303 research outputs found

    3C 57 as an Atypical Radio-Loud Quasar: Implications for the Radio-Loud/Radio-Quiet Dichotomy

    Get PDF
    Lobe-dominated radio-loud (LD RL) quasars occupy a restricted domain in the 4D Eigenvector 1 (4DE1) parameter space which implies restricted geometry/physics/kinematics for this subclass compared to the radio-quiet (RQ) majority of quasars. We discuss how this restricted domain for the LD RL parent population supports the notion for a RQ-RL dichotomy among Type 1 sources. 3C 57 is an atypical RL quasar that shows both uncertain radio morphology and falls in a region of 4DE1 space where RL quasars are rare. We present new radio flux and optical spectroscopic measures designed to verify its atypical optical/UV spectroscopic behaviour and clarify its radio structure. The former data confirms that 3C 57 falls off the 4DE1 quasar "main sequence" with both extreme optical FeII emission (R_{FeII} ~ 1) and a large CIV 1549 profile blueshift (~ -1500 km/s). These parameter values are typical of extreme Population A sources which are almost always RQ. New radio measures show no evidence for flux change over a 50+ year timescale consistent with compact steep-spectrum (CSS or young LD) over core-dominated morphology. In the 4DE1 context where LD RL are usually low L/L_{Edd} quasars we suggest that 3C 57 is an evolved RL quasar (i.e. large Black Hole mass) undergoing a major accretion event leading to a rejuvenation reflected by strong FeII emission, perhaps indicating significant heavy metal enrichment, high bolometric luminosity for a low redshift source and resultant unusually high Eddington ratio giving rise to the atypical CIV 1549.Comment: Accepted for publication in MNRAS; 10 pages, 6 figures, 4 table

    Improved Constraints on Northern Extratropical CO₂ Fluxes Obtained by Combining Surface-Based and Space-Based Atmospheric CO₂ Measurements

    Get PDF
    Top‐down estimates of CO₂ fluxes are typically constrained by either surface‐based or space‐based CO₂ observations. Both of these measurement types have spatial and temporal gaps in observational coverage that can lead to differences in inferred fluxes. Assimilating both surface‐based and space‐based measurements concurrently in a flux inversion framework improves observational coverage and reduces sampling related artifacts. This study examines the consistency of flux constraints provided by these different observations and the potential to combine them by performing a series of 6‐year (2010–2015) CO₂ flux inversions. Flux inversions are performed assimilating surface‐based measurements from the in situ and flask network, measurements from the Total Carbon Column Observing Network (TCCON), and space‐based measurements from the Greenhouse Gases Observing Satellite (GOSAT), or all three data sets combined. Combining the data sets results in more precise flux estimates for subcontinental regions relative to any of the data sets alone. Combining the data sets also improves the accuracy of the posterior fluxes, based on reduced root‐mean‐square differences between posterior flux‐simulated CO₂ and aircraft‐based CO₂ over midlatitude regions (0.33–0.56 ppm) in comparison to GOSAT (0.37–0.61 ppm), TCCON (0.50–0.68 ppm), or in situ and flask measurements (0.46–0.56 ppm) alone. These results suggest that surface‐based and GOSAT measurements give complementary constraints on CO₂ fluxes in the northern extratropics and can be combined in flux inversions to improve constraints on regional fluxes. This stands in contrast with many earlier attempts to combine these data sets and suggests that improvements in the NASA Atmospheric CO₂ Observations from Space (ACOS) retrieval algorithm have significantly improved the consistency of space‐based and surface‐based flux constraints

    Improved Constraints on Northern Extratropical CO2 Fluxes Obtained by Combining Surface-Based and Space-Based Atmospheric CO2 Measurements

    Get PDF
    Abstract Top-down estimates of CO2 fluxes are typically constrained by either surface-based or space-based CO2 observations. Both of these measurement types have spatial and temporal gaps in observational coverage that can lead to differences in inferred fluxes. Assimilating both surface-based and space-based measurements concurrently in a flux inversion framework improves observational coverage and reduces sampling related artifacts. This study examines the consistency of flux constraints provided by these different observations and the potential to combine them by performing a series of 6-year (2010?2015) CO2 flux inversions. Flux inversions are performed assimilating surface-based measurements from the in situ and flask network, measurements from the Total Carbon Column Observing Network (TCCON), and space-based measurements from the Greenhouse Gases Observing Satellite (GOSAT), or all three data sets combined. Combining the data sets results in more precise flux estimates for subcontinental regions relative to any of the data sets alone. Combining the data sets also improves the accuracy of the posterior fluxes, based on reduced root-mean-square differences between posterior flux-simulated CO2 and aircraft-based CO2 over midlatitude regions (0.33?0.56?ppm) in comparison to GOSAT (0.37?0.61?ppm), TCCON (0.50?0.68?ppm), or in situ and flask measurements (0.46?0.56?ppm) alone. These results suggest that surface-based and GOSAT measurements give complementary constraints on CO2 fluxes in the northern extratropics and can be combined in flux inversions to improve constraints on regional fluxes. This stands in contrast with many earlier attempts to combine these data sets and suggests that improvements in the NASA Atmospheric CO2 Observations from Space (ACOS) retrieval algorithm have significantly improved the consistency of space-based and surface-based flux constraints

    Improved Constraints on Northern Extratropical CO₂ Fluxes Obtained by Combining Surface-Based and Space-Based Atmospheric CO₂ Measurements

    Get PDF
    Top‐down estimates of CO₂ fluxes are typically constrained by either surface‐based or space‐based CO₂ observations. Both of these measurement types have spatial and temporal gaps in observational coverage that can lead to differences in inferred fluxes. Assimilating both surface‐based and space‐based measurements concurrently in a flux inversion framework improves observational coverage and reduces sampling related artifacts. This study examines the consistency of flux constraints provided by these different observations and the potential to combine them by performing a series of 6‐year (2010–2015) CO₂ flux inversions. Flux inversions are performed assimilating surface‐based measurements from the in situ and flask network, measurements from the Total Carbon Column Observing Network (TCCON), and space‐based measurements from the Greenhouse Gases Observing Satellite (GOSAT), or all three data sets combined. Combining the data sets results in more precise flux estimates for subcontinental regions relative to any of the data sets alone. Combining the data sets also improves the accuracy of the posterior fluxes, based on reduced root‐mean‐square differences between posterior flux‐simulated CO₂ and aircraft‐based CO₂ over midlatitude regions (0.33–0.56 ppm) in comparison to GOSAT (0.37–0.61 ppm), TCCON (0.50–0.68 ppm), or in situ and flask measurements (0.46–0.56 ppm) alone. These results suggest that surface‐based and GOSAT measurements give complementary constraints on CO₂ fluxes in the northern extratropics and can be combined in flux inversions to improve constraints on regional fluxes. This stands in contrast with many earlier attempts to combine these data sets and suggests that improvements in the NASA Atmospheric CO₂ Observations from Space (ACOS) retrieval algorithm have significantly improved the consistency of space‐based and surface‐based flux constraints

    Improved Constraints on Northern Extratropical CO2 Fluxes Obtained by Combining Surface-Based and Space-Based Atmospheric CO2 Measurements

    Get PDF
    © 2020. The Authors. Top-down estimates of CO2 fluxes are typically constrained by either surface-based or space-based CO2 observations. Both of these measurement types have spatial and temporal gaps in observational coverage that can lead to differences in inferred fluxes. Assimilating both surface-based and space-based measurements concurrently in a flux inversion framework improves observational coverage and reduces sampling related artifacts. This study examines the consistency of flux constraints provided by these different observations and the potential to combine them by performing a series of 6-year (2010–2015) CO2 flux inversions. Flux inversions are performed assimilating surface-based measurements from the in situ and flask network, measurements from the Total Carbon Column Observing Network (TCCON), and space-based measurements from the Greenhouse Gases Observing Satellite (GOSAT), or all three data sets combined. Combining the data sets results in more precise flux estimates for subcontinental regions relative to any of the data sets alone. Combining the data sets also improves the accuracy of the posterior fluxes, based on reduced root-mean-square differences between posterior flux-simulated CO2 and aircraft-based CO2 over midlatitude regions (0.33–0.56 ppm) in comparison to GOSAT (0.37–0.61 ppm), TCCON (0.50–0.68 ppm), or in situ and flask measurements (0.46–0.56 ppm) alone. These results suggest that surface-based and GOSAT measurements give complementary constraints on CO2 fluxes in the northern extratropics and can be combined in flux inversions to improve constraints on regional fluxes. This stands in contrast with many earlier attempts to combine these data sets and suggests that improvements in the NASA Atmospheric CO2 Observations from Space (ACOS) retrieval algorithm have significantly improved the consistency of space-based and surface-based flux constraints

    Fundulus as the premier teleost model in environmental biology : opportunities for new insights using genomics

    Get PDF
    Author Posting. © Elsevier B.V., 2007. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Comparative Biochemistry and Physiology Part D: Genomics and Proteomics 2 (2007): 257-286, doi:10.1016/j.cbd.2007.09.001.A strong foundation of basic and applied research documents that the estuarine fish Fundulus heteroclitus and related species are unique laboratory and field models for understanding how individuals and populations interact with their environment. In this paper we summarize an extensive body of work examining the adaptive responses of Fundulus species to environmental conditions, and describe how this research has contributed importantly to our understanding of physiology, gene regulation, toxicology, and ecological and evolutionary genetics of teleosts and other vertebrates. These explorations have reached a critical juncture at which advancement is hindered by the lack of genomic resources for these species. We suggest that a more complete genomics toolbox for F. heteroclitus and related species will permit researchers to exploit the power of this model organism to rapidly advance our understanding of fundamental biological and pathological mechanisms among vertebrates, as well as ecological strategies and evolutionary processes common to all living organisms.This material is based on work supported by grants from the National Science Foundation DBI-0420504 (LJB), OCE 0308777 (DLC, RNW, BBR), BES-0553523 (AW), IBN 0236494 (BBR), IOB-0519579 (DHE), IOB-0543860 (DWT), FSML-0533189 (SC); National Institute of Health NIEHS P42-ES007381(GVC, MEH), P42-ES10356 (RTD), ES011588 (MFO); and NCRR P20 RR-016463 (DWT); Natural Sciences and Engineering Research Council of Canada Discovery (DLM, TDS, WSM) and Collaborative Research and Development Programs (DLM); NOAA/National Sea Grant NA86RG0052 (LJB), NA16RG2273 (SIK, MEH,GVC, JJS); Environmental Protection Agency U91620701 (WSB), R82902201(SC) and EPA’s Office of Research and Development (DEN)

    Model-based cross-correlation search for gravitational waves from the low-mass X-ray binary Scorpius X-1 in LIGO O3 data

    Get PDF

    Diving below the spin-down limit:constraints on gravitational waves from the energetic young pulsar PSR J0537-6910

    Get PDF
    We present a search for continuous gravitational-wave signals from the young, energetic X-ray pulsar PSR J0537-6910 using data from the second and third observing runs of LIGO and Virgo. The search is enabled by a contemporaneous timing ephemeris obtained using NICER data. The NICER ephemeris has also been extended through 2020 October and includes three new glitches. PSR J0537-6910 has the largest spin-down luminosity of any pulsar and is highly active with regards to glitches. Analyses of its long-term and inter-glitch braking indices provided intriguing evidence that its spin-down energy budget may include gravitational-wave emission from a time-varying mass quadrupole moment. Its 62 Hz rotation frequency also puts its possible gravitational-wave emission in the most sensitive band of LIGO/Virgo detectors. Motivated by these considerations, we search for gravitational-wave emission at both once and twice the rotation frequency. We find no signal, however, and report our upper limits. Assuming a rigidly rotating triaxial star, our constraints reach below the gravitational-wave spin-down limit for this star for the first time by more than a factor of two and limit gravitational waves from the l = m = 2 mode to account for less than 14% of the spin-down energy budget. The fiducial equatorial ellipticity is limited to less than about 3 x 10⁻⁵, which is the third best constraint for any young pulsar

    Search for anisotropic gravitational-wave backgrounds using data from Advanced LIGO and Advanced Virgo's first three observing runs

    Get PDF
    We report results from searches for anisotropic stochastic gravitational-wave backgrounds using data from the first three observing runs of the Advanced LIGO and Advanced Virgo detectors. For the first time, we include Virgo data in our analysis and run our search with a new efficient pipeline called {\tt PyStoch} on data folded over one sidereal day. We use gravitational-wave radiometry (broadband and narrow band) to produce sky maps of stochastic gravitational-wave backgrounds and to search for gravitational waves from point sources. A spherical harmonic decomposition method is employed to look for gravitational-wave emission from spatially-extended sources. Neither technique found evidence of gravitational-wave signals. Hence we derive 95\% confidence-level upper limit sky maps on the gravitational-wave energy flux from broadband point sources, ranging from Fα,Θ<(0.0137.6)×108ergcm2s1Hz1,F_{\alpha, \Theta} < {\rm (0.013 - 7.6)} \times 10^{-8} {\rm erg \, cm^{-2} \, s^{-1} \, Hz^{-1}}, and on the (normalized) gravitational-wave energy density spectrum from extended sources, ranging from Ωα,Θ<(0.579.3)×109sr1\Omega_{\alpha, \Theta} < {\rm (0.57 - 9.3)} \times 10^{-9} \, {\rm sr^{-1}}, depending on direction (Θ\Theta) and spectral index (α\alpha). These limits improve upon previous limits by factors of 2.93.52.9 - 3.5. We also set 95\% confidence level upper limits on the frequency-dependent strain amplitudes of quasimonochromatic gravitational waves coming from three interesting targets, Scorpius X-1, SN 1987A and the Galactic Center, with best upper limits range from h0<(1.72.1)×1025,h_0 < {\rm (1.7-2.1)} \times 10^{-25}, a factor of 2.0\geq 2.0 improvement compared to previous stochastic radiometer searches.Comment: 23 Pages, 9 Figure
    corecore