33 research outputs found

    Estimating trace deposition time with circadian biomarkers: a prospective and versatile tool for crime scene reconstruction

    Get PDF
    Linking biological samples found at a crime scene with the actual crime event represents the most important aspect of forensic investigation, together with the identification of the sample donor. While DNA profiling is well established for donor identification, no reliable methods exist for timing forensic samples. Here, we provide for the first time a biochemical approach for determining deposition time of human traces. Using commercial enzyme-linked immunosorbent assays we showed that the characteristic 24-h profiles of two circadian hormones, melatonin (concentration peak at late night) and cortisol (peak in the morning) can be reproduced from small samples of whole blood and saliva. We further demonstrated by analyzing small stains dried and stored up to 4 weeks the in vitro stability of melatonin, whereas for cortisol a statistically significant decay with storage time was observed, although the hormone was still reliably detectable in 4-week-old samples. Finally, we showed that the total protein concentration, also assessed using a commercial assay, can be used for normalization of hormone signals in blood, but less so in saliva. Our data thus demonstrate that estimating normalized concentrations of melatonin and cortisol represents a prospective approach for determining deposition time of biological trace samples, at least from blood, with promising expectations for forensic applications. In the broader context, our study opens up a new field of circadian biomarkers for deposition timing of forensic traces; future studies using other circadian biomarkers may reveal if the time range offered by the two hormones studied here can be specified more exactly

    CMS physics technical design report : Addendum on high density QCD with heavy ions

    Get PDF
    Peer reviewe

    Alignment of the CMS tracker with LHC and cosmic ray data

    Get PDF
    © CERN 2014 for the benefit of the CMS collaboration, published under the terms of the Creative Commons Attribution 3.0 License by IOP Publishing Ltd and Sissa Medialab srl. Any further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation and DOI.The central component of the CMS detector is the largest silicon tracker ever built. The precise alignment of this complex device is a formidable challenge, and only achievable with a significant extension of the technologies routinely used for tracking detectors in the past. This article describes the full-scale alignment procedure as it is used during LHC operations. Among the specific features of the method are the simultaneous determination of up to 200 000 alignment parameters with tracks, the measurement of individual sensor curvature parameters, the control of systematic misalignment effects, and the implementation of the whole procedure in a multi-processor environment for high execution speed. Overall, the achieved statistical accuracy on the module alignment is found to be significantly better than 10μm

    Searches for heavy Higgs bosons in two-Higgs-doublet models and for t → c h decay using multilepton and diphoton final states in p p collisions at 8 TeV

    Get PDF
    Searches are presented for heavy scalar (H) and pseudoscalar (A) Higgs bosons posited in the two doublet model (2HDM) extensions of the standard model (SM). These searches are based on a data sample of pp collisions collected with the CMS experiment at the LHC at a center-of-mass energy of root s = 8 TeV and corresponding to an integrated luminosity of 19.5 fb(-1). The decays H - GT hh and A - GT Zh, where h denotes an SM-like Higgs boson, lead to events with three or more isolated charged leptons or with a photon pair accompanied by one or more isolated leptons. The search results are presented in terms of the H and A production cross sections times branching fractions and are further interpreted in terms of 2HDM parameters. We place 95% C.L. cross section upper limits of approximately 7 pb on sigma B for H - GT hh and 2 pb for A - GT Zh. Also presented are the results of a search for the rare decay of the top quark that results in a charm quark and an SM Higgs boson, t - GT ch, the existence of which would indicate a nonzero flavor-changing Yukawa coupling of the top quark to the Higgs boson. We place a 95% C.L. upper limit of 0.56% on B(t - GT ch)
    corecore