52 research outputs found

    Alleviating privacy and security concerns in financial aggregation programs

    Get PDF
    This paper focuses on the privacy and security concerns of young people in Australia regarding the use of financial aggregation (FA) programs as a way of making decisions about their money. The use of FA programs to provide a comprehensive online picture of a person\u27s finances, bringing together information from discreet providers, is one example of the increasing importance of Internet and media services in the lives of young people. Young people are likely to be the target user group for these programs; this is because younger Australians are known to use Internet banking to a greater extent than older Australians. They also see it as more private, more secure and more trustworthy than do older Australians. Drawing particularly on two user experience workshops in Melbourne around Sunario, a FA prototype, the paper documents the privacy and security concerns of the 24 participants, all of whom were between 18 and 45 years old. Despite these concerns and other usability issues, the majority of the participants said they would use the prototype. The paper describes how the design of the FA program had some of these concerns in mind when it decided against automatically downloading information from accounts held by another bank. Following the workshop, there were further attempts to alleviate the users\u27 privacy and security concerns while increasing the trustworthiness of the service. The paper illustrates the value of user feedback to the design of a FA program. The design principles that emerged from the workshops have general applicability to all FA programs. The paper also recommends the need for regulatory overview to ensure that the provision of these new financial services continues to be a safe and private space for information and transaction

    Hemodynamic Effects of Entry and Exit Tear Size in Aortic Dissection Evaluated with In Vitro Magnetic Resonance Imaging and Fluid-Structure Interaction Simulation

    Full text link
    Understanding the complex interplay between morphologic and hemodynamic features in aortic dissection is critical for risk stratification and for the development of individualized therapy. This work evaluates the effects of entry and exit tear size on the hemodynamics in type B aortic dissection by comparing fluid-structure interaction (FSI) simulations with in vitro 4D-flow magnetic resonance imaging (MRI). A baseline patient-specific 3D-printed model and two variants with modified tear size (smaller entry tear, smaller exit tear) were embedded into a flow- and pressure-controlled setup to perform MRI as well as 12-point catheter-based pressure measurements. The same models defined the wall and fluid domains for FSI simulations, for which boundary conditions were matched with measured data. Results showed exceptionally well matched complex flow patterns between 4D-flow MRI and FSI simulations. Compared to the baseline model, false lumen flow volume decreased with either a smaller entry tear (-17.8 and -18.5 %, for FSI simulation and 4D-flow MRI, respectively) or smaller exit tear (-16.0 and -17.3 %). True to false lumen pressure difference (initially 11.0 and 7.9 mmHg, for FSI simulation and catheter-based pressure measurements, respectively) increased with a smaller entry tear (28.9 and 14.6 mmHg), and became negative with a smaller exit tear (-20.6 and -13.2 mmHg). This work establishes quantitative and qualitative effects of entry or exit tear size on hemodynamics in aortic dissection, with particularly notable impact observed on FL pressurization. FSI simulations demonstrate acceptable qualitative and quantitative agreement with flow imaging, supporting its deployment in clinical studies.Comment: Judith Zimmermann and Kathrin B\"aumler contributed equall

    Inter-observer Variability of Expert-derived Morphologic Risk Predictors in Aortic Dissection

    Get PDF
    OBJECTIVES: Establishing the reproducibility of expert-derived measurements on CTA exams of aortic dissection is clinically important and paramount for ground-truth determination for machine learning. METHODS: Four independent observers retrospectively evaluated CTA exams of 72 patients with uncomplicated Stanford type B aortic dissection and assessed the reproducibility of a recently proposed combination of four morphologic risk predictors (maximum aortic diameter, false lumen circumferential angle, false lumen outflow, and intercostal arteries). For the first inter-observer variability assessment, 47 CTA scans from one aortic center were evaluated by expert-observer 1 in an unconstrained clinical assessment without a standardized workflow and compared to a composite of three expert-observers (observers 2-4) using a standardized workflow. A second inter-observer variability assessment on 30 out of the 47 CTA scans compared observers 3 and 4 with a constrained, standardized workflow. A third inter-observer variability assessment was done after specialized training and tested between observers 3 and 4 in an external population of 25 CTA scans. Inter-observer agreement was assessed with intraclass correlation coefficients (ICCs) and Bland-Altman plots. RESULTS: Pre-training ICCs of the four morphologic features ranged from 0.04 (-0.05 to 0.13) to 0.68 (0.49-0.81) between observer 1 and observers 2-4 and from 0.50 (0.32-0.69) to 0.89 (0.78-0.95) between observers 3 and 4. ICCs improved after training ranging from 0.69 (0.52-0.87) to 0.97 (0.94-0.99), and Bland-Altman analysis showed decreased bias and limits of agreement. CONCLUSIONS: Manual morphologic feature measurements on CTA images can be optimized resulting in improved inter-observer reliability. This is essential for robust ground-truth determination for machine learning models. KEY POINTS: • Clinical fashion manual measurements of aortic CTA imaging features showed poor inter-observer reproducibility. • A standardized workflow with standardized training resulted in substantial improvements with excellent inter-observer reproducibility. • Robust ground truth labels obtained manually with excellent inter-observer reproducibility are key to develop reliable machine learning models

    Registry of Aortic Diseases to Model Adverse Events and Progression (ROADMAP) in Uncomplicated Type B Aortic Dissection: Study Design and Rationale

    Full text link
    PURPOSE To describe the design and methodological approach of a multicenter, retrospective study to externally validate a clinical and imaging-based model for predicting the risk of late adverse events in patients with initially uncomplicated type B aortic dissection (uTBAD). MATERIALS AND METHODS The Registry of Aortic Diseases to Model Adverse Events and Progression (ROADMAP) is a collaboration between 10 academic aortic centers in North America and Europe. Two centers have previously developed and internally validated a recently developed risk prediction model. Clinical and imaging data from eight ROADMAP centers will be used for external validation. Patients with uTBAD who survived the initial hospitalization between January 1, 2001, and December 31, 2013, with follow-up until 2020, will be retrospectively identified. Clinical and imaging data from the index hospitalization and all follow-up encounters will be collected at each center and transferred to the coordinating center for analysis. Baseline and follow-up CT scans will be evaluated by cardiovascular imaging experts using a standardized technique. RESULTS The primary end point is the occurrence of late adverse events, defined as aneurysm formation (≥6 cm), rapid expansion of the aorta (≥1 cm/y), fatal or nonfatal aortic rupture, new refractory pain, uncontrollable hypertension, and organ or limb malperfusion. The previously derived multivariable model will be externally validated by using Cox proportional hazards regression modeling. CONCLUSION This study will show whether a recent clinical and imaging-based risk prediction model for patients with uTBAD can be generalized to a larger population, which is an important step toward individualized risk stratification and therapy.Keywords: CT Angiography, Vascular, Aorta, Dissection, Outcomes Analysis, Aortic Dissection, MRI, TEVAR© RSNA, 2022See also the commentary by Rajiah in this issue

    The Electron Capture in 163^{163} Ho Experiment - a Short Update

    Get PDF
    The definition of the absolute neutrino mass scale is one of the main goals of the Particle Physics today. The study of the end-point regions of the β- and electron capture (EC) spectrum offers a possibility to determine the effective electron (anti-)neutrino mass in a completely model independent way, as it only relies on the energy and momentum conservation. The ECHo (Electron Capture in 163Ho) experiment has been designed in the attempt to measure the effective mass of the electron neutrino by performing high statistics and high energy resolution measurements of the 163 Ho electron capture spectrum. To achieve this goal, large arrays of low temperature metallic magnetic calorimeters (MMCs) implanted with with 163Ho are used. Here we report on the structure and the status of the experiment

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    ATLAS Run 1 searches for direct pair production of third-generation squarks at the Large Hadron Collider

    Get PDF

    Measurements of top-quark pair differential cross-sections in the eμe\mu channel in pppp collisions at s=13\sqrt{s} = 13 TeV using the ATLAS detector

    Get PDF

    Measurement of the W boson polarisation in ttˉt\bar{t} events from pp collisions at s\sqrt{s} = 8 TeV in the lepton + jets channel with ATLAS

    Get PDF

    Search for single production of vector-like quarks decaying into Wb in pp collisions at s=8\sqrt{s} = 8 TeV with the ATLAS detector

    Get PDF
    corecore