284 research outputs found

    Nucleus Accumbens is Involved in Human Action Monitoring: Evidence from Invasive Electrophysiological Recordings

    Get PDF
    The Nucleus accumbens (Nacc) has been proposed to act as a limbic-motor interface. Here, using invasive intraoperative recordings in an awake patient suffering from obsessive-compulsive disease (OCD), we demonstrate that its activity is modulated by the quality of performance of the subject in a choice reaction time task designed to tap action monitoring processes. Action monitoring, that is, error detection and correction, is thought to be supported by a system involving the dopaminergic midbrain, the basal ganglia, and the medial prefrontal cortex. In surface electrophysiological recordings, action monitoring is indexed by an error-related negativity (ERN) appearing time-locked to the erroneous responses and emanating from the medial frontal cortex. In preoperative scalp recordings the patient's ERN was found to be significantly increased compared to a large (n = 83) normal sample, suggesting enhanced action monitoring processes. Intraoperatively, error-related modulations were obtained from the Nacc but not from a site 5 mm above. Importantly, cross-correlation analysis showed that error-related activity in the Nacc preceded surface activity by 40 ms. We propose that the Nacc is involved in action monitoring, possibly by using error signals from the dopaminergic midbrain to adjust the relative impact of limbic and prefrontal inputs on frontal control systems in order to optimize goal-directed behavior

    Contribution of Subcortical Structures to Cognition Assessed with Invasive Electrophysiology in Humans

    Get PDF
    Implantation of deep brain stimulation (DBS) electrodes via stereotactic neurosurgery has become a standard procedure for the treatment of Parkinson's disease. More recently, the range of neuropsychiatric conditions and the possible target structures suitable for DBS have greatly increased. The former include obsessive compulsive disease, depression, obesity, tremor, dystonia, Tourette's syndrome and cluster-headache. In this article we argue that several of the target structures for DBS (nucleus accumbens, posterior inferior hypothalamus, nucleus subthalamicus, nuclei in the thalamus, globus pallidus internus, nucleus pedunculopontinus) are located at strategic positions within brain circuits related to motivational behaviors, learning, and motor regulation. Recording from DBS electrodes either during the operation or post-operatively from externalized leads while the patient is performing cognitive tasks tapping the functions of the respective circuits provides a new window on the brain mechanisms underlying these functions. This is exemplified by a study of a patient suffering from obsessive-compulsive disease from whom we recorded in a flanker task designed to assess action monitoring processes while he received a DBS electrode in the right nucleus accumbens. Clear error-related modulations were obtained from the target structure, demonstrating a role of the nucleus accumbens in action monitoring. Based on recent conceptualizations of several different functional loops and on neuroimaging results we suggest further lines of research using this new window on brain functions

    Cardiovascular risk prediction - a systems medicine approach

    Get PDF
    Background Guidelines for the prevention of cardiovascular disease (CVD) have recommended the assessment of the total CVD risk by risk scores. Current risk algorithms are low in sensitivity and specificity and they have not incorporated emerging risk markers for CVD. We suggest that CVD risk assessment can be still improved. We have developed a long-term risk prediction model of cardiovascular mortality in patients with stable coronary artery disease (CAD) based on newly available machine learning and on an extended dataset of new biomarkers.Methods 2953 participants of the Ludwigshafen Risk and Cardiovascular Health (LURIC) study were included. 184 laboratory and 21 demographic markers were ranked according to their contribution to risk of cardiovascular (CV) mortality using different data mining approaches. A self-learning bioinformatics workflow, including seven different machine learning algorithms, was developed for CV risk prediction. The study population was stratified into patients with and without significant CAD. Thereby, significant CAD was defined as a lumen narrowing of 50 or more in at least one of the coronary segments or a history of definite myocardial infarction. The machine learning models in both subpopulations were compared with established CV risk assessment tools.Results After a follow-up of 10 years, 603 (20.4%) patients died of cardiovascular causes. 95% patients without CAD deceased within ten years and 247 (13.2 %) patients with CAD within 5 years. Overall and in patients without CAD, NT-proBNP (N-terminal pro B-type natriuretic peptide), TnT (Troponin T), estimated cystatin c based GFR (glomerular filtration rate) and age were the highest ranked predictors, while in patients with CAD, NT-proBNP, GFR, CT-proAVP (C-terminal pro arginine vasopressin) and TNT were highest predictive. In the comparison with the FRS, PROCAM and ESC risk scores, the machine learning workflow produced more accurate and robust CV mortality prediction in patients without CAD. Equivalent CV risk prediction was obtained in the CAD subpopulation in comparison with the Marschner risk score. Overall, the existing algorithms in general tend to assign more patients into the medium risk groups, while the machine learning algorithms tend to have a clearer risk/no risk assignment. The framework is available upon request.Conclusion We have developed a fully automated and self-validating computational framework of machine learning techniques using an extensive database of clinical, routinely and non-routinely measured laboratory data. Our framework predicts long-term CV mortality at least as accurate as existing CVD risk scores. A combination of four highly ranked biomarkers and the random forest approach showed the best predictive results. Moreover, a dynamic computational model has several advantages over static CVD risk prediction tools: it is freeware, transparent, variable, transferable and expandable to any population, types of events and time frames

    Mobilization of hematopoietic stem cells with the novel CXCR4 antagonist POL6326 (balixafortide) in healthy volunteers—Results of a dose escalation trial

    Get PDF
    Background: Certain disadvantages of the standard hematopoietic stem and progenitor cell (HSPC) mobilizing agent G-CSF fuel the quest for alternatives. We herein report results of a Phase I dose escalation trial comparing mobilization with a peptidic CXCR4 antagonist POL6326 (balixafortide) vs. G-CSF. Methods: Healthy male volunteer donors with a documented average mobilization response to G-CSF received, following ≄6 weeks wash-out, a 1–2 h infusion of 500–2500 ”g/kg of balixafortide. Safety, tolerability, pharmacokinetics and pharmacodynamics were assessed. Results: Balixafortide was well tolerated and rated favorably over G-CSF by subjects. At all doses tested balixafortide mobilized HSPC. In the dose range between 1500 and 2500 ”g/kg mobilization was similar, reaching 38.2 ± 2.8 CD34 + cells/”L (mean ± SEM). Balixafortide caused mixed leukocytosis in the mid-20 K/”L range. B-lymphocytosis was more pronounced, whereas neutrophilia and monocytosis were markedly less accentuated with balixafortide compared to G-CSF. At the 24 h time point, leukocytes had largely normalized. Conclusions: Balixafortide is safe, well tolerated, and induces efficient mobilization of HSPCs in healthy male volunteers. Based on experience with current apheresis technology, the observed mobilization at doses ≄1500 ”g/kg of balixafortide is predicted to yield in a single apheresis a standard dose of 4× 10E6 CD34+ cells/kg from most individuals donating for an approximately weight-matched recipient. Exploration of alternative dosing regimens may provide even higher mobilization responses. Trial Registration European Medicines Agency (EudraCT-Nr. 2011-003316-23) and clinicaltrials.gov (NCT01841476

    A Potential Role for a Genetic Variation of AKAP5 in Human Aggression and Anger Control

    Get PDF
    The A-kinase-anchoring protein 5 (AKAP5), a post-synaptic multi-adaptor molecule that binds G-protein-coupled receptors and intracellular signaling molecules has been implicated in emotional processing in rodents, but its role in human emotion and behavior is up to now still not quite clear. Here, we report an association of individual differences in aggressive behavior and anger expression with a functional genetic polymorphism (Pro100Leu) in the human AKAP5 gene. Among a cohort of 527 young, healthy individuals, carriers of the less common Leu allele (15.6% allele frequency) scored significantly lower in the physical aggression domain of the Buss and Perry Aggression Questionnaire and higher in the anger control dimension of the state-trait anger expression inventory. In a functional magnetic resonance imaging experiment we could further demonstrate that AKAP5 Pro100Leu modulates the interaction of negative emotional processing and executive functions. In order to investigate implicit processes of anger control, we used the well-known flanker task to evoke processes of action monitoring and error processing and added task-irrelevant neutral or angry faces in the background of the flanker stimuli. In line with our predictions, Leu carriers showed increased activation of the anterior cingulate cortex (ACC) during emotional interference, which in turn predicted shorter reaction times and might be related to stronger control of emotional interference. Conversely, Pro homozygotes exhibited increased orbitofrontal cortex (OFC) activation during emotional interference, with no behavioral advantage. Immunohistochemistry revealed AKAP5 expression in post mortem human ACC and OFC. Our results suggest that AKAP5 Pro100Leu contributes to individual differences in human aggression and anger control. Further research is warranted to explore the detailed role of AKAP5 and its gene product in human emotion processing

    Efficacy of UVC-treated, pathogen-reduced platelets versus untreated platelets: a randomized controlled non-inferiority trial

    Get PDF
    Pathogen reduction (PR) technologies for blood components have been established to reduce the residual risk of known and emerging infectious agents. THERAFLEX UVPlatelets, a novel UVC light-based PR technology for platelet concentrates, works without photoactive substances. This randomized, controlled, double-blind, multicenter, noninferiority trial was designed to compare the efficacy and safety of UVC-treated platelets to that of untreated platelets in thrombocytopenic patients with hematologic-oncologic diseases. Primary objective was to determine non-inferiority of UVC-treated platelets, assessed by the 1-hour corrected count increment (CCI) in up to eight per-protocol platelet transfusion episodes. Analysis of the 171 eligible patients showed that the defined non-inferiority margin of 30% of UVC-treated platelets was narrowly missed as the mean differences in 1-hour CCI between standard platelets versus UVC-treated platelets for intention-to-treat and perprotocol analyses were 18.2% (95% confidence interval [CI]: 6.4%; 30.1) and 18.7% (95% CI: 6.3%; 31.1%), respectively. In comparison to the control, the UVC group had a 19.2% lower mean 24-hour CCI and was treated with an about 25% higher number of platelet units, but the average number of days to next platelet transfusion did not differ significantly between both treatment groups. The frequency of low-grade adverse events was slightly higher in the UVC group and the frequencies of refractoriness to platelet transfusion, platelet alloimmunization, severe bleeding events, and red blood cell transfusions were comparable between groups. Our study suggests that transfusion of pathogen-reduced platelets produced with the UVC technology is safe but non-inferiority was not demonstrated. (The German Clinical Trials Register number: DRKS00011156)

    In vivo hippocampal subfield volumes in bipolar disorder—A mega-analysis from The Enhancing Neuro Imaging Genetics through Meta-Analysis Bipolar Disorder Working Group

    Get PDF
    The hippocampus consists of anatomically and functionally distinct subfields that may be differentially involved in the pathophysiology of bipolar disorder (BD). Here we, the Enhancing NeuroImaging Genetics through Meta‐Analysis Bipolar Disorder workinggroup, study hippocampal subfield volumetry in BD. T1‐weighted magnetic resonance imaging scans from 4,698 individuals (BD = 1,472, healthy controls [HC] = 3,226) from 23 sites worldwide were processed with FreeSurfer. We used linear mixed‐effects models and mega‐analysis to investigate differences in hippocampal subfield volumes between BD and HC, followed by analyses of clinical characteristics and medication use. BD showed significantly smaller volumes of the whole hippocampus (Cohen's d = −0.20), cornu ammonis (CA)1 (d = −0.18), CA2/3 (d = −0.11), CA4 (d = −0.19), molecular layer (d = −0.21), granule cell layer of dentate gyrus (d = −0.21), hippocampal tail (d = −0.10), subiculum (d = −0.15), presubiculum (d = −0.18), and hippocampal amygdala transition area (d = −0.17) compared to HC. Lithium users did not show volume differences compared to HC, while non‐users did. Antipsychotics or antiepileptic use was associated with smaller volumes. In this largest study of hippocampal subfields in BD to date, we show widespread reductions in nine of 12 subfields studied. The associations were modulated by medication use and specifically the lack of differences between lithium users and HC supports a possible protective role of lithium in BD

    Penilaian Kinerja Keuangan Koperasi di Kabupaten Pelalawan

    Full text link
    This paper describe development and financial performance of cooperative in District Pelalawan among 2007 - 2008. Studies on primary and secondary cooperative in 12 sub-districts. Method in this stady use performance measuring of productivity, efficiency, growth, liquidity, and solvability of cooperative. Productivity of cooperative in Pelalawan was highly but efficiency still low. Profit and income were highly, even liquidity of cooperative very high, and solvability was good

    Juxtaposing BTE and ATE – on the role of the European insurance industry in funding civil litigation

    Get PDF
    One of the ways in which legal services are financed, and indeed shaped, is through private insurance arrangement. Two contrasting types of legal expenses insurance contracts (LEI) seem to dominate in Europe: before the event (BTE) and after the event (ATE) legal expenses insurance. Notwithstanding institutional differences between different legal systems, BTE and ATE insurance arrangements may be instrumental if government policy is geared towards strengthening a market-oriented system of financing access to justice for individuals and business. At the same time, emphasizing the role of a private industry as a keeper of the gates to justice raises issues of accountability and transparency, not readily reconcilable with demands of competition. Moreover, multiple actors (clients, lawyers, courts, insurers) are involved, causing behavioural dynamics which are not easily predicted or influenced. Against this background, this paper looks into BTE and ATE arrangements by analysing the particularities of BTE and ATE arrangements currently available in some European jurisdictions and by painting a picture of their respective markets and legal contexts. This allows for some reflection on the performance of BTE and ATE providers as both financiers and keepers. Two issues emerge from the analysis that are worthy of some further reflection. Firstly, there is the problematic long-term sustainability of some ATE products. Secondly, the challenges faced by policymakers that would like to nudge consumers into voluntarily taking out BTE LEI
    • 

    corecore