and time-dependent manner. This effect was inhibited by the NK-1 receptor antagonist GR82334 and by KN62, an inhibitor of Ca2+- and calmodulin-dependent protein kinase II. Substance P also increased the transepithelial electrical resistance of a cell monolayer in a manner sensitive to GR82334. Substance P may therefore play a role in maintenance of tight junctions in the corneal epithelium

    Activation of channel activity of the NMDA receptor-PSD-95 complex by guanylate kinase-associated protein (GKAP)

    Get PDF
    AbstractThe channel-associated protein PSD-95 functionally modulates NMDA receptor channels, interacting with the channels via PDZ domain of PSD-95. PSD-95 also interacts with guanylate kinase-associated protein (GKAP) through the guanylate kinase-like domain of PSD-95. Here we report that GKAP markedly potentiates the channel activity of the receptor-PSD-95 complex. However, GKAP had no effect on basic properties of the channels nor on PSD-95-induced changes in channel properties. Thus, GKAP affects the channel activity of the NMDA receptor via PSD-95 quantitatively, which may make signal transmission more efficient at postsynaptic sites

    Impaired formation of high-order gephyrin oligomers underlies gephyrin dysfunction-associated pathologies

    Get PDF
    Gephyrin is critical for the structure, function, and plasticity of inhibitory synapses. Gephyrin mutations have been linked to various neurological disorders; however, systematic analyses of the functional consequences of these mutations are lacking. Here, we performed molecular dynamics simulations of gephyrin to predict how six reported point mutations might change the structural stability and/or function of gephyrin. Additional in silico analyses revealed that the A91T and G375D mutations reduce the binding free energy of gephyrin oligomer formation. Gephyrin A91T and G375D displayed altered clustering patterns in COS-7 cells and nullified the inhibitory synapse-promoting effect of gephyrin in cultured neurons. However, only the G375D mutation reduced gephyrin interaction with GABAA receptors and neuroligin-2 in mouse brain; it also failed to normalize deficits in GABAergic synapse maintenance and neuronal hyperactivity observed in hippocampal dentate gyrus-specific gephyrin-deficient mice. Our results provide insights into biochemical, cell-biological, and network-activity effects of the pathogenic G375D mutation. Β© 2021 The Author(s)1

    Nanovesicles derived from iron oxide nanoparticles-incorporated mesenchymal stem cells for cardiac repair

    Get PDF
    Because of poor engraftment and safety concerns regarding mesenchymal stem cell (MSC) therapy, MSC-derived exosomes have emerged as an alternative cell-free therapy for myocardial infarction (MI). However, the diffusion of exosomes out of the infarcted heart following injection and the low productivity limit the potential of clinical applications. Here, we developed exosome-mimetic extracellular nanovesicles (NVs) derived from iron oxide nanoparticles (IONPs)-incorporated MSCs (IONP-MSCs). The retention of injected IONP-MSC-derived NVs (IONP-NVs) within the infarcted heart was markedly augmented by magnetic guidance. Furthermore, IONPs significantly increased the levels of therapeutic molecules in IONP-MSCs and IONP-NVs, which can reduce the concern of low exosome productivity. The injection of IONP-NVs into the infarcted heart and magnetic guidance induced an early shift from the inflammation phase to the reparative phase, reduced apoptosis and fibrosis, and enhanced angiogenesis and cardiac function recovery. This approach can enhance the therapeutic potency of an MSC-derived NV therapy.

    Mainly Adrenal Gland Involving NK/T-Cell Nasal Type Lymphoma Diagnosed with Delay due to Mimicking Adrenal Hemorrhage

    Get PDF
    A 29-yr-old man, presented with abdominal pain and fever, had an initial computed tomography (CT) scan revealing low attenuation of both adrenal glands. The initial concern was for tuberculous adrenalitis or autoimmune adrenalitis combined with adrenal hemorrhage. The patient started empirical anti-tuberculous medication, but there was no improvement. Enlargement of cervical lymph nodes were developed after that and excisional biopsy of cervical lymph nodes was performed. Pathological finding of excised lymph nodes was compatible to NK/T-cell lymphoma. The patient died due to the progression of the disease even after undergoing therapeutic trials including chemotherapy. Lymphoma mainly involving adrenal gland in the early stage of the disease is rare and the vast majority of cases that have been reported were of B-cell origin. From this case it is suggested that extra-nodal NK/T-cell lymphoma should be considered as a cause of bilateral adrenal masses although it is rare

    Metodologias alternativas no ensino de fΓ­sica

    Get PDF
    Screening a compound library of quinolinone derivatives identified compound 11a as a new P2X7 receptor antagonist. To optimize its activity, we assessed structure-activity relationships (SAR) at three different positions, R_1, R_2 and R_3, of the quinolinone scaffold. SAR analysis suggested that a carboxylic acid ethyl ester group at the R_1 position, an adamantyl carboxamide group at R_2 and a 4-methoxy substitution at the R_3 position are the best substituents for the antagonism of P2X7R activity. However, because most of the quinolinone derivatives showed low inhibitory effects in an IL-1Ξ² ELISA assay, the core structure was further modified to a quinoline skeleton with chloride or substituted phenyl groups. The optimized antagonists with the quinoline scaffold included 2-chloro-5-adamantyl-quinoline derivative (16c) and 2-(4-hydroxymethylphenyl)-5-adamantyl-quinoline derivative (17k), with IC_(50) values of 4 and 3β€―nM, respectively. In contrast to the quinolinone derivatives, the antagonistic effects of the quinoline compounds (16c and 17k) were paralleled by their ability to inhibit the release of the pro-inflammatory cytokine, IL-1Ξ², from LPS/IFN-Ξ³/BzATP-stimulated THP-1β€―cells (IC_(50) of 7 and 12β€―nM, respectively). In addition, potent P2X7R antagonists significantly inhibited the sphere size of TS15-88 glioblastoma cells

    Observation of associated near-side and away-side long-range correlations in √sNN=5.02  TeV proton-lead collisions with the ATLAS detector

    Get PDF
    Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02  TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1  μb-1 of data as a function of transverse momentum (pT) and the transverse energy (Ξ£ETPb) summed over 3.1<Ξ·<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) β€œnear-side” (Ξ”Ο•βˆΌ0) correlation that grows rapidly with increasing Ξ£ETPb. A long-range β€œaway-side” (Ξ”Ο•βˆΌΟ€) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small Ξ£ETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and Ξ£ETPb dependence. The resultant Δϕ correlation is approximately symmetric about Ο€/2, and is consistent with a dominant cos⁑2Δϕ modulation for all Ξ£ETPb ranges and particle pT

    Search for high-mass resonances decaying to dilepton final states in pp collisions at s√=7 TeV with the ATLAS detector

    Get PDF
    The ATLAS detector at the Large Hadron Collider is used to search for high-mass resonances decaying to an electron-positron pair or a muon-antimuon pair. The search is sensitive to heavy neutral Zβ€² gauge bosons, Randall-Sundrum gravitons, Z * bosons, techni-mesons, Kaluza-Klein Z/Ξ³ bosons, and bosons predicted by Torsion models. Results are presented based on an analysis of pp collisions at a center-of-mass energy of 7 TeV corresponding to an integrated luminosity of 4.9 fbβˆ’1 in the e + e βˆ’ channel and 5.0 fbβˆ’1 in the ΞΌ + ΞΌ βˆ’channel. A Z β€² boson with Standard Model-like couplings is excluded at 95 % confidence level for masses below 2.22 TeV. A Randall-Sundrum graviton with coupling k/MPl=0.1 is excluded at 95 % confidence level for masses below 2.16 TeV. Limits on the other models are also presented, including Technicolor and Minimal Zβ€² Models

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pTβ‰₯20 GeV and pseudorapidities {pipe}Ξ·{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}Ξ·{pipe}<0. 8) for jets with 60≀pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≀{pipe}Ξ·{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. Β© 2013 CERN for the benefit of the ATLAS collaboration
    • …
    corecore