46 research outputs found

    Brain-behaviour correlates of habitual motivation in chronic back pain

    Get PDF
    Nees F, Ruttorf M, Fuchs X, Rance M, Beyer N. Brain-behaviour correlates of habitual motivation in chronic back pain. Scientific Reports. 2020;10(1): 11090

    Changes in the superior longitudinal fasciculus and anterior thalamic radiation in the left brain are associated with developmental dyscalculia

    Get PDF
    Developmental dyscalculia is a neurodevelopmental disorder specific to arithmetic learning even with normal intelligence and age-appropriate education. Difficulties often persist from childhood through adulthood lowering the individual’s quality of life. However, the neural correlates of developmental dyscalculia are poorly understood. This study aimed to identify brain structural connectivity alterations in developmental dyscalculia. All participants were recruited from a large scale, non-referred population sample in a longitudinal design. We studied 10 children with developmental dyscalculia (11.3 ± 0.7 years) and 16 typically developing peers (11.2 ± 0.6 years) using diffusion-weighted magnetic resonance imaging. We assessed white matter microstructure with tract-based spatial statistics in regions-of-interest tracts that had previously been related to math ability in children. Then we used global probabilistic tractography for the first time to measure and compare tract length between developmental dyscalculia and typically developing groups. The high angular resolution diffusion-weighted magnetic resonance imaging and crossing-fiber probabilistic tractography allowed us to evaluate the length of the pathways compared to previous studies. The major findings of our study were reduced white matter coherence and shorter tract length of the left superior longitudinal/arcuate fasciculus and left anterior thalamic radiation in the developmental dyscalculia group. Furthermore, the lower white matter coherence and shorter pathways tended to be associated with the lower math performance. These results from the regional analyses indicate that learning, memory and language-related pathways in the left hemisphere might be related to developmental dyscalculia in children

    Hemispheric asymmetries in resting-state EEG and fMRI are related to approach and avoidance behaviour, but not to eating behaviour or BMI

    Get PDF
    Much of our behaviour is driven by two motivational dimensions-approach and avoidance. These have been related to frontal hemispheric asymmetries in clinical and resting-state EEG studies: Approach was linked to higher activity of the left relative to the right hemisphere, while avoidance was related to the opposite pattern. Increased approach behaviour, specifically towards unhealthy foods, is also observed in obesity and has been linked to asymmetry in the framework of the right-brain hypothesis of obesity. Here, we aimed to replicate previous EEG findings of hemispheric asymmetries for self-reported approach/avoidance behaviour and to relate them to eating behaviour. Further, we assessed whether resting fMRI hemispheric asymmetries can be detected and whether they are related to approach/avoidance, eating behaviour and BMI. We analysed three samples: Sample 1 (n = 117) containing EEG and fMRI data from lean participants, and Samples 2 (n = 89) and 3 (n = 152) containing fMRI data from lean, overweight and obese participants. In Sample 1, approach behaviour in women was related to EEG, but not to fMRI hemispheric asymmetries. In Sample 2, approach/avoidance behaviours were related to fMRI hemispheric asymmetries. Finally, hemispheric asymmetries were not related to either BMI or eating behaviour in any of the samples. Our study partly replicates previous EEG findings regarding hemispheric asymmetries and indicates that this relationship could also be captured using fMRI. Our findings suggest that eating behaviour and obesity are likely to be mediated by mechanisms not directly relating to frontal asymmetries in neuronal activation quantified with EEG and fMRI.Peer reviewe

    Power estimation for non-standardized multisite studies

    Get PDF
    AbstractA concern for researchers planning multisite studies is that scanner and T1-weighted sequence-related biases on regional volumes could overshadow true effects, especially for studies with a heterogeneous set of scanners and sequences. Current approaches attempt to harmonize data by standardizing hardware, pulse sequences, and protocols, or by calibrating across sites using phantom-based corrections to ensure the same raw image intensities. We propose to avoid harmonization and phantom-based correction entirely. We hypothesized that the bias of estimated regional volumes is scaled between sites due to the contrast and gradient distortion differences between scanners and sequences. Given this assumption, we provide a new statistical framework and derive a power equation to define inclusion criteria for a set of sites based on the variability of their scaling factors. We estimated the scaling factors of 20 scanners with heterogeneous hardware and sequence parameters by scanning a single set of 12 subjects at sites across the United States and Europe. Regional volumes and their scaling factors were estimated for each site using Freesurfer's segmentation algorithm and ordinary least squares, respectively. The scaling factors were validated by comparing the theoretical and simulated power curves, performing a leave-one-out calibration of regional volumes, and evaluating the absolute agreement of all regional volumes between sites before and after calibration. Using our derived power equation, we were able to define the conditions under which harmonization is not necessary to achieve 80% power. This approach can inform choice of processing pipelines and outcome metrics for multisite studies based on scaling factor variability across sites, enabling collaboration between clinical and research institutions

    Genome-wide association study of 23,500 individuals identifies 7 loci associated with brain ventricular volume

    Get PDF
    The volume of the lateral ventricles (LV) increases with age and their abnormal enlargement is a key feature of several neurological and psychiatric diseases. Although lateral ventricular volume is heritable, a comprehensive investigation of its genetic determinants is lacking. In this meta-analysis of genome-wide association studies of 23,533 healthy middle-aged to elderly individuals from 26 population-based cohorts, we identify 7 genetic loci associated with LV volume. These loci map to chromosomes 3q28, 7p22.3, 10p12.31, 11q23.1, 12q23.3, 16q24.2, and 22q13.1 and implicate pathways related to tau pathology, S1P signaling, and cytoskeleton organization. We also report a significant genetic overlap between the thalamus and LV volumes (ρgenetic = -0.59, p-value = 3.14 × 10-6), suggesting that these brain structures may share a common biology. These genetic associations of LV volume provide insights into brain morphology

    Genetic correlations and genome-wide associations of cortical structure in general population samples of 22824 adults

    Get PDF
    Cortical thickness, surface area and volumes vary with age and cognitive function, and in neurological and psychiatric diseases. Here we report heritability, genetic correlations and genome-wide associations of these cortical measures across the whole cortex, and in 34 anatomically predefined regions. Our discovery sample comprises 22,824 individuals from 20 cohorts within the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium and the UK Biobank. We identify genetic heterogeneity between cortical measures and brain regions, and 160 genome-wide significant associations pointing to wnt/β-catenin, TGF-β and sonic hedgehog pathways. There is enrichment for genes involved in anthropometric traits, hindbrain development, vascular and neurodegenerative disease and psychiatric conditions. These data are a rich resource for studies of the biological mechanisms behind cortical development and aging

    Genetic Variants For Head Size Share Genes and Pathways With Cancer

    Get PDF
    The size of the human head is highly heritable, but genetic drivers of its variation within the general population remain unmapped. We perform a genome-wide association study on head size (N = 80,890) and identify 67 genetic loci, of which 50 are novel. Neuroimaging studies show that 17 variants affect specific brain areas, but most have widespread effects. Gene set enrichment is observed for various cancers and the p53, Wnt, and ErbB signaling pathways. Genes harboring lead variants are enriched for macrocephaly syndrome genes (37-fold) and high-fidelity cancer genes (9-fold), which is not seen for human height variants. Head size variants are also near genes preferentially expressed in intermediate progenitor cells, neural cells linked to evolutionary brain expansion. Our results indicate that genes regulating early brain and cranial growth incline to neoplasia later in life, irrespective of height. This warrants investigation of clinical implications of the link between head size and cancer

    The genetic architecture of the human cerebral cortex

    Get PDF
    The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder

    10Kin1day: A Bottom-Up Neuroimaging Initiative.

    Get PDF
    We organized 10Kin1day, a pop-up scientific event with the goal to bring together neuroimaging groups from around the world to jointly analyze 10,000+ existing MRI connectivity datasets during a 3-day workshop. In this report, we describe the motivation and principles of 10Kin1day, together with a public release of 8,000+ MRI connectome maps of the human brain
    corecore