36 research outputs found

    Mitochondria-related transcriptional signature is downregulated in adipocytes in obesity : a study of young healthy MZ twins

    Get PDF
    Low mitochondrial activity in adipose tissue is suggested to be an underlying factor in obesity and its metabolic complications. We aimed to find out whether mitochondrial measures are downregulated in obesity also in isolated adipocytes. We studied young adult monozygotic (MZ) twin pairs discordant (n = 14, intrapair difference Delta BMI ae 3 kg/m(2)) and concordant (n = 5, Delta BMI <3 kg/m(2)) for BMI, identified from ten birth cohorts of 22- to 36-year-old Finnish twins. Abdominal body fat distribution (MRI), liver fat content (magnetic resonance spectroscopy), insulin sensitivity (OGTT), high-sensitivity C-reactive protein, serum lipids and adipokines were measured. Subcutaneous abdominal adipose tissue biopsies were obtained to analyse the transcriptomics patterns of the isolated adipocytes as well as of the whole adipose tissue. Mitochondrial DNA transcript levels in adipocytes were measured by quantitative real-time PCR. Western blots of oxidative phosphorylation (OXPHOS) protein levels in adipocytes were performed in obese and lean unrelated individuals. The heavier (BMI 29.9 +/- 1.0 kg/m(2)) co-twins of the discordant twin pairs had more subcutaneous, intra-abdominal and liver fat and were more insulin resistant (p <0.01 for all measures) than the lighter (24.1 +/- 0.9 kg/m(2)) co-twins. Altogether, 2538 genes in adipocytes and 2135 in adipose tissue were significantly differentially expressed (nominal p <0.05) between the co-twins. Pathway analysis of these transcripts in both isolated adipocytes and adipose tissue revealed that the heavier co-twins displayed reduced expression of genes relating to mitochondrial pathways, a result that was replicated when analysing the pathways behind the most consistently downregulated genes in the heavier co-twins (in at least 12 out of 14 pairs). Consistently upregulated genes in adipocytes were related to inflammation. We confirmed that mitochondrial DNA transcript levels (12S RNA, 16S RNA, COX1, ND5, CYTB), expression of mitochondrial ribosomal protein transcripts and a major mitochondrial regulator PGC-1 alpha (also known as PPARGC1A) were reduced in the heavier co-twins' adipocytes (p <0.05). OXPHOS protein levels of complexes I and III in adipocytes were lower in obese than in lean individuals. Subcutaneous abdominal adipocytes in obesity show global expressional downregulation of oxidative pathways, mitochondrial transcripts and OXPHOS protein levels and upregulation of inflammatory pathways. The datasets analysed and generated during the current study are available in the figshare repository.Peer reviewe

    The caveolae‐associated coiled‐coil protein, NECC2, regulates insulin signalling in Adipocytes

    Get PDF
    Adipocyte dysfunction in obesity is commonly associated with impaired insulin signalling in adipocytes and insulin resistance. Insulin signalling has been associated with caveolae, which are coated by large complexes of caveolin and cavin proteins, along with proteins with membrane‐binding and remodelling properties. Here, we analysed the regulation and function of a component of caveolae involved in growth factor signalling in neuroendocrine cells, neuroendocrine long coiled‐coil protein‐2 (NECC2), in adipocytes. Studies in 3T3‐L1 cells showed that NECC2 expression increased during adipogenesis. Furthermore, NECC2 co‐immunoprecipitated with caveolin‐1 (CAV1) and exhibited a distribution pattern similar to that of the components of adipocyte caveolae, CAV1, Cavin1, the insulin receptor and cortical actin. Interestingly, NECC2 overexpression enhanced insulin‐activated Akt phosphorylation, whereas NECC2 downregulation impaired insulin‐induced phosphorylation of Akt and ERK2. Finally, an up‐regulation of NECC2 in subcutaneous and omental adipose tissue was found in association with human obesity and insulin resistance. This effect was also observed in 3T3‐L1 adipocytes exposed to hyperglycaemia/hyperinsulinemia. Overall, the present study identifies NECC2 as a component of adipocyte caveolae that is regulated in response to obesity and associated metabolic complications, and supports the contribution of this protein as a molecular scaffold modulating insulin signal transduction at these membrane microdomains.La disfunción de los adipocitos en la obesidad se asocia comúnmente con la alteración de la señalización de la insulina en los adipocitos y la resistencia a la insulina. La señalización de la insulina se ha asociado con las caveolas, que están recubiertas por grandes complejos de proteínas de caveolina y cavina, junto con proteínas con propiedades de remodelación y unión a la membrana. Aquí, analizamos la regulación y la función de un componente de las caveolas involucrado en la señalización del factor de crecimiento en las células neuroendocrinas, la proteína 2 neuroendocrina de espiral larga (NECC 2 ) , en los adipocitos. Los estudios en células 3T3‐L1 mostraron que la expresión de NECC 2 aumentó durante la adipogénesis. Además, NECC 2 co‐inmunoprecipitado con caveolina‐1 ( CAV1) y mostró un patrón de distribución similar al de los componentes de las caveolas adipocitarias, CAV 1, Cavin1, el receptor de insulina y la actina cortical. Curiosamente, la sobreexpresión de NECC 2 mejoró la fosforilación de Akt activada por insulina, mientras que la regulación negativa de NECC 2 perjudicó la fosforilación de Akt y ERK 2 inducida por insulina . resistencia a la insulina. Este efecto también se observó en adipocitos 3T3‐L1 expuestos a hiperglucemia/hiperinsulinemia. En general, el presente estudio identifica NECC2 como un componente de las caveolas de los adipocitos que se regula en respuesta a la obesidad y las complicaciones metabólicas asociadas, y respalda la contribución de esta proteína como un andamio molecular que modula la transducción de señales de insulina en estos microdominios de membrana

    OBEDIS Core Variables Project : European Expert Guidelines on a Minimal Core Set of Variables to Include in Randomized, Controlled Clinical Trials of Obesity Interventions

    Get PDF
    Heterogeneity of interindividual and intraindividual responses to interventions is often observed in randomized, controlled trials for obesity. To address the global epidemic of obesity and move toward more personalized treatment regimens, the global research community must come together to identify factors that may drive these heterogeneous responses to interventions. This project, called OBEDIS (OBEsity Diverse Interventions Sharing - focusing on dietary and other interventions), provides a set of European guidelines for a minimal set of variables to include in future clinical trials on obesity, regardless of the specific endpoints. Broad adoption of these guidelines will enable researchers to harmonize and merge data from multiple intervention studies, allowing stratification of patients according to precise phenotyping criteria which are measured using standardized methods. In this way, studies across Europe may be pooled for better prediction of individuals' responses to an intervention for obesity - ultimately leading to better patient care and improved obesity outcomes.Peer reviewe

    COVID Isolation Eating Scale (CIES): Analysis of the impact of confinement in eating disorders and obesity-A collaborative international study

    Get PDF
    Confinement during the COVID-19 pandemic is expected to have a serious and complex impact on the mental health of patients with an eating disorder (ED) and of patients with obesity. The present manuscript has the following aims: (1) to analyse the psychometric properties of the COVID Isolation Eating Scale (CIES), (2) to explore changes that occurred due to confinement in eating symptomatology; and (3) to explore the general acceptation of the use of telemedicine during confinement. The sample comprised 121 participants (87 ED patients and 34 patients with obesity) recruited from six different centres. Confirmatory Factor Analyses (CFA) tested the rational-theoretical structure of the CIES. Adequate goodness-of-fit was obtained for the confirmatory factor analysis, and Cronbach alpha values ranged from good to excellent. Regarding the effects of confinement, positive and negative impacts of the confinement depends of the eating disorder subtype. Patients with anorexia nervosa (AN) and with obesity endorsed a positive response to treatment during confinement, no significant changes were found in bulimia nervosa (BN) patients, whereas Other Specified Feeding or Eating Disorder (OSFED) patients endorsed an increase in eating symptomatology and in psychopathology. Furthermore, AN patients expressed the greatest dissatisfaction and accommodation difficulty with remote therapy when compared with the previously provided face-to-face therapy. The present study provides empirical evidence on the psychometric robustness of the CIES tool and shows that a negative confinement impact was associated with ED subtype, whereas OSFED patients showed the highest impairment in eating symptomatology and in psychopathology.This manuscript and research was supported by grants from the Ministeriode Economía y Competitividad (PSI2015-68701-R), Instituto de Salud Carlos III (ISCIII) (FIS PI14/00290/ INT19/00046nd PI17/01167) and co-funded by FEDER funds/European Regional Development Fund (ERDF), a way to build Europe. CIBERobn, CIBERsam and CIBERDEM are all initiatives of ISCIII. GMB is supported by a postdoctoral grant from FUNCIVA. This initiative is supported by Generalitat de Catalunya. LM is supported by a postdoctoral grant of the mexican institution Consejo Nacional de Ciencia y Tecnología (CONACYT). PPM was supported, in part, by a Portuguese Foundation for Science and Technology grant (POCI-01-0145-FEDER-028145). The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Rab18 Dynamics in Adipocytes in Relation to Lipogenesis, Lipolysis and Obesity

    Get PDF
    Lipid droplets (LDs) are organelles that coordinate lipid storage and mobilization, both processes being especially important in cells specialized in managing fat, the adipocytes. Proteomic analyses of LDs have consistently identified the small GTPase Rab18 as a component of the LD coat. However, the specific contribution of Rab18 to adipocyte function remains to be elucidated. Herein, we have analyzed Rab18 expression, intracellular localization and function in relation to the metabolic status of adipocytes. We show that Rab18 production increases during adipogenic differentiation of 3T3-L1 cells. In addition, our data show that insulin induces, via phosphatidylinositol 3-kinase (PI3K), the recruitment of Rab18 to the surface of LDs. Furthermore, Rab18 overexpression increased basal lipogenesis and Rab18 silencing impaired the lipogenic response to insulin, thereby suggesting that this GTPase promotes fat accumulation in adipocytes. On the other hand, studies of the β-adrenergic receptor agonist isoproterenol confirmed and extended previous evidence for the participation of Rab18 in lipolysis. Together, our data support the view that Rab18 is a common mediator of lipolysis and lipogenesis and suggests that the endoplasmic reticulum (ER) is the link that enables Rab18 action on these two processes. Finally, we describe, for the first time, the presence of Rab18 in human adipose tissue, wherein the expression of this GTPase exhibits sex- and depot-specific differences and is correlated to obesity. Taken together, these findings indicate that Rab18 is involved in insulin-mediated lipogenesis, as well as in β-adrenergic-induced lipolysis, likely facilitating interaction of LDs with ER membranes and the exchange of lipids between these compartments. A role for Rab18 in the regulation of adipocyte biology under both normal and pathological conditions is proposed

    Obesity and Type 2 Diabetes: Two Diseases with a Need for Combined Treatment Strategies - EASO Can Lead the Way

    No full text
    Obesity is a chronic metabolic disease affecting adults and children worldwide. It has become one of the leading causes of death, as obesity is known to be the main risk factor for a number of non-communicable diseases, in particular type 2 diabetes. This close relationship led to the connotation 'diabesity', highlighting the fact that the majority of individuals with diabetes are overweight or obese. Until today the BMI is still used to classify overweight and obesity. Since reduced muscle mass is highly prevalent throughout the BMI range, the measurement of body composition is strongly recommended. Moreover, it is essential for monitoring the course of weight reduction, which is part of every effective anti-obesity treatment. Weight reduction can be achieved via different weight loss strategies, including lifestyle intervention (diet and exercise), pharmacotherapy, or bariatric surgery. However, not all of these strategies are suitable for all patients, and any further needs should be considered. Besides, attention should also be drawn to concomitant therapies. These therapies may promote additional weight gain and further trigger the deterioration of blood glucose control. Thus, therapeutic strategies are warranted, which can be easily used for the management of obese patients with type 2 diabetes to achieve their glycemic and weight loss goals. (C) 2017 The Author(s) Published by S. Karger GmbH, Freibur

    Physiology and pathophysiology of aquaporins

    No full text
    Aquaporins (AQPs) are water channels that facilitate a rapid transport of water, across cell membranes. In some cases, these pores are also permeated by small solutes, particularly glycerol. Thirteen aquaporins (AQP0-12) have been identified so far in mammalian tissues. The disruption of the genes encoding aquaporins in transgenic mice has revealed their implication in physiological and pathophysiological processes, including renal water absorption, neural function, digestion, tumour angiogenesis, and reproduction. A subset of aquaporins that transport both water and glycerol, the ‘aquaglyceroporins’, regulate glycerol content in epidermal, fat and other tissues, and are involved in skin hydration, fat metabolism and gluconeogenesis. Better understanding of the exact mechanisms and regulation of aquaporins might be useful for designing potential drug targets against different metabolic disorders, such as stroke, glaucoma, brain ooedema, cancer, diabetes and obesity
    corecore